
Fast Approximate GMM Soft-Assign
for Fine-Grained Image Classification

with Large Fisher Vectors

Josip Krapac and Sinǐsa Šegvić

Faculty of Electrical Engineering and Computing
University of Zagreb, Croatia

Abstract. We address two drawbacks of image classification with large
Fisher vectors. The first drawback is the computational cost of assigning
a large number of patch descriptors to a large number of GMM compo-
nents. We propose to alleviate that by a generally applicable approximate
soft-assignment procedure based on a balanced GMM tree. This approx-
imation significantly reduces the computational complexity while only
marginally affecting the fine-grained classification performance. The sec-
ond drawback is a very high dimensionality of the image representation,
which makes the classifier learning and inference computationally com-
plex and prone to overtraining. We propose to alleviate that by regulariz-
ing the classification model with group Lasso. The resulting block-sparse
models achieve better fine-grained classification performance in addition
to memory savings and faster prediction. We demonstrate and evaluate
our contributions on a standard fine-grained categorization benchmark.

1 Introduction

In this work we address fine-grained classification (FGC), a problem where the
inter-class variance is small w.r.t. intra-class variance, i.e. the objects from dif-
ferent classes may be very similar. This is a challenging task since the differences
between the categories can be subtle and may cover a very small part of the im-
age. For example, a discriminating feature between two bird species can be a
specific feather pattern around the eye. The more specialized the class, the less
data for learning its class model we can expect, and the more challenging learning
good class models becomes. In short, FGC relies on finding a few discriminative
features in a very large feature pool using a small amount of images annotated
only with class labels, which resembles searching for needle in a haystack.

Although large Fisher vectors have displayed state-of-the-art performance for
several FGC tasks [7], their main drawback remains computational complexity.
First, obtaining large Fisher vector representation involves costly assignment
of a large number of patches to a large number of GMM components. Second,
classifier learning and inference involves very high dimensional dense vectors.
This may pose scalability problems when the number of classes is large.

Our contributions address both of these drawbacks. In practice each patch is
assigned to a very small number of GMM components [18]. We exploit this to



2 Josip Krapac and Sinǐsa Šegvić

build a hierarchy over GMM components by agglomerative clustering [16]. This
enables us to discard a large number of components early. GMM tree yields sig-
nificant soft-assign speed up while mostly retaining classification performance.
The technique is general since it does not require any labeled data, so it can
be used e.g. in image retrieval. Second, we propose group-sparse classification
models which are fast to train and evaluate, and have a small memory foot-
print. In addition, these models display significantly improved classification per-
formance, especially when coupled with Fisher vector intra-normalization. We
demonstrate the value of our contributions experimentally on the 14 category
subset (“Birdlets”) [5] of the Caltech-UCSD Birds 200-2011 dataset [22].

2 Related Work

Goldberger and Roweis [6] consider grouping of GMM components by an iter-
ative regroup-refit procedure similar to the k-means clustering algorithm. The
main idea is to find the grouping of original components into a smaller mixture
model such that the KL divergence between the obtained smaller model and
the original one is minimized. However, there is no guarantee that the obtained
higher-level GMM will indeed speedup the soft-assign, since many lower-level
components can be merged into a single higher-level component.

Simonyan et al. [19] used hard assignment to the closest GMM component
in order to speed up Fisher vector computation. Although this procedure speeds
up the computation of Fisher vector once the soft-assigns have been computed,
it does not reduce the complexity of the soft-assign computation which is the
most intensive part of Fisher vector computation.

Verbeek et al. [21] speed up the EM algorithm for large datasets by first
clustering the data with a kd-tree, and then performing EM steps on the clusters
instead of individual points. The combination of this approach and the one
proposed here is an interesting avenue for speeding the soft-assign for a group of
descriptors, since our contribution is able to speed up the soft-assign for a single
descriptor.

Gosselin et al. [7] speed up large Fisher vector construction by discarding the
patches whose SIFT descriptor norm is below a threshold. They show that this
does not influence significantly the classification performance, while it reduces
the computational complexity of Fisher vector computation. For the remaining
SIFT descriptors they still have to perform computationally intensive soft-assign.

Approximate nearest neighbor methods (ANN) like product quantization [9]
or locality-sensitive hashing [8] can be used to quickly short-list the components
most responsible for generating the data point. However, in our case the number
of the descriptors in the image is an order of magnitude larger than the number of
the GMM components. Therefore it is difficult to obtain a good trade-off between
feature coding time and quality of the recall of the GMM components. Addi-
tionally, ANN methods usually assume L2 distance, while the GMM soft-assign
requires computing the likelihood of a normal distribution, which corresponds
to Mahalanobis distance.



Fast Approximate GMM Soft-Assign for Large Fisher Vectors 3

Group-sparse classification models have been previously used for general ob-
ject classification with bag-of-visual-words histograms [13], but to the best of our
knowledge we are the first to report results of group-sparse classification models
with Fisher vectors. We have previously used sparse classification models [11],
but have not constrained them to be group-sparse. Instead, we have selected a
predefined number of top components considering the norm of the corresponding
part of the model vector. In this work, due to group-sparse regularizers, we are
able to directly control the trade-off between the classification performance and
the number of GMM components selected by the model.

The intra-component variant of Fisher vector normalization we use here is
related to intra-normalization used in VLAD descriptor [1]. As noted in [1], this
normalization is beneficial for reducing the influence of bursty visual elements
on the image representation.

3 Fisher Vector Image Representation

We represent images with a set of densely sampled patches at a fixed grid and
multiple scales [4]. This enables a good description of image content and in-
variance to scale changes, but it also usually results in a fairly large number N
of patches per image. Each patch is described by a D-dimensional descriptor
x ∈ RD invariant to local photometric and geometric transformations [14] and
coded using a generative model of patch descriptors, which is usually a Gaussian
mixture model (GMM):

p(x|Θ) =
K∑

k=1

πkN (x|µk,Σk), πk =
exp(αk)∑K
i=1 exp(αi)

. (1)

In the above equation,K is the number of components, whileΘ = [πk, µk,Σk]
K
k=1

are GMM parameters. The parametrization of component weights π = {πk}Kk=1

with α = {αk}Kk=1 ensures that π sum to one. To reduce the number of GMM
parameters we assume a diagonal Σk for all K components. The parameters are
learned to maximize the training data likelihood using the EM algorithm. Each
patch descriptor x is coded with a Fisher vector Φ(x) [18] that is a gradient of
the GMM log-likelihood w.r.t. the GMM parameters Θ:

Φ(x) = [· · ·Φk(x) · · · ] = [· · ·∇αk
log p(x|Θ),∇µk

log p(x|Θ),∇Σ−1
k

log p(x|Θ), · · · ]

= [· · · γk(x)− πk, γk(x)Σ
−1
k (x− µk), γk(x)(Σk − (x− µk)

2), · · · ].
(2)

In the Eq. (2) γk(x) = p(k|x) corresponds to the responsibility of component k
for generating the descriptor x, also known as the soft-assign of the descriptor
x to the Gaussian component k:

γk(x) =
πkN (x|µk,Σk)

p(x|Θ)
. (3)



4 Josip Krapac and Sinǐsa Šegvić

Assuming independence of the image patches, we obtain the Fisher vector for
the whole image X = {xi}Ni=1 as an average of patch Fisher vectors Φ(X) =∑N

i=1 Φ(xi)/N . The dimension of this representation is (2D + 1)K. In the im-
plementation we use the improved version of Fisher vector [17] which employs
normalizations that significantly improve the classification performance.

To ensure that object’s fine-grained class-specific parts remain identifiable
even after aggregation of patch Fisher vectors into the image representation a
large number of GMM components K is needed. This way a set of patch descrip-
tors is embedded in a highly-dimensional vector space, in which a hyperplane
defined by a linear classifier corresponds to a highly non-linear decision surface
in the patch descriptor space. Therefore large Fisher vectors enable modeling of
subtle image details, a requirement necessary for discrimination of very similar
images.

4 Fast Approximated Soft-Assign Computation

Our main contribution is related to the fast computation of soft-assign (3). For
each of N patches we need to compute the Mahalanobis distances to K compo-
nents, required to compute the denominator of (3). Therefore the complexity of
the soft-assign computation for N patches represented by D-dimensional vectors
is O(DKN). In practice only a small fraction of components is responsible for
generation of a data point. This means that the Fisher vector encoding for each
data point x will be block-sparse, since for many components Φk(x) will be zero.

We want to take advantage of this sparsity to speed up the soft-assign by
discarding the components that are not likely to be responsible for generation
of the data point. To this end we construct a hierarchy of GMM models by
iteratively merging the components of the original flat GMM. This hierarchy
enables us to concentrate, at each level of hierarchy, on a subset of top Kt most
responsible components for generating the data point. Thus at each level of the
GMM tree, the soft-assign computation for each data point requires O(DKt)
operations.

GMM Tree Construction. Since our goal is to speed-up the soft-assign we
concentrate on balanced binary trees. Clearly, this constraint produces a sub-
optimal approximation of the considered GMM with a given number of compo-
nents. However, it gives us theoretical guarantees in terms of expected speed-up,
since the number of operations to compute soft-assign is the same for each data
point, unlike [6]. We start from a large flat GMM whose soft-assign we want to
speed up, and consider its components as the leaves of the tree. At each new level
of the tree we create a new component (the parent node) by merging exactly
two components at the lower level (children nodes). To determine the best two
children nodes to merge, we first find the closest sibling of each child node in
terms of KL divergence:



Fast Approximate GMM Soft-Assign for Large Fisher Vectors 5

c(i) = argmin
j∈{1...K}/i

dKL(θi, θj) (4)

d(i) = dKL(θi, θc(i)). (5)

There exists a closed-form solution for KL divergence between two normal
distributions, so we can quickly determine the distances between the children
nodes. We then greedily merge the closest children nodes, by first merging the
child node i whose KL divergence d(i) to the closest sibling c(i) is the largest.
Every time we merge the children nodes into the parent node we re-compute the
closest siblings for the ones that are not yet merged. The main motivation for
this procedure is to ensure that the newly created parent nodes do not overlap.

When merging the children nodes i and j = c(i), we derive the parameters
of the parent node m following [23]:

πm = πi + πj (6)

πmµm = πiµi + πjµj (7)

πm(Σm + µ>
mµm) = πi(Σi + µ>

i µi) + πj(Σj + µ>
j µj). (8)

This construction does not produce optimal component pairings in the sense
of minimizing the KL divergence between the GMMs at the two neighboring
levels of binary tree. However, the procedure is very fast and gives very good
results, as we demonstrate in the experimental section.

Fast Assignment. We use the GMM tree to perform the soft-assignment of
patch descriptor x to the original GMM components that are the leaves of
the GMM tree. Given a selected top number Kt of components we skip first
log2(Kt) + 1 levels of the tree, since at these levels the number of nodes is
smaller than Kt. At each level we expand the Kt nodes of interest into 2Kt

nodes at the next level. We subsequently select the top Kt nodes by considering
the value of numerator in (3). We continue this procedure until we reach the bot-
tom of the tree. The denominator of the expression (3) is then approximated by
considering only Kt components selected by the tree. This way the complexity
for each patch is reduced from O(DK) to O(DKt log2(

K
Kt

)), which significantly
speeds up the computation of Fisher vectors. This fast assignment is illustrated
in Fig. 1. The choice of Kt determines the trade-off between soft-assign speed
up and the quality of the approximation.

5 Group-Sparse Models

In order to perform FGC, we learn a linear classifier w operating on the Fisher
vector representation:

w∗ = argmin
w

M∑
i=1

`(w, Φ(Xi), yi) + λR(w), (9)



6 Josip Krapac and Sinǐsa Šegvić

Fig. 1. The fast assignment procedure for K = 16,Kt = 2. The likelihood for the gray
nodes is not evaluated. At each level we evaluate the likelihood of only 2Kt components
(circled) and only top Kt components are expanded (black).

where (Φ(Xi), yi)
M
i=1 is the training set of M image representations and class

labels, ` is the loss function, R is the regularizer, while λ determines the com-
promise between the two. To enforce block sparsity, we employ group Lasso
regularization R(w) =

∑K
k=1 ‖wk‖2, where wk is the Fisher vector block of

size 2D + 1 corresponding to the kth GMM component. We use the logistic loss
`log(w,x, y) = log(1+exp(−yw>x)) which means that the optimization problem
(9) is convex.

We assume that class-specific object parts correspond to small number of
class-specific patches that lie in compact parts of the patch descriptor space.
Fisher vector representation maps compact parts of the descriptor space into
blocks of Fisher vector representation. The learned group-sparse discriminative
model selects the GMM components corresponding to the class-specific features.
Therefore these models are well suited for FGC, especially where scalability is
needed, since the sparsity also enables fast model evaluation and small memory
requirements.

6 Experiments

Dataset. We demonstrate our contributions on the 14-class subset [5] of Caltech-
UCSD Birds 200-2011 birds dataset [22]. This subset consists of 7 classes of
Vireos (Black-capped Vireo, Blue-headed Vireo, Philedelphia Vireo, Red-eyed
Vireo, Warbling Vireo, White-eyed Vireo and Yellow-throated Vireo) and 7
classes ofWoodpeckers (American Three-toedWoodpecker, PileatedWoodpecker,
Red-bellied Woodpecker, Red-cockaded Woodpecker, Red-headed Woodpecker,
Downy Woodpecker and Northern Flicker). There are 419 train and 398 test
images, each split having around 30 images per class.

Parameters. We follow the standard Fisher vector classification pipeline: we
use dense patch sampling at four scales following the procedure from [3] and
describe the patches by SIFT [14] and color features of Perronnin et al. [17].
We used the VLFeat library [20] for computing SIFT descriptors. We reduce



Fast Approximate GMM Soft-Assign for Large Fisher Vectors 7

both SIFT and color features to 64 dimensions by PCA. For each feature type
we select a random subset of 500000 features from the images in the training
set and learn one GMM per feature type. We use the learned GMMs to obtain
Fisher vectors, again one per feature type. We normalize the Fisher vectors
using the power and metric normalizations, as suggested in [17]. We do not use
spatial layout coding, although it is likely that such coding (e.g. SPM [12]) could
improve classification results, especially when training data is enlarged by using
mirrored images (image flips) and random crops. All our classification models are
one vs. all logistic regression, learned with 1000 iterations of FISTA algorithm
[2] implemented in SPAMS [15].

Results. Fig. 2 shows the speedup and the quality of Fisher vectors with fast
approximate soft-assign as we vary Kt. Increasing Kt gives a better approxima-
tion at the expense of a smaller speed-up. The speed-up is defined by the ratio
of the time needed to compute the original Fisher vector and the time needed

2 4 8 16 32 64
Kt

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

si
m

ila
rit

y

Color, K=1024

2 4 8 16 32 64
Kt

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

si
m

ila
rit

y

Color, K=4096

2 4 8 16 32 64
Kt

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

si
m

ila
rit

y

SIFT, K=1024

2 4 8 16 32 64
Kt

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

si
m

ila
rit

y

SIFT, K=4096

0
5
10
15
20
25
30
35
40

sp
ee

du
p

0
5
10
15
20
25
30
35
40

sp
ee

du
p

0
5
10
15
20
25
30
35
40

sp
ee

du
p

0
5
10
15
20
25
30
35
40

sp
ee

du
p

Fig. 2. Influence of the approximated soft-assign on the speedup and the approximation
error measured as the dot product between the original Fisher vector and the approx-
imated one. The magenta curves denote dot product between vectors (full: block-wise
L2 normalization, dotted: full L2 normalization). The cyan curve displays the speedup
achieved with top Kt components at each level of the GMM tree. Our approximation
offers a trade-off between quality and the speed-up.



8 Josip Krapac and Sinǐsa Šegvić

to compute its approximated version. Notice that the speedup can be very high
for smaller Kt because of the caching patterns employed by the CPU: the com-
ponents in the higher levels of the tree that are queried more often could be
kept the L1 cache. The quality of approximation is measured by the dot product
between the original and the approximated Fisher vector normalized with their
L2 norm. We consider the full Fisher vector normalization and the block-wise
(or intra-component [1]) normalization where we normalize Fisher vector blocks
corresponding to GMM components.

The approximated Fisher vector is different from the original vector due to
the errors in soft-assign approximation. The Fisher vector of the patch descrip-
tor can “blow up” if the GMM tree does not give a correct prediction of the
soft-assign. A couple of mis-assigned descriptors can significantly influence the
Fisher vector of the image (c.f. SIFT features with K = 1024). Block-wise nor-
malization ensures that the approximation errors influence only the Fisher vector
blocks corresponding to the components whose responsibility is mis-predicted.
This is another benefit of using blockwise normalization, in addition to reducing
the influence of bursty visual elements [1]. With Kt = 64, for all considered
cases, we obtain the Fisher vectors that are very close to original ones. Although
we concentrate on image classification, these results suggest that the approxima-
tions could also be useful for image retrieval, e.g. for construction of the VLAD
descriptor [10].

Next we show the influence of the Fisher vector approximations on classi-
fication performance measured by mean average precision (mAP). In these ex-
periments we fix λ = 10−4 to obtain sparse models, and to ensure that only the
approximations influence the performance. Tab. 1 shows that classification per-
formance is not significantly influenced for a wide range of approximations. For
our best performing feature and vocabulary size (color features with K = 1024),
when using only Kt = 2 we lose only 5.5 points of mAP compared to using
Fisher vectors computed without approximations, while achieving 10x speedup.
In all following experiments we report results on the approximated Fisher vec-

Table 1. Influence of approximated soft-assign on the classification performance, with
metric intra-normalization and group Lasso regularization.

color SIFT
K 1024 4096 1024 4096

mAP speedup mAP speedup mAP speedup mAP speedup

Kt

2 51.08 9.70 46.08 29.90 37.52 24.58 32.99 30.09
4 52.87 6.62 48.20 19.09 39.96 15.83 36.10 20.85
8 54.50 4.03 51.25 11.88 42.60 9.83 39.28 14.06
16 54.73 2.40 52.25 6.85 42.65 5.91 39.34 8.24
32 55.00 1.39 54.32 3.86 43.30 3.52 40.15 4.58
64 56.00 0.83 54.90 7.56 43.44 6.36 40.35 2.55
full 55.59 1 54.71 1 42.58 1 41.59 1



Fast Approximate GMM Soft-Assign for Large Fisher Vectors 9

tors using Kt = 16, since this setting offers a good trade-off between obtained
speedup and classification performance.

We also compare our performance to the Fisher vector baseline and show
how block-wise normalization, sparsity-inducing regularization and use of ap-
proximations influence the classification performance (Table 2). Here we deter-
mine the hyper-parameter λ by two-fold cross-validation in the range of values
log10(λ) = [−4,−7]. Our first experiment uses Fisher vectors obtained without
approximations, with overall metric normalization and L2 regularization. This
is the standard Fisher vector representation, used also in [7]. Intra-component
L2 normalization achieves remarkable effects: the classification performance is
improved by almost 10 percent points with color descriptors and 7 percent points
with SIFT descriptors. The group Lasso regularization gives additional 5 percent
points with color descriptors, while only marginally improving the classification
performance with SIFT descriptors. When we use our approximated Fisher vec-
tors, we obtain almost the same performance as with original Fisher vectors:
marginally worse with color descriptors and marginally better with SIFT. We
also tried learning the classifier on concatenation of color and SIFT Fisher vec-
tors, but this resulted in slightly worse performance compared to using color
features alone (53.54% mAP).

Table 2. Influence of Fisher vector normalization, regularization and approximated
soft-assign on the classification performance. Fast Fisher vectors were obtained with
Kt = 16.

L2 normalization Regularization Fast color SIFT

full L2 No 41.67 35.18
intra-component L2 No 50.09 42.09
intra-component group Lasso No 55.83 42.67
intra-component group Lasso Yes 55.00 43.37

Finally, Tab. 3 shows per-class performance with a fixed λ = 10−4 and when
λ is cross-validated. We first notice that our performance is worse for Vireos,
and that for these 7 classes the cross-validating λ results in non-sparse models.
The classification performance for Woodpeckers is much better and almost all
cross-validated models are sparse. When we fix λ to give more weight to the
regularizer we obtain sparse models without significant drop in performance:
55.00% mAP with cross-validated λ vs. 54.73% mAP with the fixed λ. This set-
ting is especially interesting when learning models for a large number of classes,
since the obtained classification performance is almost the same, while the used
modes are 2–4 times smaller. In addition to memory savings, the sparsity enables
faster model learning and evaluation. When coupled with our approximations
for Fisher vector computation, the group-sparsity allows skipping the computa-
tion of Fisher vectors for the descriptors generated by the GMM components
discarded by the classification model.



10 Josip Krapac and Sinǐsa Šegvić

Table 3. Per-class analysis of influence of sparsity on classification performance when
using color features and K = 1024. The performance is measured by average preci-
sion (AP), while NNZ denotes the number of GMM components selected by the group
sparse classification model. Enforcing sparsity only slightly degrades classification per-
formance, while it yields 2-4x more compact models w.r.t. to L2 regularized models.
The best results are obtained with group-sparse models (boldface).

λ = λcv λ = 10−4

Name AP NNZ AP NNZ

BC 47.02 1024 48.17 403
BH 25.83 1024 24.19 409
P 32.90 1024 29.06 357
RE 24.94 1020 25.74 374
W 21.79 1018 22.43 387
WE 50.51 374 50.51 374
YT 46.54 252 46.54 252

λ = λcv λ = 10−4

Name AP NNZ AP NNZ

AT 72.77 327 72.77 327
PW 64.56 292 64.56 292
RB 88.89 242 88.88 242
RC 81.44 1015 80.54 311
RH 84.74 251 84.74 251
D 60.94 268 60.94 268
NF 67.15 294 67.15 294

Vireos Woodpeckers

7 Conclusion

We have proposed an approximate algorithm for fast soft-assignment of high-
dimensional patterns to the components of a large GMM model. The proposed
algorithm brings substantial speed-ups to the recovery of global image represen-
tations based on Fishers vectors, at the price of a tolerable (or even negligible)
impact to the classification accuracy. Additionally, we have shown that a recent
method for enforcing group sparsity may improve both the classification perfor-
mance and the processing speed at the same time. Finally, we have shown that
these sparse models achieve best results when the Fisher vectors are subjected
to the metric intra-normalization, rather than the usual metric normalization
across the whole vector.

These three contributions improve the classification performance in the fine-
grained case, where only a small portion of the image allows to bring the decision
about the image class. Experiments performed on the “Birdlets” dataset confirm
substantial advantage over the baseline in terms of better performance classifica-
tion performance and faster execution. The proposed method allows to choose a
desired trade-off between the classification performance and the execution speed.
Our best performing classification models achieved improvement of 14 points of
mAP w.r.t. the baseline while offering 2x increase in the execution speed. The
most interesting direction for the future work is application of the presented
contribution to more diverse classification datasets such as PASCAL VOC.

Acknowledgement . This work has been fully supported by Croatian Science
Foundation under the project I-2433-2014.



Fast Approximate GMM Soft-Assign for Large Fisher Vectors 11

References

1. Arandjelović, R., Zisserman, A.: “All about VLAD”. In: CVPR (2013)
2. Beck, A., Teboulle, M.: “A Fast Iterative Shrinkage-Thresholding Algorithm for

Linear Inverse Problems”. SIAM Journal of Imaging Sciences (2009)
3. Chatfield, K., Lempitsky, V., Vedaldi, A., Zisserman, A.: “The devil is in the

details: an evaluation of recent feature encoding methods”. In: BMVC (2011)
4. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization

with bags of keypoints. In: ECCV-WSLCV. pp. 1–22 (2004)
5. Farrell, R., Oza, O., Zhang, N., Morariu, V.I., Darrell, T., Davis, L.S.: Birdlets:

Subordinate categorization using volumetric primitives and pose-normalized ap-
pearance. In: ICCV. pp. 161–168 (2011)

6. Goldberger, J., Roweis, S.: “Hierarchical clustering of a mixture model”. In: NIPS.
pp. 505–512. MIT Press (2005)

7. Gosselin, P.H., Murray, N., Jégou, H., Perronnin, F.: “Inria+Xerox@FGcomp:
Boosting the Fisher vector for fine-grained classification”. Tech. rep., INRIA /
XRCE (2013)

8. Indyk, P., Rajeev Motwani . In Proceedings of the (STOC 1998), pages, .: “Ap-
proximate nearest neighbors: towards removing the curse of dimensionality”. In:
30th ACM Symposium on the Theory of Computing. pp. 604–613 (1998)

9. Jégou, H., Douze, M., Schmid, C.: “Product Quantization for Nearest Neighbor
Search”. PAMI 33(1), 117–128 (Jan 2011)

10. Jégou, H., Douze, M., Schmid, C., Pérez, P.: “Aggregating local descriptors into a
compact image representation”. In: CVPR (2010)

11. Krapac, J., Šegvić, S.: “Weakly Supervised Object Localization with Large Fisher
Vectors”. In: VISAPP (2015)

12. Lazebnik, S., Schmid, C., Ponce, J.: “Beyond Bags of Features: Spatial Pyramid
Matching for Recognizing Natural Scene Categories”. In: CVPR (2006)

13. Liu, Y.: “Image Classification with Group Fusion Sparse Representation”. In:
ICME. pp. 568–573 (2012)

14. Lowe, D.G.: “Distinctive Image Features from Scale-Invariant Keypoints”. IJCV
60, 91–110 (2004)

15. Mairal, J., Jenatton, R., Bach, F.R., Obozinski, G.R.: “Network Flow Algorithms
for Structured Sparsity”. In: NIPS (2009)

16. Murtagh, F., Contreras, P.: “Algorithms for hierarchical clustering: an overview”.
Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery 2(1), 86–97 (2012)

17. Perronnin, F., Sánchez, J., Mensink, T.: “Improving the Fisher Kernel for Large-
Scale Image Classification”. In: ECCV (2010)

18. Sánchez, J., Perronnin, F., Mensink, T., Verbeek, J.J.: “Image Classification with
the Fisher Vector: Theory and Practice”. IJCV 105(3), 222–245 (2013)

19. Simonyan, K., Vedaldi, A., Zisserman, A.: “Deep Fisher Networks for Large-Scale
Image Classification”. In: NIPS. pp. 163–171 (2013)

20. Vedaldi, A., Fulkerson, B.: “VLFeat: An Open and Portable Library of Computer
Vision Algorithms”. http://www.vlfeat.org (2008)

21. Verbeek, J.J., Nunnink, J., Vlassis, N.: “Accelerated EM-based clustering of large
data sets”. Data Mining and Knowledge Discovery 13(3), 291–307 (2006)

22. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: “The Caltech-UCSD
Birds-200-2011 Dataset”. Tech. rep., California Institute of Technology (2011)

23. Zhang, Z., Chen, C., Sun, J., Chan, K.L.: “EM algorithms for Gaussian mixtures
with split-and-merge operation”. Pattern Recognition 36(9), 1973–1983 (2003)


