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Should backpropagation be this confusing?

@ Large gap between:

e Backpropagation materials
@ Deep learning frameworks

@ Every tutorial focuses on deriving specific neural network architectures
@ Many other equally confusing things

@ How do matrices and vectors fit into the story of derivatives?
@ Do we really need so many complex rules of derivation?
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Claims

@ Key concept - computational graph

@ Backpropagation is a function that maps one computational graph to
another

@ Not connected to linear algebra

@ Arbitrary tensor contraction operations can be generalized with Einstein
summation

@ With Einsum, calculating derivatives is elegant
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Composition of many smaller operations

@ Instead of defining every neural network by hand, we define many small
parts of it and we set up ways to combine them

@ Main idea - let’s build a minimal implementation of autodiff during the
course of this talk

@ One operation - one class
@ Each operation takes a Node and returns a value
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Code snippet - Variable

class Variable:
def __init__(self, value, name="Variable"):
self.value = value

def _eval(self):
return self.value
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Code snippet

class Exp:
def __init__(self, node, name="Exp"):
self .node = node

def _eval(self):
return np.exp(self.node._eval())
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Code snippet

class Add:
def __init__(self, nodel, node2, name="Add"):
self.nodel = nodel
self .node2 node?2

def _eval(self):
return nodel._eval() + node2._eval()
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Code snippet

class Sigmoid:
def __init__(self, node, name="Sigmoid"):
self .node = node

def _eval(self):
return 1 / (1 + np.exp(-self.node._eval())
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Let’s abstract some common stuff

class Node:
def __init__(self, nodes, name="Node"):
self.nodes = nodes

def _eval(self):
raise NotImplementedError()
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Let’s abstract some common stuff

class Node:
def __init__(self, nodes, name="Node"):
self.nodes = nodes
self.cached = None

def _eval(self):
raise NotImplementedError()

def __add__(self, other):
return Add(self, other)

def __call__(self, *args, *xkwargs):
return self.eval()

def eval(self):
if self.cached is None:
self.cached = self._eval()

return self.cached
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Let’s abstract some common stuff - caching!

class Node:

def

def

def

def

def

__init__(self, nodes, name="Node"):
self.nodes = nodes
self.cached = None

_eval(self):
raise NotImplementedError()

__add__(self, other):
return Add(self, other)

__call__(self, *args, *xkwargs):
return self.eval()

eval(self):
if self.cached is None:

self.cached = self._eval()

return self.cached
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Code snippet - refactored

class Exp(Node):
def __init__(self, node, name="Exp"):
super () .__init__([nodel])

def _eval(self):
return np.exp(self.nodes[0]())
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Code snippet - refactored

class Add(Node):
def __init__(self, nodel, node2, name="Add"):
super() .__init__([nodel, node2])

def _eval(self):
return self.nodes[0]() + self.nodes[1]()
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Code snippet - refactored

class Sigmoid(Node):
def __init__(self, node, name="Sigmoid"):
super () .__init__([nodel])

def _eval(self):
return 1 / (1 + np.exp(-self.nodes[0]())
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What do we have so far?
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What do we have so far?

@ We can define arbitrary computation graphs...
@ But how do we train them?

@ Where are all the derivatives?

@ Where is the neural network here?

@ Turns out, we're missing two things:

o Matrix operations
e Gradient calculation
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Let’'s quickly add matrix multiplication

class MatMul (Node) :
def __init__(self, nodel, node2, name="MatMul"):
super () .__init__([nodel, node2])

def _eval(self):
return self.nodes[0] () []self.nodes[l]()
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Backpropagation
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Backpropagation - we don’t need to know the types
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Backpropagation
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We need derivatives!

class Node:
def __init__(self, nodes, name="Node"):
self.nodes = nodes

# other stuff ...

def _eval(self):
raise NotImplementedError()
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We need derivatives!

class Node:
def __init__(self, nodes, name="Node"):
self.nodes = nodes

# other stuff ...

def _eval(self):
raise NotImplementedError()

def _partial_derivative(self, wrt, previous_grad):
raise NotImplementedError()
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Code snippet - add

class Add(Node):
def __init__(self, nodel, node2, name="Add"):
super() .__init__([nodel, node2])

def _eval(self):
return self.nodes[0]() + self.nodes[1]()
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Code snippet - add

class Add(Node):
def __init__(self, nodel, node2, name="Add"):
super() .__init__([nodel, node2])

def _eval(self):
return self.nodes[0]() + self.nodes[1]()

def _partial_derivative(self, wrt, previous_grad):
return previous_grad * self.nodes.count (wrt)
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Code snippet - Sigmoid

class Sigmoid(Node):
def __init__(self, node, name="Sigmoid"):
super() .__init__([node])

def _eval(self):
return 1 / (1 + np.exp(-self.nodes[0]())
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Code snippet - Sigmoid

class Sigmoid(Node):
def __init__(self, node, name="Sigmoid"):
super() .__init__([node])

def _eval(self):
return 1 / (1 + np.exp(-self.nodes[0]())

def _partial_derivative(self, wrt, previous_grad):

if wrt == self.node:
return previous_grad * self * (1 - self)
return 0
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Things to keep in mind

@ Constructing the graph of the gradient does not imply its evaluation!

@ When constructing the partial derivative, by not “stepping down" from our
graphs into real numbers, we get higher-order gradients for free!

Bruno Gavranovi¢c FER Autodiff January 12, 2018 28/33



So where is backpropagation?
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previous_grad = Variable(np.ones(top_node.shape),
name=add_sum_name (top_node))

dct = collections.defaultdict(list)
dct[top_node] += [previous_grad]

def add_partials(dct, node):
dct [node] = Add(*dct[node], name=add_sum_name(node))
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if previous_grad is None:
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name=add_sum_name (top_node))

dct = collections.defaultdict(list)
dct[top_node] += [previous_grad]

def add_partials(dct, node):
dct [node] = Add(*dct[node], name=add_sum_name(node))
for child in set(node.children):
dct[child] += [node.partial_derivative(wrt=child,
previous_grad=dct [node])]
return dct

dct = functools.reduce(add_partials,
reverse_topo_sort (top_node),
dct)
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So where is backpropagation?

def grad(top_node, wrt_list, previous_grad=None):

if previous_grad is None:
previous_grad = Variable(np.ones(top_node.shape),
name=add_sum_name (top_node))

dct = collections.defaultdict(list)
dct[top_node] += [previous_grad]

def add_partials(dct, node):
dct [node] = Add(*dct[node], name=add_sum_name(node))
for child in set(node.children):
dct[child] += [node.partial_derivative(wrt=child,
previous_grad=dct [node])]
return dct

dct = functools.reduce(add_partials,
reverse_topo_sort (top_node),
dct)

return [dct[wrt] if dct([wrt] != [] else Variable(0) for wrt in wrt_list]

Bruno Gavranovi¢c FER Autodiff January 12, 2018 30/33



What did we end up with?

Bruno Gavranovi¢c FER Autodiff January 12, 2018 31/33



What did we end up with?

@ Dynamic creation of computational graphs

Bruno Gavranovi¢c FER Autodiff January 12, 2018 31/33



What did we end up with?

@ Dynamic creation of computational graphs
@ Differentiation of computational graphs w.r.t. any variable

Bruno Gavranovi¢c FER Autodiff January 12, 2018 31/33



What did we end up with?

@ Dynamic creation of computational graphs
@ Differentiation of computational graphs w.r.t. any variable
@ Support for higher-order gradients

Bruno Gavranovi¢c FER Autodiff January 12, 2018 31/33



What did we end up with?

@ Dynamic creation of computational graphs

@ Differentiation of computational graphs w.r.t. any variable
@ Support for higher-order gradients

@ Extensible code - it's easy to add your own operations

Bruno Gavranovi¢c FER Autodiff January 12, 2018 31/33



What did we end up with?

@ Dynamic creation of computational graphs

@ Differentiation of computational graphs w.r.t. any variable
@ Support for higher-order gradients

@ Extensible code - it's easy to add your own operations

Bruno Gavranovi¢c FER Autodiff January 12, 2018 31/33



What did we end up with?

@ Dynamic creation of computational graphs

@ Differentiation of computational graphs w.r.t. any variable
@ Support for higher-order gradients

@ Extensible code - it's easy to add your own operations

What else is there?

Bruno Gavranovi¢c FER Autodiff January 12, 2018 31/33



What did we end up with?

@ Dynamic creation of computational graphs

@ Differentiation of computational graphs w.r.t. any variable
@ Support for higher-order gradients

@ Extensible code - it's easy to add your own operations

What else is there?

@ Support for higher-order tensors

Bruno Gavranovi¢c FER Autodiff January 12, 2018 31/33



What did we end up with?

@ Dynamic creation of computational graphs

@ Differentiation of computational graphs w.r.t. any variable
@ Support for higher-order gradients

@ Extensible code - it's easy to add your own operations

What else is there?

@ Support for higher-order tensors
@ Numerical checks

Bruno Gavranovi¢ FER Autodiff January 12, 2018 31/33



What did we end up with?

@ Dynamic creation of computational graphs

@ Differentiation of computational graphs w.r.t. any variable
@ Support for higher-order gradients

@ Extensible code - it's easy to add your own operations

What else is there?
@ Support for higher-order tensors

@ Numerical checks
@ Checkpointing

Bruno Gavranovi¢ FER Autodiff January 12, 2018 31/33



What did we end up with?

@ Dynamic creation of computational graphs

@ Differentiation of computational graphs w.r.t. any variable
@ Support for higher-order gradients

@ Extensible code - it's easy to add your own operations

What else is there?

@ Support for higher-order tensors

@ Numerical checks

@ Checkpointing

@ Visualization of the computational graph

Bruno Gavranovi¢ FER Autodiff January 12, 2018 31/33



What did we end up with?

@ Dynamic creation of computational graphs

@ Differentiation of computational graphs w.r.t. any variable
@ Support for higher-order gradients

@ Extensible code - it's easy to add your own operations

What else is there?

@ Support for higher-order tensors

@ Numerical checks

@ Checkpointing

@ Visualization of the computational graph

Bruno Gavranovi¢ FER Autodiff January 12, 2018 31/33



Bruno Gavranovi¢c FER Autodiff January 12, 2018 32/33



@ Difference between forward, backward and mixed mode of automatic
differentiation, viewed in this context
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@ Difference between forward, backward and mixed mode of automatic
differentiation, viewed in this context

@ Even more refactoring
@ Formal validation of these ideas

@ The rabbit hole of finding patterns in these abstract concepts goes
incredibly deep

@ Backprop as a Functor
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Thank you!
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