Automatic differentiation

Bruno Gavranović

Deep Learning course seminar

bruno.gavranovic@fer.hr

January 12, 2018

Should backpropagation be this confusing?

Should backpropagation be this confusing?

• Large gap between:

- Large gap between:
 - Backpropagation materials
 - Deep learning frameworks

- Large gap between:
 - Backpropagation materials
 - Deep learning frameworks
- Every tutorial focuses on deriving specific neural network architectures

- Large gap between:
 - Backpropagation materials
 - Deep learning frameworks
- Every tutorial focuses on deriving specific neural network architectures
- Many other equally confusing things

- Large gap between:
 - Backpropagation materials
 - Deep learning frameworks
- Every tutorial focuses on deriving specific neural network architectures
- Many other equally confusing things
 - How do matrices and vectors fit into the story of derivatives?

- Large gap between:
 - Backpropagation materials
 - Deep learning frameworks
- Every tutorial focuses on deriving specific neural network architectures
- Many other equally confusing things
 - How do matrices and vectors fit into the story of derivatives?
 - Do we really need so many complex rules of derivation?

Claims

• Key concept - computational graph

- Key concept computational graph
- Backpropagation is a function that maps one computational graph to another

- Key concept computational graph
- Backpropagation is a function that maps one computational graph to another
- Not connected to linear algebra

- Key concept computational graph
- Backpropagation is a function that maps one computational graph to another
- Not connected to linear algebra
- Arbitrary tensor contraction operations can be generalized with Einstein summation

- Key concept computational graph
- Backpropagation is a function that maps one computational graph to another
- Not connected to linear algebra
- Arbitrary tensor contraction operations can be generalized with Einstein summation
- With Einsum, calculating derivatives is elegant

Computational graphs

Computational graphs

Composition of many smaller operations

 Instead of defining every neural network by hand, we define many small parts of it and we set up ways to combine them

- Instead of defining every neural network by hand, we define many small parts of it and we set up ways to combine them
- Main idea let's build a minimal implementation of autodiff during the course of this talk

- Instead of defining every neural network by hand, we define many small parts of it and we set up ways to combine them
- Main idea let's build a minimal implementation of autodiff during the course of this talk
- One operation one class

- Instead of defining every neural network by hand, we define many small parts of it and we set up ways to combine them
- Main idea let's build a minimal implementation of autodiff during the course of this talk
- One operation one class
- Each operation takes a Node and returns a value

```
class Variable:
def __init__(self, value, name="Variable"):
    self.value = value
def _eval(self):
    return self.value
```

```
class Exp:
def __init__(self, node, name="Exp"):
    self.node = node
def _eval(self):
    return np.exp(self.node._eval())
```

```
class Add:
def __init__(self, node1, node2, name="Add"):
    self.node1 = node1
    self.node2 = node2
def __eval(self):
    return node1._eval() + node2._eval()
```

```
class Sigmoid:
def __init__(self, node, name="Sigmoid"):
    self.node = node
def _eval(self):
    return 1 / (1 + np.exp(-self.node._eval())
```

```
class Node:
def __init__(self, nodes, name="Node"):
    self.nodes = nodes
def _eval(self):
    raise NotImplementedError()
```

Bruno Gavranović FER

```
class Node:
def __init__(self, nodes, name="Node"):
    self.nodes = nodes
def _eval(self):
    raise NotImplementedError()
def __add__(self, other):
    return Add(self, other)
```

```
class Node:
def __init__(self, nodes, name="Node"):
    self.nodes = nodes
def _eval(self):
    raise NotImplementedError()
def __add__(self, other):
    return Add(self, other)
def __call__(self, *args, **kwargs):
    return self.eval()
```

```
class Node:
def __init__(self, nodes, name="Node"):
    self.nodes = nodes
def eval(self):
    raise NotImplementedError()
def __add__(self, other):
    return Add(self, other)
def __call__(self, *args, **kwargs):
    return self.eval()
def eval(self):
    if self.cached is None:
        self.cached = self._eval()
```

```
return self.cached
```

Let's abstract some common stuff

```
class Node:
def __init__(self, nodes, name="Node"):
    self.nodes = nodes
    self.cached = None
def _eval(self):
    raise NotImplementedError()
def __add__(self, other):
    return Add(self, other)
def __call__(self, *args, **kwargs):
    return self.eval()
def eval(self):
    if self.cached is None:
        self.cached = self._eval()
```

return self.cached

Let's abstract some common stuff - caching!

```
class Node:
def __init__(self, nodes, name="Node"):
    self.nodes = nodes
    self.cached = None
def _eval(self):
    raise NotImplementedError()
def __add__(self, other):
    return Add(self, other)
def __call__(self, *args, **kwargs):
    return self.eval()
def eval(self):
    if self.cached is None:
        self.cached = self._eval()
```

return self.cached

```
class Exp(Node):
def __init__(self, node, name="Exp"):
    super().__init__([node])
def _eval(self):
    return np.exp(self.nodes[0]())
```

```
class Add(Node):
def __init__(self, node1, node2, name="Add"):
    super().__init__([node1, node2])
def _eval(self):
    return self.nodes[0]() + self.nodes[1]()
```

```
class Sigmoid(Node):
def __init__(self, node, name="Sigmoid"):
    super().__init__([node])
def _eval(self):
    return 1 / (1 + np.exp(-self.nodes[0]())
```

• We can define arbitrary computation graphs...
- We can define arbitrary computation graphs...
- But how do we train them?

- We can define arbitrary computation graphs...
- But how do we train them?
- Where are all the derivatives?

- We can define arbitrary computation graphs...
- But how do we train them?
- Where are all the derivatives?
- Where is the neural network here?

- We can define arbitrary computation graphs...
- But how do we train them?
- Where are all the derivatives?
- Where is the neural network here?
- Turns out, we're missing two things:

- We can define arbitrary computation graphs...
- But how do we train them?
- Where are all the derivatives?
- Where is the neural network here?
- Turns out, we're missing two things:
 - Matrix operations

- We can define arbitrary computation graphs...
- But how do we train them?
- Where are all the derivatives?
- Where is the neural network here?
- Turns out, we're missing two things:
 - Matrix operations
 - Gradient calculation

```
class MatMul(Node):
    def __init__(self, node1, node2, name="MatMul"):
        super().__init__([node1, node2])
    def _eval(self):
        return self.nodes[0]() @ self.nodes[1]()
```


Backpropagation - we don't need to know the types


```
class Node:
    def __init__(self, nodes, name="Node"):
        self.nodes = nodes
    # other stuff ...
    def _eval(self):
        raise NotImplementedError()
```

```
class Node:
    def __init__(self, nodes, name="Node"):
        self.nodes = nodes
    # other stuff ...
    def _eval(self):
        raise NotImplementedError()
    def _partial_derivative(self, wrt, previous_grad):
        raise NotImplementedError()
```

```
class Add(Node):
    def __init__(self, node1, node2, name="Add"):
        super().__init__([node1, node2])
    def _eval(self):
        return self.nodes[0]() + self.nodes[1]()
```

```
class Add(Node):
    def __init__(self, node1, node2, name="Add"):
        super().__init__([node1, node2])
    def _eval(self):
        return self.nodes[0]() + self.nodes[1]()
    def _partial_derivative(self, wrt, previous_grad):
        return previous_grad * self.nodes.count(wrt)
```

```
class Sigmoid(Node):
    def __init__(self, node, name="Sigmoid"):
        super().__init__([node])
```

```
def _eval(self):
    return 1 / (1 + np.exp(-self.nodes[0]())
```

```
class Sigmoid(Node):
    def __init__(self, node, name="Sigmoid"):
        super().__init__([node])
    def _eval(self):
        return 1 / (1 + np.exp(-self.nodes[0]())
    def _partial_derivative(self, wrt, previous_grad):
        if wrt == self.node:
            return previous_grad * self * (1 - self)
        return 0
```

Things to keep in mind

• Constructing the graph of the gradient does not imply its evaluation!

- Constructing the graph of the gradient does not imply its evaluation!
- When constructing the partial derivative, by not "stepping down" from our graphs into real numbers, we get higher-order gradients for free!

So where is backpropagation?

So where is backpropagation?

def grad(top_node, wrt_list, previous_grad=None):

So where is backpropagation?

def grad(top_node, wrt_list, previous_grad=None):

def grad(top_node, wrt_list, previous_grad=None):

```
dct = collections.defaultdict(list)
dct[top_node] += [previous_grad]
```

def grad(top_node, wrt_list, previous_grad=None):

return dct

```
def grad(top_node, wrt_list, previous_grad=None):
```

```
if previous_grad is None:
    previous_grad = Variable(np.ones(top_node.shape),
                             name=add_sum_name(top_node))
dct = collections.defaultdict(list)
dct[top_node] += [previous_grad]
def add_partials(dct, node):
    dct[node] = Add(*dct[node], name=add_sum_name(node))
    for child in set(node.children):
        dct[child] += [node.partial_derivative(wrt=child,
                                                previous_grad=dct[node])]
    return dct
```

```
def grad(top_node, wrt_list, previous_grad=None):
```

```
if previous_grad is None:
    previous_grad = Variable(np.ones(top_node.shape),
                             name=add_sum_name(top_node))
dct = collections.defaultdict(list)
dct[top_node] += [previous_grad]
def add_partials(dct, node):
    dct[node] = Add(*dct[node], name=add_sum_name(node))
    for child in set(node.children):
        dct[child] += [node.partial_derivative(wrt=child,
                                                previous_grad=dct[node])]
    return dct
dct = functools.reduce(add_partials,
                       reverse_topo_sort(top_node),
                       dct)
```

return [dct[wrt] if dct[wrt] != [] else Variable(0) for wrt in wrt_list]

What did we end up with?

• Dynamic creation of computational graphs

- Dynamic creation of computational graphs
- Differentiation of computational graphs w.r.t. any variable

- Dynamic creation of computational graphs
- Differentiation of computational graphs w.r.t. any variable
- Support for higher-order gradients

- Dynamic creation of computational graphs
- Differentiation of computational graphs w.r.t. any variable
- Support for higher-order gradients
- Extensible code it's easy to add your own operations
- Dynamic creation of computational graphs
- Differentiation of computational graphs w.r.t. any variable
- Support for higher-order gradients
- Extensible code it's easy to add your own operations

- Dynamic creation of computational graphs
- Differentiation of computational graphs w.r.t. any variable
- Support for higher-order gradients
- Extensible code it's easy to add your own operations

- Dynamic creation of computational graphs
- Differentiation of computational graphs w.r.t. any variable
- Support for higher-order gradients
- Extensible code it's easy to add your own operations

Support for higher-order tensors

- Dynamic creation of computational graphs
- Differentiation of computational graphs w.r.t. any variable
- Support for higher-order gradients
- Extensible code it's easy to add your own operations

- Support for higher-order tensors
- Numerical checks

- Dynamic creation of computational graphs
- Differentiation of computational graphs w.r.t. any variable
- Support for higher-order gradients
- Extensible code it's easy to add your own operations

- Support for higher-order tensors
- Numerical checks
- Checkpointing

- Dynamic creation of computational graphs
- Differentiation of computational graphs w.r.t. any variable
- Support for higher-order gradients
- Extensible code it's easy to add your own operations

- Support for higher-order tensors
- Numerical checks
- Checkpointing
- Visualization of the computational graph

- Dynamic creation of computational graphs
- Differentiation of computational graphs w.r.t. any variable
- Support for higher-order gradients
- Extensible code it's easy to add your own operations

- Support for higher-order tensors
- Numerical checks
- Checkpointing
- Visualization of the computational graph

• Difference between forward, backward and mixed mode of automatic differentiation, viewed in this context

- Difference between forward, backward and mixed mode of automatic differentiation, viewed in this context
- Even more refactoring

- Difference between forward, backward and mixed mode of automatic differentiation, viewed in this context
- Even more refactoring
- Formal validation of these ideas

- Difference between forward, backward and mixed mode of automatic differentiation, viewed in this context
- Even more refactoring
- Formal validation of these ideas
- The rabbit hole of finding patterns in these abstract concepts goes incredibly deep

- Difference between forward, backward and mixed mode of automatic differentiation, viewed in this context
- Even more refactoring
- Formal validation of these ideas
- The rabbit hole of finding patterns in these abstract concepts goes incredibly deep
- Backprop as a Functor

Thank you!