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PLAN
□ motivation for similarity learing

□ siamese models

□ triplet loss

□ implementation details and evaluation

□ applications: stereoscopic vision, self-supervision
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INTRODUCTION : LIMITS OF STANDARD CLASSIFICATION
Classification models may become impractical when:

□ there are no defined classes, or the classes are unknown
□ the number of classes is too large

Application examples:
□ stereoscopic correspondence
□ self-supervised learing
□ tracking, associative search biometric verification

[bicanic19fusion]
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INTRODUCTION : LIMITS OF STANDARD CLASSIFICATION
The presented applications can be conveniently addressed by
leveraging similarity between examples

Left pair: different. Right pair: similar

[chopra05cvpr]

The idea: embed the data into the appropriate vector space
□ standard metrics (L2, ...) model the similarity between the data

□ short name: metric embeddings
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INTRODUCTION : METRIC EMBEDDINGS
Before going forward, we must ask ourselves:

□ why wouldn't we just measure the the similarity in the input space?

Answers:
□ because distances in high dimensional vector spaces do not make

sense (the curse of dimensionality)

□ because vector representations of complex data is usually not
appropriate for comparing different samples
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INTRODUCTION : METRIC EMBEDDINGS - AN EXAMPLE
We look at distances between digits in the MNIST dataset

□ L2 distance between the first and second digit: 121.4

□ L2 distance between the first and third digit: 133.2

□ L2 distance between the second and third digit: 114.9

[lecun98pieee]

Conclusion: there is no strong connection between the distance in the
original space and data similarity
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INTRODUCTION : METRIC EMBEDDINGS - AN EXAMPLE
import torch

import torchvision

mnist = torchvision.datasets.MNIST('data', download=True)

print(mnist.targets[:10])

# tensor([5, 0, 4, 1, 9, 2, 1, 3, 1, 4])

print(torch.sqrt(torch.sum((mnist.data[2]-mnist.data[3])**2,

dtype=torch.float)))

# tensor(121.4)

print(torch.sqrt(torch.sum((mnist.data[2]-mnist.data[9])**2,

dtype=torch.float)))

# tensor(133.2)

print(torch.sqrt(torch.sum((mnist.data[3]-mnist.data[9])**2,

dtype=torch.float)))

# tensor(114.9)

import cv2

cv2.imwrite('m2.png', mnist.data[2].numpy())

cv2.imwrite('m3.png', mnist.data[3].numpy())

cv2.imwrite('m9.png', mnist.data[9].numpy())
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INTRODUCTION : METRIC EMBEDDINGS - THE GOAL
Embed the data into a (relatively) low-dimensional space where
standard metrics may model the similarity between the data

If we normalize the representations (e.g. by placing them inside the
hypersphere), we may use scalar product to measure the similarity
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INTRODUCTION : METRIC EMBEDDINGS - ADVANTAGES
We may associate data even when some of the classes are unknown
during training

It is more difficult for the model to overfit:
□ classification: O(N) learning samples

□ similarity: O(N2), O(N3) or O(NB) learning samples.

Useful representations may also be trained in the self-supervised
context where we expect the sample to be similar to its own
perturbation, and different from other examples; e.g. SimCLR
[chen20icml].

Metric embeddings may sometimes help with standard supervised
tasks [khosla20neurips].
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METRICS : TERMS
We consider the set X and the mapping d : X × X → R.

We refer to d as a metric, while (X, d) represent the metric space iff :
1. d(a, b) ≥ 0 ∀a, b ∈ X (positivity),

2. d(a, b) = 0 ⇐⇒ a = b ∀a, b ∈ X (zero-rule),

3. d(a, b) = d(b, a) ∀a, b ∈ X (symmetry),

4. d(a, b) ≤ d(a, c) + d(c, b) ∀a, b, c ∈ X (triangle inequality).

This definition fits well with the concept of data similarity.

Some of these axioms are redundant, e.g. positivity and symmetry are
a direct results of triangle inequality and the zero-rule.

In practice we usually learn a pseudo-metric that relaxes the zero-rule
□ d(a, b) ̸= 0 is hard to ensure ∀a ̸= b, so we only require d(a, a) = 0
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METRICS : STANDARD CHOICES
Euclidian metrics:

dE(a, b) =
√
(a − b)⊤(a − b) ∼ (a − b)⊤(a − b)

If the data is normalized, the scalar product is equal to the cosine
similarity and results in the same ranking as a Euclidian metric:

dE(a, b) ∼ (a − b)⊤(a − b)
∼ a⊤a − 2 · a⊤b + b⊤b = 2− 2 · a⊤b
∼ −a⊤b

Mahalanobis metric (M is equal to the inverse of data covariance):

dM(a, b) ∼ (a − b)⊤ · M · (a − b)
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METRICS : MAHALANOBIS
The Mahalanobis isohypse is marked in red:

□ according to Mahalanobis, the yellow sample is much closer to the
orange sample than the blue sample

□ we can hypothesize that the blue sample does not belong to the
green class

□ the Euclidian metric does not support such reasoning.

[tilestats-yt]
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METRICS : MAHALANOBIS
Matrix M is real and symmetric ⇒ it may be diagonalized: M = W⊤W

Mahalanobis metric may be interpreted as a shallow embedding into a
Euclidian metric space W:

dM(a, b) ∼ (a − b)⊤ · M · (a − b)
∼ (W · (a − b))⊤ · (W · (a − b))
∼ (W · a − W · b)⊤ · (W · a − W · b))
∼ dE(Wa,Wb)

There are analogous shallow approaches that consider association of
the data with symbolic classes (Fisher LDA).

The next logical step: replace W with a deep model fθ:
□ what makes sense today, did not make sense in 2005...
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SIAMESE TRAINING : THE IDEA
Train a model GW that embeds data X into a space where the Euclidian
metric EW reflects the (dis)similarity between samples

Siamese learning involves two instances of a parametric module G.

[chopra05cvpr]

The two instances share parameters W, while their gradients are
accumulated through the two instances. Deep Learning 1 → Siamese training 14/45



SIAMESE TRAINING : LOSS
Siamese learning involves some variant of the contrastive loss.

Contrastive loss depends on whether the inputs belong to the same
"class":

L(θ) =
∑

yq=yp

Lpos(θ|xq, xp) +
∑

yq ̸=yn

Lneg(θ|xq, xn)

The loss Lpos forces the examples from the same class to come closer:

Lpos(θ|xq, xp) = ∥fθ(xq)− fθ(xp)∥2

The loss Lneg forces foreign examples to move from each other:

Lneg(θ|xq, xn) = [max(0,m − ∥fθ(xq)− fθ(xn)∥)]2

Deep Learning 1 → Siamese training 15/45



SIAMESE TRAINING : GRADIENTS
Consider the gradients of losses Lpos and Lneg with respect to metric
embeddings zq = fθ(xq):

∂Lpos
∂zp

= 2 · (zp − zq)

∂Lneg
∂zn

= −2 · max(0,m − ∥zq − zn∥) ·
zn − zq
∥zn − zq∥

These gradients encourage the positive pairs to move closer, and the
negative pairs to move away from each other.

The repellence stops when the distance becomes greater than the
margin m.
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SIAMESE TRAINING : GRADIENTS (2)
Homework:

□ derive the gradients of the contrastive loss ∂Lpos
∂fp i ∂Lneg

∂fn ;

□ compare the gradient ∂Lneg
∂fn with the gradient of an alternative

formulation:

Lneg2(θ|xq, xp) = max(0,m2 − ∥fθ(xq)− fθ(xp)∥2)
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SIAMESE TRAINING : GRADIENTS (3)
We may illustrate the decribed dynamics using a system of mechanical
springs (where the force of the spring is proportional to the distance)

□ black and white circles represent positive and negative examples
with respect to the blue sample

□ the negatives outside of radius m do not feel the repellent push
from the blue sample
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TRIPLET LEARNING : THE IDEA
In Siamese training, we compare the
same sample x with both negative and
positive examples.

Embeddings for such samples need to
be calculated twice.

The problem is addressed with triplet
learning:

□ the anchor is compared to the
positive example x+ and the
negative example x−.

[hoffer15iclrw]

The three model instances share parameters and contribute to loss
gradients in equal measure.
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TRIPLET LEARNING : LOSS
Triplet learning typically uses the triplet loss.

The triplet loss merges the two components of contrastive loss into a
single expression:

L(θ) =
∑

i
max(0, ∥fθ(xia)− fθ(xip)∥ − ∥fθ(xia)− fθ(xin)∥+ α)

The triplet loss brings the anchor and the positive example closer while
increasing the distance between the anchor and the negative:

[schroff15cvpr]
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TRIPLET LEARNING : GRADIENTS
Consider the gradients of the triplet loss with respect to embeddings
fa = fθ(xia), fp = fθ(xip) and fn = fθ(xin):

∂L
∂fp

= [[∥fa − fp∥+ α > ∥fa − fn∥]] ·
fp − fa
∥fp − fa∥

∂L
∂fn

= [[∥fa − fp∥+ α > ∥fa − fn∥]] ·
fa − fn
∥fa − fn∥

These gradients test whether ∥fp − fa∥ is less than ∥fn − fa∥ − α.
□ if not, the gradients attract fp and repel fn:

[schroff15cvpr]
Deep Learning 1 → Triplet learning (2) 21/45



DETAILS : SOFT RELU
Classic triplet loss ingnores triplets where the triplet condition is met.

The advantage of this approach is that it prevents overfitting: when the
data is sufficiently well positioned --- the training stops

On the other hand, such approach may be too cautious and hurt
generalization

It is sometimes possible to avoid this pitfall by replacing the hard hinge
loss ReLU(x) = [ x ]+ with its relaxed version:

softplus(x) = ln(1 + ex)
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DETAILS : SCALAR PRODUCT VERSION
As before, we denote embeddings with respect to xp, xp, xn as:

fa = fθ(xia)

fp = fθ(xip)

fn = fθ(xin)

If we normalize the latent representations ∥fa∥ = ∥fp∥ = ∥fn∥ = 1, we may
express the loss with cosine similarity:

L(θ) =
∑

i
max(0, fθ(xia)

⊤fθ(xin)− fθ(xia)
⊤fθ(xip) + α)
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DETAILS : TRIPLET FORMATION
A simplified expression for the basic triplet loss [hermans17arxiv]:

L3(θ) =
∑

ya=yp ̸=yn

[α+ Dap − Dan]+

Training triplet formation is an important implementation detail
□ the main problem is training efficiency
□ the number of triplets increases with O(N · Np · Nn)

It may be worthwile to try the hard triplet loss (eng. batch-hard
[hermans17arxiv]) that finds the most difficult negative and positive for
a given anchor:

LBH(θ) =
∑

a
[α+ max

ya=yp
Dap − min

ya ̸=yp
Dan]+
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DETAILS : N PAIRS
Assume that we have a batch with N pairs of data [sohn16neurips]:

□ all pairs share an anchor: xa

□ only one pair is positive: (xa, xp)

□ all remaining pairs are negative (N − 1 of them): (xa, xni)

We define the loss so that it increases when the anchor is similar to
negatives and decreases when it is similar to positives:

LN-pairs(xa, xp, {xni}) = log
(
1 +

N−1∑
i=1

efθ(xa)⊤fθ(xni)−fθ(xa)⊤fθ(xp)
)

If n=2, LN-pairs is very similar to the triplet loss with a scalar product.
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DETAILS : N PAIRS (2)
After a few simple steps LN-pairs may be reduced to the following form:

LN-pairs(xa, xp, {xni}) =

=− log exp(fθ(xa)⊤fθ(xp))

exp(fθ(xa)⊤fθ(xp)) +
∑N−1

i=1 exp(fθ(xa)⊤fθ(xni))

=− log exp(fθ(xa)⊤fθ(xp))∑N
i=1 exp(fθ(xa)⊤fθ(xall

i ))

We can see that LN-pairs is equivalent to standard cross entropy with a
softmax over a vector of similarities between data pairs.

N-pairs loss is equivalent to the infoNCE loss [vandenoord18arxiv]:
□ infoNCE obtains the same equation by optimizing mutual

information.
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DETAILS : N PAIRS (3)
The N-pairs loss may be generalized to a case where we have several
positive and negative examples in a group {xi, yi}B

i=1

(eng. soft nearest neighbours) [frosst19icml]:

Lsnn = − 1

B

B∑
i=1

log 1

|{yj = yi, j ̸= i}|

∑
j ̸=i,yj=yi

efθ(xi)⊤fθ(xj)/τ∑
yi ̸=yk

efθ(xi)⊤fθ(xk)/τ

□ the hyper-parameter τ (temperature) modulates output entropy.

A stricter variant of this loss requires that every positive within the
group is more similar than the negatives [khosla20neurips]:

Lsum-out = − 1

B

B∑
i=1

1

|{yj = yi, j ̸= i}|
∑

j ̸=i,yj=yi

log efθ(xi)⊤fθ(xj)/τ∑
yi ̸=yk

efθ(xi)⊤fθ(xk)/τ

□ this generalizes better even though Lsnn > Lsum-out (Jensen)
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DETAILS : EVALUATION
The trained similarity measures induce the ranking:

□ we fix the sample xa, sort all other examples according to
decreasing similarity: sai = −d(fθ(xa), fθ(xi))

□ if the ranking generalizes perfectly (this is usually not the case)
then all the positives are ranked before negatives

Rank quality is measured by the area under the PR and ROC curves
□ the larger the area ⇒ the better the model

[Wikipedia]

AUROC corresponds to probability that a
random positive ranks above a random
negative.

Unsuitable for non-balanced problems:
□ for such problems we prefer AUPR.
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DETAILS : EVALUATION (2)
Here is how we calculate per-threshold metrics:

□ we set the threshold at each index i and thus obtain Pi positive
(sax <= sai) and Ni negative (sax > sai) predictions

□ we use the labels to get the counts of:
□ true positives - TPi

□ false positives - FPi

□ false negatives - FNi

□ and true negatives - TNi

□ now we determine the relevant metrics wrt the threshold i:
□ recall Ri = TPRi = TPi/(TPi+FNi)

□ precision Pi = TPi/(TPi+FPi)

□ false positive rate = FPRi = FPi/(TNi+FPi)
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DETAILS : EVALUATION (3)
We form the curves as follows:

□ the precision-recall curve (PR) is made up of points (Ri,Pi)
□ receiver operating characteristic curve (ROC) is made up of points

(FPRi,TPRi)

Rank quality is measured by the area under the PR and ROC curves
□ the larger the area ⇒ the better the model
□ this is a threshold-independent metric of binary classification

[Wikipedia]
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DETAILS : EXERCISE
We are given samples x1 until x5.

Their labels are Y=[1, 0, 0, 1, 1]

Distances from the sample x1 to the other samples are:
d(x1, X) = [0.0, 5.0, 2.0, 3.0, 1.0]

Determine the area under the precision-recall curve (AUPR for short)
for the predictions in the sample x1

Note: AUPR is often referred to as average precision (AP)
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DETAILS : EXERCISE - SOLUTION
We rank the data as: [x(1)5 , x(0)3 , x(1)4 , x(0)2 ]

We set the threshold on each datapoint and measure precision
P=TP/(TP+FP) and recall R=TP/(TP+FN):

positive predictions TP FP FN P R
x5, x3, x4, x2 2 2 0 0.5 1.0
x5, x3, x4 2 1 0 0.7 1.0
x5, x3 1 1 1 0.5 0.5
x5 1 0 1 1.0 0.5

No threshold gives us R=0. We therefore add a point (R=0, P=precision
for the lowest R).

If there are more P-s for the same R — we choose the best one.
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DETAILS : EXERCISE - GRAPH

Solution: AUPR = (0.5-0)×1 + (1-0.5)×0.66 = 0.83
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DETAILS : EXERCISE - CODE
import numpy as np

from sklearn.metrics import average_precision_score

from sklearn.metrics import PrecisionRecallDisplay

import matplotlib.pyplot as plt

y_true = np.array([0, 0, 1, 1])

y_scores = np.array([-5, -2, -3, -1])

print(average_precision_score(y_true, y_scores))

PrecisionRecallDisplay.from_predictions(y_true, y_scores)

plt.show()
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STEREO : EXERCISE
For each pixel in Ileft we search for a correspondence in Iright:

[orsic17ms]

Assume the calibrated case: correspondences in the same row
□ we estimate a dense field of horizontal offsets ("disparities")
□ if we know the disparity, the field of view, and the baseline

distance, then we can reconstruct the scene depth in meters
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STEREO : IDEA
Embed pixels from both images into the metric space with a
convolutional model fθ : R3×H×W → RF×H×W, F=64 [zbontar15cvpr].

[orsic17ms]

Form a dense cost volume of shape D×H×W:
□ Vijd = cost(fθ(IL)i,j, fθ(IR)i,j+d)

Determine the best disparity for each pixel (winner takes all):
□ Dij = arg mind Vijd
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STEREO : DETAILS
The triplet loss is expressed as a scalar product over normalized metric
embedidngs of crops of 9×9:

□ three instances of model fθ share parameters

□ each instance holds activations and calculates the gradients

□ we get a total gradient for each parameter by aggregating the
contributions of all model instances

Model fθ is equivariant: 4×conv3x3 w/o pooling:
□ input training samples have dimensions 128×3×9×9

□ no padding during training (but use it during inference)

□ embeddings have a dimensionality of 64, fθ : R3×9×9 → R64

□ image pixels are normalized to N(0, I) during training and inference

□ inference is done on whole images 2×3×H×W
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STEREO : TRIPLETS
Columns show training triplets:

[orsic17ms]
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STEREO : EXPERIMENTS
KITTI Datasets [geiger13ijrr]:

□ 200 rectified images 1382 x 512

□ training dataset: 80% slika (ostatak - skup za validaciju)

□ true disparities are measured with LIDAR in 30% of pixels

□ dense disparities on cars were acquired by fitting CAD models

[orsic17ms]
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STEREO : ERRORS
Many pixels visible in only one image due to "stereoscopic shadow":

[orsic17ms]

The rows show i) anchor, ii) correspondence, iii) most similar negative.
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STEREO : ACCURACY
Stereoscopic methods on KITTI are evaluated according to percentage
of true disparities with tolerance of ±1-3 pixels.

Experimental accuray is solid, though it is worse than SOTA:

[orsic17ms]

Advantage of metric approaches: resilience to overfitting.

Recent work uses other strategies to solve remaining challenges:
□ training on unlabeled video [liu20cvpr]

□ filling the areas without correspondences by analyzing the context
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SELF-SUPERVISION : TASK
We wish to train useful representation without semantic labels.

[simclr20icml]

□ f - convolutional backbone

□ e.g. ResNet-50

□ g - projection module

□ e.g. 2× FC(128)

□ t, t′ ∈ T - random
perturbations

□ e.g. cropping, color
augmentations, smoothing

Advantages: we may learn without labels, better knowledge transfer!

Drawbacks: long training, big batches, trivial solutions?
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SELF-SUPERVISION : SIMCLR
SimCLR: Simple Contrastive Learning of visual Representations

□ N-pairs loss: for each positive pair we have 2(B-1) negatives
□ inference: discard g, use f for knowledge transfer
□ linear probe: fine-tune f for multi-class logistic regression
□ applications: pre-training + fine-tuning, semi-supervised learning

[simclr20icml]

□ larger models and large
groups (4096) learn better

□ SimCLRv2 + linear almost as
good as supervised learning

□ To achive the best results
wee need more training
epochs (10×) and large
batches (4096)
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SELF-SUPERVISION : SIMCLR (2)

[simclr20icml]

The loss has 2N terms:
□ N: mini-batch size
□ each term is ℓNP(i, j)

□ i = 2r − 1 : anchor

□ j = 2r : positive

□ k ̸= i, j : negatives

□ ℓNP(i, j): n-pairs loss
□ expressed in terms

of similarities sij, sik

□ the negative data {k}
correspond to the
remaining samples in
the mini-group
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CONCLUSION
Quantifying similarity is one of the basic tasks of machine learning.

We use metric embeddings when it is not practical to use classification:
□ the number of classes is too large or unknown in advance

□ there is only a limited quantity of labeled data

We realize metric embeddings as deep models trained with a suitable
contrastive loss.

Applications:
□ person tracking, face verification, stereo

□ training with a small number of labeled examples (few-shot)

□ self-supervised learning

□ out-of-distibution detection.
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