
Automatic differentiation

Bruno Gavranović

Deep Learning course seminar

bruno.gavranovic@fer.hr

January 12, 2018

Bruno Gavranović FER Autodiff January 12, 2018 1 / 33

Should backpropagation be this confusing?

Large gap between:
Backpropagation materials
Deep learning frameworks

Every tutorial focuses on deriving specific neural network architectures
Many other equally confusing things

How do matrices and vectors fit into the story of derivatives?
Do we really need so many complex rules of derivation?

Bruno Gavranović FER Autodiff January 12, 2018 2 / 33

Should backpropagation be this confusing?

Large gap between:

Backpropagation materials
Deep learning frameworks

Every tutorial focuses on deriving specific neural network architectures
Many other equally confusing things

How do matrices and vectors fit into the story of derivatives?
Do we really need so many complex rules of derivation?

Bruno Gavranović FER Autodiff January 12, 2018 2 / 33

Should backpropagation be this confusing?

Large gap between:
Backpropagation materials
Deep learning frameworks

Every tutorial focuses on deriving specific neural network architectures
Many other equally confusing things

How do matrices and vectors fit into the story of derivatives?
Do we really need so many complex rules of derivation?

Bruno Gavranović FER Autodiff January 12, 2018 2 / 33

Should backpropagation be this confusing?

Large gap between:
Backpropagation materials
Deep learning frameworks

Every tutorial focuses on deriving specific neural network architectures

Many other equally confusing things
How do matrices and vectors fit into the story of derivatives?
Do we really need so many complex rules of derivation?

Bruno Gavranović FER Autodiff January 12, 2018 2 / 33

Should backpropagation be this confusing?

Large gap between:
Backpropagation materials
Deep learning frameworks

Every tutorial focuses on deriving specific neural network architectures
Many other equally confusing things

How do matrices and vectors fit into the story of derivatives?
Do we really need so many complex rules of derivation?

Bruno Gavranović FER Autodiff January 12, 2018 2 / 33

Should backpropagation be this confusing?

Large gap between:
Backpropagation materials
Deep learning frameworks

Every tutorial focuses on deriving specific neural network architectures
Many other equally confusing things

How do matrices and vectors fit into the story of derivatives?

Do we really need so many complex rules of derivation?

Bruno Gavranović FER Autodiff January 12, 2018 2 / 33

Should backpropagation be this confusing?

Large gap between:
Backpropagation materials
Deep learning frameworks

Every tutorial focuses on deriving specific neural network architectures
Many other equally confusing things

How do matrices and vectors fit into the story of derivatives?
Do we really need so many complex rules of derivation?

Bruno Gavranović FER Autodiff January 12, 2018 2 / 33

Claims

Key concept - computational graph
Backpropagation is a function that maps one computational graph to
another
Not connected to linear algebra
Arbitrary tensor contraction operations can be generalized with Einstein
summation
With Einsum, calculating derivatives is elegant

Bruno Gavranović FER Autodiff January 12, 2018 3 / 33

Claims

Key concept - computational graph

Backpropagation is a function that maps one computational graph to
another
Not connected to linear algebra
Arbitrary tensor contraction operations can be generalized with Einstein
summation
With Einsum, calculating derivatives is elegant

Bruno Gavranović FER Autodiff January 12, 2018 3 / 33

Claims

Key concept - computational graph
Backpropagation is a function that maps one computational graph to
another

Not connected to linear algebra
Arbitrary tensor contraction operations can be generalized with Einstein
summation
With Einsum, calculating derivatives is elegant

Bruno Gavranović FER Autodiff January 12, 2018 3 / 33

Claims

Key concept - computational graph
Backpropagation is a function that maps one computational graph to
another
Not connected to linear algebra

Arbitrary tensor contraction operations can be generalized with Einstein
summation
With Einsum, calculating derivatives is elegant

Bruno Gavranović FER Autodiff January 12, 2018 3 / 33

Claims

Key concept - computational graph
Backpropagation is a function that maps one computational graph to
another
Not connected to linear algebra
Arbitrary tensor contraction operations can be generalized with Einstein
summation

With Einsum, calculating derivatives is elegant

Bruno Gavranović FER Autodiff January 12, 2018 3 / 33

Claims

Key concept - computational graph
Backpropagation is a function that maps one computational graph to
another
Not connected to linear algebra
Arbitrary tensor contraction operations can be generalized with Einstein
summation
With Einsum, calculating derivatives is elegant

Bruno Gavranović FER Autodiff January 12, 2018 3 / 33

Computational graphs

Bruno Gavranović FER Autodiff January 12, 2018 4 / 33

Computational graphs

Bruno Gavranović FER Autodiff January 12, 2018 4 / 33

Composition of many smaller operations

Instead of defining every neural network by hand, we define many small
parts of it and we set up ways to combine them
Main idea - let’s build a minimal implementation of autodiff during the
course of this talk
One operation - one class
Each operation takes a Node and returns a value

Bruno Gavranović FER Autodiff January 12, 2018 5 / 33

Composition of many smaller operations

Instead of defining every neural network by hand, we define many small
parts of it and we set up ways to combine them

Main idea - let’s build a minimal implementation of autodiff during the
course of this talk
One operation - one class
Each operation takes a Node and returns a value

Bruno Gavranović FER Autodiff January 12, 2018 5 / 33

Composition of many smaller operations

Instead of defining every neural network by hand, we define many small
parts of it and we set up ways to combine them
Main idea - let’s build a minimal implementation of autodiff during the
course of this talk

One operation - one class
Each operation takes a Node and returns a value

Bruno Gavranović FER Autodiff January 12, 2018 5 / 33

Composition of many smaller operations

Instead of defining every neural network by hand, we define many small
parts of it and we set up ways to combine them
Main idea - let’s build a minimal implementation of autodiff during the
course of this talk
One operation - one class

Each operation takes a Node and returns a value

Bruno Gavranović FER Autodiff January 12, 2018 5 / 33

Composition of many smaller operations

Instead of defining every neural network by hand, we define many small
parts of it and we set up ways to combine them
Main idea - let’s build a minimal implementation of autodiff during the
course of this talk
One operation - one class
Each operation takes a Node and returns a value

Bruno Gavranović FER Autodiff January 12, 2018 5 / 33

Code snippet - Variable

class Variable:
def __init__(self, value, name="Variable"):

self.value = value

def _eval(self):
return self.value

Bruno Gavranović FER Autodiff January 12, 2018 6 / 33

Code snippet

class Exp:
def __init__(self, node, name="Exp"):

self.node = node

def _eval(self):
return np.exp(self.node._eval())

Bruno Gavranović FER Autodiff January 12, 2018 7 / 33

Code snippet

class Add:
def __init__(self, node1, node2, name="Add"):

self.node1 = node1
self.node2 = node2

def _eval(self):
return node1._eval() + node2._eval()

Bruno Gavranović FER Autodiff January 12, 2018 8 / 33

Code snippet

class Sigmoid:
def __init__(self, node, name="Sigmoid"):

self.node = node

def _eval(self):
return 1 / (1 + np.exp(-self.node._eval())

Bruno Gavranović FER Autodiff January 12, 2018 9 / 33

Let’s abstract some common stuff

class Node:
def __init__(self, nodes, name="Node"):

self.nodes = nodes

def _eval(self):
raise NotImplementedError()

def __add__(self, other):
return Add(self, other)

def __call__(self, *args, **kwargs):
return self.eval()

def eval(self):
if self.cached is None:

self.cached = self._eval()

return self.cached

Bruno Gavranović FER Autodiff January 12, 2018 10 / 33

Let’s abstract some common stuff

class Node:
def __init__(self, nodes, name="Node"):

self.nodes = nodes

def _eval(self):
raise NotImplementedError()

def __add__(self, other):
return Add(self, other)

def __call__(self, *args, **kwargs):
return self.eval()

def eval(self):
if self.cached is None:

self.cached = self._eval()

return self.cached

Bruno Gavranović FER Autodiff January 12, 2018 10 / 33

Let’s abstract some common stuff

class Node:
def __init__(self, nodes, name="Node"):

self.nodes = nodes

def _eval(self):
raise NotImplementedError()

def __add__(self, other):
return Add(self, other)

def __call__(self, *args, **kwargs):
return self.eval()

def eval(self):
if self.cached is None:

self.cached = self._eval()

return self.cached

Bruno Gavranović FER Autodiff January 12, 2018 10 / 33

Let’s abstract some common stuff

class Node:
def __init__(self, nodes, name="Node"):

self.nodes = nodes

def _eval(self):
raise NotImplementedError()

def __add__(self, other):
return Add(self, other)

def __call__(self, *args, **kwargs):
return self.eval()

def eval(self):
if self.cached is None:

self.cached = self._eval()

return self.cached

Bruno Gavranović FER Autodiff January 12, 2018 10 / 33

Let’s abstract some common stuff

class Node:
def __init__(self, nodes, name="Node"):

self.nodes = nodes
self.cached = None

def _eval(self):
raise NotImplementedError()

def __add__(self, other):
return Add(self, other)

def __call__(self, *args, **kwargs):
return self.eval()

def eval(self):
if self.cached is None:

self.cached = self._eval()

return self.cached
Bruno Gavranović FER Autodiff January 12, 2018 11 / 33

Let’s abstract some common stuff - caching!

class Node:
def __init__(self, nodes, name="Node"):

self.nodes = nodes
self.cached = None

def _eval(self):
raise NotImplementedError()

def __add__(self, other):
return Add(self, other)

def __call__(self, *args, **kwargs):
return self.eval()

def eval(self):
if self.cached is None:

self.cached = self._eval()

return self.cached
Bruno Gavranović FER Autodiff January 12, 2018 12 / 33

Code snippet - refactored

class Exp(Node):
def __init__(self, node, name="Exp"):

super().__init__([node])

def _eval(self):
return np.exp(self.nodes[0]())

Bruno Gavranović FER Autodiff January 12, 2018 13 / 33

Code snippet - refactored

class Add(Node):
def __init__(self, node1, node2, name="Add"):

super().__init__([node1, node2])

def _eval(self):
return self.nodes[0]() + self.nodes[1]()

Bruno Gavranović FER Autodiff January 12, 2018 14 / 33

Code snippet - refactored

class Sigmoid(Node):
def __init__(self, node, name="Sigmoid"):

super().__init__([node])

def _eval(self):
return 1 / (1 + np.exp(-self.nodes[0]())

Bruno Gavranović FER Autodiff January 12, 2018 15 / 33

What do we have so far?

We can define arbitrary computation graphs...
But how do we train them?
Where are all the derivatives?
Where is the neural network here?
Turns out, we’re missing two things:

Matrix operations
Gradient calculation

Bruno Gavranović FER Autodiff January 12, 2018 16 / 33

What do we have so far?

We can define arbitrary computation graphs...

But how do we train them?
Where are all the derivatives?
Where is the neural network here?
Turns out, we’re missing two things:

Matrix operations
Gradient calculation

Bruno Gavranović FER Autodiff January 12, 2018 16 / 33

What do we have so far?

We can define arbitrary computation graphs...
But how do we train them?

Where are all the derivatives?
Where is the neural network here?
Turns out, we’re missing two things:

Matrix operations
Gradient calculation

Bruno Gavranović FER Autodiff January 12, 2018 16 / 33

What do we have so far?

We can define arbitrary computation graphs...
But how do we train them?
Where are all the derivatives?

Where is the neural network here?
Turns out, we’re missing two things:

Matrix operations
Gradient calculation

Bruno Gavranović FER Autodiff January 12, 2018 16 / 33

What do we have so far?

We can define arbitrary computation graphs...
But how do we train them?
Where are all the derivatives?
Where is the neural network here?

Turns out, we’re missing two things:
Matrix operations
Gradient calculation

Bruno Gavranović FER Autodiff January 12, 2018 16 / 33

What do we have so far?

We can define arbitrary computation graphs...
But how do we train them?
Where are all the derivatives?
Where is the neural network here?
Turns out, we’re missing two things:

Matrix operations
Gradient calculation

Bruno Gavranović FER Autodiff January 12, 2018 16 / 33

What do we have so far?

We can define arbitrary computation graphs...
But how do we train them?
Where are all the derivatives?
Where is the neural network here?
Turns out, we’re missing two things:

Matrix operations

Gradient calculation

Bruno Gavranović FER Autodiff January 12, 2018 16 / 33

What do we have so far?

We can define arbitrary computation graphs...
But how do we train them?
Where are all the derivatives?
Where is the neural network here?
Turns out, we’re missing two things:

Matrix operations
Gradient calculation

Bruno Gavranović FER Autodiff January 12, 2018 16 / 33

Let’s quickly add matrix multiplication

class MatMul(Node):
def __init__(self, node1, node2, name="MatMul"):

super().__init__([node1, node2])

def _eval(self):
return self.nodes[0]() @ self.nodes[1]()

Bruno Gavranović FER Autodiff January 12, 2018 17 / 33

Backpropagation

Bruno Gavranović FER Autodiff January 12, 2018 18 / 33

Backpropagation

Bruno Gavranović FER Autodiff January 12, 2018 18 / 33

Backpropagation

Bruno Gavranović FER Autodiff January 12, 2018 19 / 33

Backpropagation - we don’t need to know the types

Bruno Gavranović FER Autodiff January 12, 2018 20 / 33

Backpropagation

Bruno Gavranović FER Autodiff January 12, 2018 21 / 33

Backpropagation

Bruno Gavranović FER Autodiff January 12, 2018 22 / 33

Backpropagation

Bruno Gavranović FER Autodiff January 12, 2018 23 / 33

Backpropagation

Bruno Gavranović FER Autodiff January 12, 2018 24 / 33

We need derivatives!

class Node:
def __init__(self, nodes, name="Node"):

self.nodes = nodes

other stuff ...

def _eval(self):
raise NotImplementedError()

def _partial_derivative(self, wrt, previous_grad):
raise NotImplementedError()

Bruno Gavranović FER Autodiff January 12, 2018 25 / 33

We need derivatives!

class Node:
def __init__(self, nodes, name="Node"):

self.nodes = nodes

other stuff ...

def _eval(self):
raise NotImplementedError()

def _partial_derivative(self, wrt, previous_grad):
raise NotImplementedError()

Bruno Gavranović FER Autodiff January 12, 2018 25 / 33

Code snippet - add

class Add(Node):
def __init__(self, node1, node2, name="Add"):

super().__init__([node1, node2])

def _eval(self):
return self.nodes[0]() + self.nodes[1]()

def _partial_derivative(self, wrt, previous_grad):
return previous_grad * self.nodes.count(wrt)

Bruno Gavranović FER Autodiff January 12, 2018 26 / 33

Code snippet - add

class Add(Node):
def __init__(self, node1, node2, name="Add"):

super().__init__([node1, node2])

def _eval(self):
return self.nodes[0]() + self.nodes[1]()

def _partial_derivative(self, wrt, previous_grad):
return previous_grad * self.nodes.count(wrt)

Bruno Gavranović FER Autodiff January 12, 2018 26 / 33

Code snippet - Sigmoid

class Sigmoid(Node):
def __init__(self, node, name="Sigmoid"):

super().__init__([node])

def _eval(self):
return 1 / (1 + np.exp(-self.nodes[0]())

def _partial_derivative(self, wrt, previous_grad):
if wrt == self.node:

return previous_grad * self * (1 - self)
return 0

Bruno Gavranović FER Autodiff January 12, 2018 27 / 33

Code snippet - Sigmoid

class Sigmoid(Node):
def __init__(self, node, name="Sigmoid"):

super().__init__([node])

def _eval(self):
return 1 / (1 + np.exp(-self.nodes[0]())

def _partial_derivative(self, wrt, previous_grad):
if wrt == self.node:

return previous_grad * self * (1 - self)
return 0

Bruno Gavranović FER Autodiff January 12, 2018 27 / 33

Things to keep in mind

Constructing the graph of the gradient does not imply its evaluation!
When constructing the partial derivative, by not “stepping down" from our
graphs into real numbers, we get higher-order gradients for free!

Bruno Gavranović FER Autodiff January 12, 2018 28 / 33

Things to keep in mind

Constructing the graph of the gradient does not imply its evaluation!

When constructing the partial derivative, by not “stepping down" from our
graphs into real numbers, we get higher-order gradients for free!

Bruno Gavranović FER Autodiff January 12, 2018 28 / 33

Things to keep in mind

Constructing the graph of the gradient does not imply its evaluation!
When constructing the partial derivative, by not “stepping down" from our
graphs into real numbers, we get higher-order gradients for free!

Bruno Gavranović FER Autodiff January 12, 2018 28 / 33

So where is backpropagation?

Bruno Gavranović FER Autodiff January 12, 2018 29 / 33

So where is backpropagation?

def grad(top_node, wrt_list, previous_grad=None):

if previous_grad is None:
previous_grad = Variable(np.ones(top_node.shape),

name=add_sum_name(top_node))

dct = collections.defaultdict(list)
dct[top_node] += [previous_grad]

def add_partials(dct, node):
dct[node] = Add(*dct[node], name=add_sum_name(node))
for child in set(node.children):

dct[child] += [node.partial_derivative(wrt=child,
previous_grad=dct[node])]

return dct

dct = functools.reduce(add_partials,
reverse_topo_sort(top_node),
dct)

return [dct[wrt] if dct[wrt] != [] else Variable(0) for wrt in wrt_list]

Bruno Gavranović FER Autodiff January 12, 2018 30 / 33

So where is backpropagation?

def grad(top_node, wrt_list, previous_grad=None):

if previous_grad is None:
previous_grad = Variable(np.ones(top_node.shape),

name=add_sum_name(top_node))

dct = collections.defaultdict(list)
dct[top_node] += [previous_grad]

def add_partials(dct, node):
dct[node] = Add(*dct[node], name=add_sum_name(node))
for child in set(node.children):

dct[child] += [node.partial_derivative(wrt=child,
previous_grad=dct[node])]

return dct

dct = functools.reduce(add_partials,
reverse_topo_sort(top_node),
dct)

return [dct[wrt] if dct[wrt] != [] else Variable(0) for wrt in wrt_list]

Bruno Gavranović FER Autodiff January 12, 2018 30 / 33

So where is backpropagation?

def grad(top_node, wrt_list, previous_grad=None):

if previous_grad is None:
previous_grad = Variable(np.ones(top_node.shape),

name=add_sum_name(top_node))

dct = collections.defaultdict(list)
dct[top_node] += [previous_grad]

def add_partials(dct, node):
dct[node] = Add(*dct[node], name=add_sum_name(node))
for child in set(node.children):

dct[child] += [node.partial_derivative(wrt=child,
previous_grad=dct[node])]

return dct

dct = functools.reduce(add_partials,
reverse_topo_sort(top_node),
dct)

return [dct[wrt] if dct[wrt] != [] else Variable(0) for wrt in wrt_list]

Bruno Gavranović FER Autodiff January 12, 2018 30 / 33

So where is backpropagation?

def grad(top_node, wrt_list, previous_grad=None):

if previous_grad is None:
previous_grad = Variable(np.ones(top_node.shape),

name=add_sum_name(top_node))

dct = collections.defaultdict(list)
dct[top_node] += [previous_grad]

def add_partials(dct, node):
dct[node] = Add(*dct[node], name=add_sum_name(node))
for child in set(node.children):

dct[child] += [node.partial_derivative(wrt=child,
previous_grad=dct[node])]

return dct

dct = functools.reduce(add_partials,
reverse_topo_sort(top_node),
dct)

return [dct[wrt] if dct[wrt] != [] else Variable(0) for wrt in wrt_list]

Bruno Gavranović FER Autodiff January 12, 2018 30 / 33

So where is backpropagation?

def grad(top_node, wrt_list, previous_grad=None):

if previous_grad is None:
previous_grad = Variable(np.ones(top_node.shape),

name=add_sum_name(top_node))

dct = collections.defaultdict(list)
dct[top_node] += [previous_grad]

def add_partials(dct, node):
dct[node] = Add(*dct[node], name=add_sum_name(node))
for child in set(node.children):

dct[child] += [node.partial_derivative(wrt=child,
previous_grad=dct[node])]

return dct

dct = functools.reduce(add_partials,
reverse_topo_sort(top_node),
dct)

return [dct[wrt] if dct[wrt] != [] else Variable(0) for wrt in wrt_list]

Bruno Gavranović FER Autodiff January 12, 2018 30 / 33

So where is backpropagation?

def grad(top_node, wrt_list, previous_grad=None):

if previous_grad is None:
previous_grad = Variable(np.ones(top_node.shape),

name=add_sum_name(top_node))

dct = collections.defaultdict(list)
dct[top_node] += [previous_grad]

def add_partials(dct, node):
dct[node] = Add(*dct[node], name=add_sum_name(node))
for child in set(node.children):

dct[child] += [node.partial_derivative(wrt=child,
previous_grad=dct[node])]

return dct

dct = functools.reduce(add_partials,
reverse_topo_sort(top_node),
dct)

return [dct[wrt] if dct[wrt] != [] else Variable(0) for wrt in wrt_list]

Bruno Gavranović FER Autodiff January 12, 2018 30 / 33

What did we end up with?

Dynamic creation of computational graphs
Differentiation of computational graphs w.r.t. any variable
Support for higher-order gradients
Extensible code - it’s easy to add your own operations

What else is there?

Support for higher-order tensors
Numerical checks
Checkpointing
Visualization of the computational graph

Bruno Gavranović FER Autodiff January 12, 2018 31 / 33

What did we end up with?

Dynamic creation of computational graphs

Differentiation of computational graphs w.r.t. any variable
Support for higher-order gradients
Extensible code - it’s easy to add your own operations

What else is there?

Support for higher-order tensors
Numerical checks
Checkpointing
Visualization of the computational graph

Bruno Gavranović FER Autodiff January 12, 2018 31 / 33

What did we end up with?

Dynamic creation of computational graphs
Differentiation of computational graphs w.r.t. any variable

Support for higher-order gradients
Extensible code - it’s easy to add your own operations

What else is there?

Support for higher-order tensors
Numerical checks
Checkpointing
Visualization of the computational graph

Bruno Gavranović FER Autodiff January 12, 2018 31 / 33

What did we end up with?

Dynamic creation of computational graphs
Differentiation of computational graphs w.r.t. any variable
Support for higher-order gradients

Extensible code - it’s easy to add your own operations

What else is there?

Support for higher-order tensors
Numerical checks
Checkpointing
Visualization of the computational graph

Bruno Gavranović FER Autodiff January 12, 2018 31 / 33

What did we end up with?

Dynamic creation of computational graphs
Differentiation of computational graphs w.r.t. any variable
Support for higher-order gradients
Extensible code - it’s easy to add your own operations

What else is there?

Support for higher-order tensors
Numerical checks
Checkpointing
Visualization of the computational graph

Bruno Gavranović FER Autodiff January 12, 2018 31 / 33

What did we end up with?

Dynamic creation of computational graphs
Differentiation of computational graphs w.r.t. any variable
Support for higher-order gradients
Extensible code - it’s easy to add your own operations

What else is there?

Support for higher-order tensors
Numerical checks
Checkpointing
Visualization of the computational graph

Bruno Gavranović FER Autodiff January 12, 2018 31 / 33

What did we end up with?

Dynamic creation of computational graphs
Differentiation of computational graphs w.r.t. any variable
Support for higher-order gradients
Extensible code - it’s easy to add your own operations

What else is there?

Support for higher-order tensors
Numerical checks
Checkpointing
Visualization of the computational graph

Bruno Gavranović FER Autodiff January 12, 2018 31 / 33

What did we end up with?

Dynamic creation of computational graphs
Differentiation of computational graphs w.r.t. any variable
Support for higher-order gradients
Extensible code - it’s easy to add your own operations

What else is there?

Support for higher-order tensors

Numerical checks
Checkpointing
Visualization of the computational graph

Bruno Gavranović FER Autodiff January 12, 2018 31 / 33

What did we end up with?

Dynamic creation of computational graphs
Differentiation of computational graphs w.r.t. any variable
Support for higher-order gradients
Extensible code - it’s easy to add your own operations

What else is there?

Support for higher-order tensors
Numerical checks

Checkpointing
Visualization of the computational graph

Bruno Gavranović FER Autodiff January 12, 2018 31 / 33

What did we end up with?

Dynamic creation of computational graphs
Differentiation of computational graphs w.r.t. any variable
Support for higher-order gradients
Extensible code - it’s easy to add your own operations

What else is there?

Support for higher-order tensors
Numerical checks
Checkpointing

Visualization of the computational graph

Bruno Gavranović FER Autodiff January 12, 2018 31 / 33

What did we end up with?

Dynamic creation of computational graphs
Differentiation of computational graphs w.r.t. any variable
Support for higher-order gradients
Extensible code - it’s easy to add your own operations

What else is there?

Support for higher-order tensors
Numerical checks
Checkpointing
Visualization of the computational graph

Bruno Gavranović FER Autodiff January 12, 2018 31 / 33

What did we end up with?

Dynamic creation of computational graphs
Differentiation of computational graphs w.r.t. any variable
Support for higher-order gradients
Extensible code - it’s easy to add your own operations

What else is there?

Support for higher-order tensors
Numerical checks
Checkpointing
Visualization of the computational graph

Bruno Gavranović FER Autodiff January 12, 2018 31 / 33

Future work

Difference between forward, backward and mixed mode of automatic
differentiation, viewed in this context
Even more refactoring
Formal validation of these ideas
The rabbit hole of finding patterns in these abstract concepts goes
incredibly deep
Backprop as a Functor

Bruno Gavranović FER Autodiff January 12, 2018 32 / 33

Future work

Difference between forward, backward and mixed mode of automatic
differentiation, viewed in this context

Even more refactoring
Formal validation of these ideas
The rabbit hole of finding patterns in these abstract concepts goes
incredibly deep
Backprop as a Functor

Bruno Gavranović FER Autodiff January 12, 2018 32 / 33

Future work

Difference between forward, backward and mixed mode of automatic
differentiation, viewed in this context
Even more refactoring

Formal validation of these ideas
The rabbit hole of finding patterns in these abstract concepts goes
incredibly deep
Backprop as a Functor

Bruno Gavranović FER Autodiff January 12, 2018 32 / 33

Future work

Difference between forward, backward and mixed mode of automatic
differentiation, viewed in this context
Even more refactoring
Formal validation of these ideas

The rabbit hole of finding patterns in these abstract concepts goes
incredibly deep
Backprop as a Functor

Bruno Gavranović FER Autodiff January 12, 2018 32 / 33

Future work

Difference between forward, backward and mixed mode of automatic
differentiation, viewed in this context
Even more refactoring
Formal validation of these ideas
The rabbit hole of finding patterns in these abstract concepts goes
incredibly deep

Backprop as a Functor

Bruno Gavranović FER Autodiff January 12, 2018 32 / 33

Future work

Difference between forward, backward and mixed mode of automatic
differentiation, viewed in this context
Even more refactoring
Formal validation of these ideas
The rabbit hole of finding patterns in these abstract concepts goes
incredibly deep
Backprop as a Functor

Bruno Gavranović FER Autodiff January 12, 2018 32 / 33

Thank you!

Bruno Gavranović FER Autodiff January 12, 2018 33 / 33

