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Should backpropagation be this confusing?

Large gap between:
Backpropagation materials
Deep learning frameworks

Every tutorial focuses on deriving specific neural network architectures
Many other equally confusing things

How do matrices and vectors fit into the story of derivatives?
Do we really need so many complex rules of derivation?

Bruno Gavranović FER Autodiff January 12, 2018 2 / 33



Should backpropagation be this confusing?

Large gap between:

Backpropagation materials
Deep learning frameworks

Every tutorial focuses on deriving specific neural network architectures
Many other equally confusing things

How do matrices and vectors fit into the story of derivatives?
Do we really need so many complex rules of derivation?
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Claims

Key concept - computational graph
Backpropagation is a function that maps one computational graph to
another
Not connected to linear algebra
Arbitrary tensor contraction operations can be generalized with Einstein
summation
With Einsum, calculating derivatives is elegant
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Bruno Gavranović FER Autodiff January 12, 2018 3 / 33



Computational graphs
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Composition of many smaller operations

Instead of defining every neural network by hand, we define many small
parts of it and we set up ways to combine them
Main idea - let’s build a minimal implementation of autodiff during the
course of this talk
One operation - one class
Each operation takes a Node and returns a value
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Code snippet - Variable

class Variable:
def __init__(self, value, name="Variable"):

self.value = value

def _eval(self):
return self.value
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Code snippet

class Exp:
def __init__(self, node, name="Exp"):

self.node = node

def _eval(self):
return np.exp(self.node._eval())
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Code snippet

class Add:
def __init__(self, node1, node2, name="Add"):

self.node1 = node1
self.node2 = node2

def _eval(self):
return node1._eval() + node2._eval()
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Code snippet

class Sigmoid:
def __init__(self, node, name="Sigmoid"):

self.node = node

def _eval(self):
return 1 / (1 + np.exp(-self.node._eval())
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Let’s abstract some common stuff

class Node:
def __init__(self, nodes, name="Node"):

self.nodes = nodes

def _eval(self):
raise NotImplementedError()

def __add__(self, other):
return Add(self, other)

def __call__(self, *args, **kwargs):
return self.eval()

def eval(self):
if self.cached is None:

self.cached = self._eval()

return self.cached
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Let’s abstract some common stuff - caching!

class Node:
def __init__(self, nodes, name="Node"):

self.nodes = nodes
self.cached = None

def _eval(self):
raise NotImplementedError()

def __add__(self, other):
return Add(self, other)

def __call__(self, *args, **kwargs):
return self.eval()

def eval(self):
if self.cached is None:

self.cached = self._eval()

return self.cached
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Code snippet - refactored

class Exp(Node):
def __init__(self, node, name="Exp"):

super().__init__([node])

def _eval(self):
return np.exp(self.nodes[0]())
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Code snippet - refactored

class Add(Node):
def __init__(self, node1, node2, name="Add"):

super().__init__([node1, node2])

def _eval(self):
return self.nodes[0]() + self.nodes[1]()
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Code snippet - refactored

class Sigmoid(Node):
def __init__(self, node, name="Sigmoid"):

super().__init__([node])

def _eval(self):
return 1 / (1 + np.exp(-self.nodes[0]())
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What do we have so far?

We can define arbitrary computation graphs...
But how do we train them?
Where are all the derivatives?
Where is the neural network here?
Turns out, we’re missing two things:

Matrix operations
Gradient calculation
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Bruno Gavranović FER Autodiff January 12, 2018 16 / 33



What do we have so far?

We can define arbitrary computation graphs...
But how do we train them?
Where are all the derivatives?
Where is the neural network here?
Turns out, we’re missing two things:

Matrix operations
Gradient calculation
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Let’s quickly add matrix multiplication

class MatMul(Node):
def __init__(self, node1, node2, name="MatMul"):

super().__init__([node1, node2])

def _eval(self):
return self.nodes[0]() @ self.nodes[1]()
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Backpropagation
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Backpropagation - we don’t need to know the types
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Backpropagation
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We need derivatives!

class Node:
def __init__(self, nodes, name="Node"):

self.nodes = nodes

# other stuff ...

def _eval(self):
raise NotImplementedError()

def _partial_derivative(self, wrt, previous_grad):
raise NotImplementedError()
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Code snippet - add

class Add(Node):
def __init__(self, node1, node2, name="Add"):

super().__init__([node1, node2])

def _eval(self):
return self.nodes[0]() + self.nodes[1]()

def _partial_derivative(self, wrt, previous_grad):
return previous_grad * self.nodes.count(wrt)
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Code snippet - Sigmoid

class Sigmoid(Node):
def __init__(self, node, name="Sigmoid"):

super().__init__([node])

def _eval(self):
return 1 / (1 + np.exp(-self.nodes[0]())

def _partial_derivative(self, wrt, previous_grad):
if wrt == self.node:

return previous_grad * self * (1 - self)
return 0
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Things to keep in mind

Constructing the graph of the gradient does not imply its evaluation!
When constructing the partial derivative, by not “stepping down" from our
graphs into real numbers, we get higher-order gradients for free!
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So where is backpropagation?
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So where is backpropagation?

def grad(top_node, wrt_list, previous_grad=None):

if previous_grad is None:
previous_grad = Variable(np.ones(top_node.shape),

name=add_sum_name(top_node))

dct = collections.defaultdict(list)
dct[top_node] += [previous_grad]

def add_partials(dct, node):
dct[node] = Add(*dct[node], name=add_sum_name(node))
for child in set(node.children):

dct[child] += [node.partial_derivative(wrt=child,
previous_grad=dct[node])]

return dct

dct = functools.reduce(add_partials,
reverse_topo_sort(top_node),
dct)

return [dct[wrt] if dct[wrt] != [] else Variable(0) for wrt in wrt_list]
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What did we end up with?

Dynamic creation of computational graphs
Differentiation of computational graphs w.r.t. any variable
Support for higher-order gradients
Extensible code - it’s easy to add your own operations

What else is there?

Support for higher-order tensors
Numerical checks
Checkpointing
Visualization of the computational graph
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Future work

Difference between forward, backward and mixed mode of automatic
differentiation, viewed in this context
Even more refactoring
Formal validation of these ideas
The rabbit hole of finding patterns in these abstract concepts goes
incredibly deep
Backprop as a Functor
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