

Fran Jurišić, Ivan Filković, Zoran Kalafatić

University of Zagreb Faculty of Electrical Engineering and Computing Department of Electronics, Microelectronics, Computer and Intelligent Systems

ivan.filkovic@fer.hr, fran.jurisic@fer.hr, zoran.kalafatic@fer.hr

22.09.2015.

¹Fran Jurišić, Ivan Filković, and Zoran Kalafatić. "Multi-dataset traffic sign classification with OneCNN". In: *IAPR Asian Conference on Pattern Recognition (ACPR), Kuala Lumpur, Malaysia.* 2015.

Content

Introduction

Motivation Traffic Signs Traffic Sign Classification Datasets

Traffic Sign Classification

Convolutinal Nerual Networks OneCNN Results

Conclusion and Future Goals

Motivation

Applications

- Advance Driver Assistance Systems ADAS
- Systems for mapping and assessing the state of traffic infrastructure
- Autonomous vehicles

Existing commercial systems

- Possibility of improving performance
- Removing restriction like driving in non-urban areas (e.g. only on motorways)
- Increase detectable and recognizable subset of traffic signs (supported only speed limit signs)

Traffic Signs

Problems

- Large number of traffic signs categories
- Vast amount of good quality examples is required
- Changing lighting and weather conditions
- Partial occlusion
- Different perspectives
- Motion-blur
- Physical degradation, stickers and graffiti
- Visually similar subsets
- Standardization

Traffic Sign Classification Datasets - GTSRB

Traffic Sign Classification Datasets - BTSC

6/17

Traffic Sign Classification Datasets - rMASTIF

New dataset of Croatian signs

Motivation

- Correct possible shortcomings recognized from GTSRB and BTSC datasets
- Addressing traffic signs standardization problem with cross-dataset experiments

Convolutional Neural Networks

- Inspired by simple and complex cells in the primary visual cortex of a brain
- Differ in training procedure and in implementation of convolutional and sub-sampling layers
- Convolutional layers
 - Number of maps (M)
 - ► Size of maps (m_{x,y})
 - Kernel sizes (k_{x,y})
 - Skipping factors (s_{x,y})
- Sub-sampling layers
 - Max-pooling
 - Average-pooling
- Output
 - Downscaling the output maps of the last convolutional layer to 1 pixel per map
 - Combining the output of last convolutional layer into feature vector

OneCNN

 Based on Ciresan *et al.* [1] (committee of CNNs) and Sermanet *et al.* [6] (Multi-scale CNN)

Difference

- More deeper and complex network, but a single one in model
- Added one fully connected layer on top of each convolutional layer

 \Rightarrow Extracted smaller number of abstract features on a per-scale level

Dropout

OneCNN

Dataset Results

Paper	method	CCR (%)		
GTSRB final phase test set				
Jin <i>et al.</i> [3]	HLSGD ($20 \times CNN$; ensemble)	99.65		
Zhu <i>et al.</i> [8]	SVM+LLC+SPM(SIFT,HOG,LBP)	99.64 ± 0.018		
Ciresan <i>et al.</i> [2, 1]	MCDNN ($25 \times CNN$; committee)	99.46		
Stallkamp <i>et al.</i> [7]	Human (best)	99.22		
Ours	OneCNN (1×CNN)	99.11 ± 0.10		
Jin <i>et al.</i> [3]	HLSGD $(1 \times \text{CNN})$	98.96 ± 0.20		
Stallkamp <i>et al.</i> [7]	Human (avg)	98.84		
Mathias <i>et al.</i> [5]	INNC+INNLP(I,PI,HOGs)	98.53		
Ciresan <i>et al.</i> [2, 1]	Ciresan <i>et al.</i> [2, 1] MCDNN (1×CNN)			
Sermanet <i>et al.</i> [6, 7]	MSCNN	98.31		
BTSC				
Zhu <i>et al.</i> [8]	SVM+LLC+SPM(SIFT,HOG,LBP)	98.77		
Mathias <i>et al.</i> [5]	INNC+SLRP(I,PI,HOGs)	98.32		
Ours	OneCNN (1×CNN)	98.17 ± 0.22		
rMASTIF				
Ours	OneCNN (1×CNN)	99.53 ± 0.10		

Table: Correct classification rates for different methods.

Cross-Dataset Results

train/test	GTSRB	BTSC	rMASTIF
GTSRB	99.11 ± 0.10	98.34 ± 0.17	99.53 ± 0.75
BTSC	86.40 ± 0.61	98.17 ± 0.22	75.37 ± 0.86
rMASTIF	91.06 ± 0.57	97.71 ± 0.47	99.53 ± 0.10
Union	99.04 ± 0.14	97.66 ± 0.16	99.37 ± 0.16

Table: Correct classification rate for different combinations of datasets. The rows stand for training sets, and columns for test sets.

- ► |GTSRB ∩ BTSC| = 20, |GTSRB ∩ rMASTIF| = 18, |BTSC ∩ rMASTIF| = 15
- ► Asymmetrical results ⇒ visual disparities between datasets our CNN failed to bridge
- ► Union dataset with 87 classes ⇒ possible European Traffic Sign Classification dataset

Cross-Dataset Results

Conclusion and Future Goals

- New dataset of Croatian signs
- Single CNN model
- Evaluated performance on multiple datasets, their intersection and union
 - \Rightarrow Surpassed known human and other single CNN performance
- Organizing existing datasets
- ▶ New performance measures closer to real world application

References I

- Dan C. Ciresan, Ueli Meier, and Jürgen Schmidhuber.
 "Multi-column deep neural networks for image classification."
 In: CVPR. IEEE, 2012, pp. 3642–3649.
- Dan C. Ciresan et al. "Multi-column deep neural network for traffic sign classification". In: Neural Networks 32 (2012), pp. 333–338.
- Junqi Jin, Kun Fu, and Changshui Zhang. "Traffic Sign Recognition With Hinge Loss Trained Convolutional Neural Networks". In: Intelligent Transportation Systems, IEEE Transactions on PP.99 (2014), pp. 1–10.
- Fran Jurišić, Ivan Filković, and Zoran Kalafatić. "Multi-dataset traffic sign classification with OneCNN". In: IAPR Asian Conference on Pattern Recognition (ACPR), Kuala Lumpur, Malaysia. 2015.

References II

- Markus Mathias et al. "Traffic sign recognition How far are we from the solution?" In: *IJCNN*. IEEE, 2013, pp. 1–8.
- Pierre Sermanet and Yann LeCun. "Traffic sign recognition with multi-scale Convolutional Networks." In: IJCNN. IEEE, 2011, pp. 2809–2813.
- Johannes Stallkamp et al. "Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition". In: *Neural Networks* 32 (2012), pp. 323–332.
 - Yingying Zhu et al. "Traffic sign classification using two-layer image representation". In: *IEEE International Conference on Image Processing, ICIP 2013, Melbourne, Australia, September 15-18, 2013.* 2013, pp. 3755–3759.

The End