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Motivation

Applications

I Advance Driver Assistance Systems - ADAS

I Systems for mapping and assessing the state
of traffic infrastructure

I Autonomous vehicles

Existing commercial systems

I Possibility of improving performance

I Removing restriction like driving in non-urban areas
(e.g. only on motorways)

I Increase detectable and recognizable subset of traffic signs
(supported only speed limit signs)
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Traffic Signs

Problems

I Large number of traffic signs categories

I Vast amount of good quality examples is
required

I Changing lighting and weather conditions

I Partial occlusion

I Different perspectives

I Motion-blur

I Physical degradation, stickers and graffiti

I Visually similar subsets

I Standardization
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Traffic Sign Classification Datasets - GTSRB
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Traffic Sign Classification Datasets - BTSC
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Traffic Sign Classification Datasets - rMASTIF

I New dataset of Croatian signs

Motivation

I Correct possible shortcomings recognized from GTSRB and
BTSC datasets

I Addressing traffic signs standardization problem with
cross-dataset experiments
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Convolutional Neural Networks

I Inspired by simple and complex cells in the primary visual
cortex of a brain

I Differ in training procedure and in implementation of
convolutional and sub-sampling layers

I Convolutional layers
I Number of maps (M)
I Size of maps (mx,y )
I Kernel sizes (kx,y )
I Skipping factors (sx,y )

I Sub-sampling layers
I Max-pooling
I Average-pooling

I Output
I Downscaling the output maps of the last convolutional layer to

1 pixel per map
I Combining the output of last convolutional layer into feature

vector
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OneCNN

I Based on Ciresan et al. [1] (committee of CNNs) and
Sermanet et al. [6] (Multi-scale CNN)

Difference

I More deeper and complex network, but a single one in model

I Added one fully connected layer on top of each convolutional
layer
⇒ Extracted smaller number of abstract features on a
per-scale level

I Dropout
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OneCNN
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Dataset Results

Paper method CCR (%)
GTSRB final phase test set

Jin et al. [3] HLSGD (20×CNN; ensemble) 99.65
Zhu et al. [8] SVM+LLC+SPM(SIFT,HOG,LBP) 99.64 ± 0.018

Ciresan et al. [2, 1] MCDNN (25×CNN; committee) 99.46
Stallkamp et al. [7] Human (best) 99.22

Ours OneCNN (1×CNN) 99.11 ± 0.1099.11 ± 0.1099.11 ± 0.10
Jin et al. [3] HLSGD (1×CNN) 98.96 ± 0.20

Stallkamp et al. [7] Human (avg) 98.84
Mathias et al. [5] INNC+INNLP(I,PI,HOGs) 98.53

Ciresan et al. [2, 1] MCDNN (1×CNN) 98.52 ± 0.15
Sermanet et al. [6, 7] MSCNN 98.31

BTSC
Zhu et al. [8] SVM+LLC+SPM(SIFT,HOG,LBP) 98.77

Mathias et al. [5] INNC+SLRP(I,PI,HOGs) 98.32
Ours OneCNN (1×CNN) 98.17 ± 0.2298.17 ± 0.2298.17 ± 0.22

rMASTIF
Ours OneCNN (1×CNN) 99.53 ± 0.1099.53 ± 0.1099.53 ± 0.10

Table: Correct classification rates for different methods.
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Cross-Dataset Results

train/test GTSRB BTSC rMASTIF

GTSRB 99.11 ± 0.10 98.34 ± 0.17 99.53 ± 0.75
BTSC 86.40 ± 0.61 98.17 ± 0.22 75.37 ± 0.86

rMASTIF 91.06 ± 0.57 97.71 ± 0.47 99.53 ± 0.10

Union 99.04 ± 0.14 97.66 ± 0.16 99.37 ± 0.16

Table: Correct classification rate for different combinations of datasets.
The rows stand for training sets, and columns for test sets.

I |GTSRB ∩ BTSC | = 20, |GTSRB ∩ rMASTIF | =
18, |BTSC ∩ rMASTIF | = 15

I Asymmetrical results ⇒ visual disparities between datasets
our CNN failed to bridge

I Union dataset with 87 classes ⇒ possible European Traffic
Sign Classification dataset
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Cross-Dataset Results
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Conclusion and Future Goals

I New dataset of Croatian signs

I Single CNN model

I Evaluated performance on multiple datasets, their intersection
and union
⇒ Surpassed known human and other single CNN
performance

I Organizing existing datasets

I New performance measures closer to real world application
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