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∗ University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia
∗∗ University of Zagreb, Faculty of Transportation Sciences, Croatia

∗∗∗ Institute of Traffic and Communications, Zagreb, Croatia
∗∗∗∗ Tilda d.o.o, Zagreb, Croatia
E-mail: sinisa.segvic@fer.hr

Abstract—We address the problem of stitching together the
three videos acquired by a special rig consisting of three
high resolution cameras. The three cameras are placed in
the horizontal plane on the top of the service vehicle in a
way that the fields of view of the lateral cameras overlap
with the field of view of the middle camera. In the presented
approach, the transformations between the common parts
of the corresponding video frames are approximated by
planar projective mappings. The required mappings are
estimated by aligning the common parts of the three views
in corresponding video frames. The experiments have been
performed on production EuroRAP videos provided by
our industrial partner. The obtained results confirm that
the presented approach would simplify the existing road
inspection procedures relying on the recorded multi-view
video.

I. INTRODUCTION

Research on traffic accidents in many countries clearly
shows that there is an intense need for increasing the
safety in road traffic. Even in developed countries with
well-designed and well-maintained traffic infrastructure,
adequate traffic education, and strict law enforcement, the
rates of serious road traffic injuries remain unacceptably
high [1]. There are several campaigns over the world
which promote conservative premises such as that on
average 1 out of each 500 human reactions - is plainly
wrong [2]. These campaigns advocate high standards in
road infrastructure construction, which would provide
enough protection in order to avoid fatal consequences.
One of such campaigns is being carrried out through the
international programme EuroRAP [3], [4].
In the scope of the EuroRAP programme, the road

safety is assessed [5], [6] by analysing video footage
acquired simultaneously by three high resolution cameras.
The cameras are placed in the horizontal plane on the top
of the service vehicle, in a way that the fields of view
of the lateral cameras overlap with the field of view of
the middle camera. A typical image triple acquired by
such platform is shown in Figure 1. The acquired three
videos are evaluated by certified experts in traffic safety,
which estimate various risk factors for each section of
the assessed road. The evaluation process results in a risk
map for a given road network, which allows to quantify
and compare the safety of the road sections along the
considered route [3].
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Unfortunately, it has been found that the experts which
perform the road traffic inspection find it qite difficult to
follow three different videos at the same time. Thus, there
is a necesity to find out a user-friendly arrangement of the
three disjoint view onto the road scene. In this paper we
take advantage of the fact that the focal points of the
three cameras are quite close to each other when com-
pared to the typical distances towards the imaged scene.
Consequently, the transformation between the common
parts of the corresponding video frames is approximated
by a planar projective mapping, or homography [7]. The
desired comprehensive view onto the scene is constructed
by projecting pixels from the sidewise cameras onto the
image plane of the middle camera (in computer vision
literature this procedure is known as image stitching [8],
[9]). The final result approximates an image which would
be acquired by a middle camera equipped with a wide-
angle lens.

The paper is organized as follows. Image stitching is
briefly reviewed in Section II. Section III presents some
details about the EuroRAP programme (including the ge-
ometry of the image acquisition rig). The employed lower
level computer vision techniques are detailed in Sec-
tion IV. The obtained experimental results are presented
in Section V, while Section VI provides a conclusion and
some directions for future work.

II. IMAGE STITCHING

The purpose of image stitching or image compositing
is to process multiple images of the same scene in order
to create a high-resolution photo-mosaic in which the
seams are as smooth as possible. Today, these techniques
are routinely used to produce digital maps and satellite
photos. They are also embeded in many digital cameras in
order to enable shooting ultra wide-angle panoramas with
a conventional inexpensive lens having a horizontal field
of view of less than 45◦. However, despite the maturity of
the lower level building blocks, image stitching still can
be a challenging task, which shall also be demonstrated
in the rest of this paper.

Image stitching typically consists of the following two
tasks: i) image alignment and ii) determining composite
pixels. Image alignment tells us which pixels from origi-
nal images map to a given pixel in the composite image.
There are two main approaches to image alignment:
feature-based and direct, or pixel-based [9]. Here we



Fig. 1. A typical image triple simultaneously acquired by the standard EuroRAP image acquisition platform.

only consider feature-based alignment since pixel-based
approaches are not applicable for significantly displaced
views such as as in our case (cf. Figure 1).
Feature-based alignment employs the point correspon-

dences extracted by some wide-baseline matching ap-
proach [10], [11] (cf. IV-A) in order to recover parameters
of the chosen alignment model. The choice of the align-
ment model depends on the spatial properties between
the multiple viewpoints and the observed scene. It ranges
from simple translation, 2D Euclidean transform, 3D
rotation [8], projective transformation to the full structure
and motion estimation [9].
Many previous works assume a small distance be-

tween the original viewpoints and describe the alignment
by a homography induced by the plane at infinity. In
normalized image coordinates [12] (which are available
for calibrated cameras), this homography corresponds to
the 3D rotation between the camera pose from which
the original image was acquired and the camera pose
of the composite image. Brown and Lowe [8] recover
both the rotation parameters and the intrinsic camera
parameters by a bundle adjustment of all detected features
across all available views. Very nice results have been
reported on images submitted by collaborating non-expert
users. However, this approach can not fully compensate
large inter-camera motions, leading to visually suboptimal
results (cf. Section V).
Pixels of the composite image qC(x) are determined

from the corresponding pixels qk(Tk(x)) in each of n
original images Ik, k ∈ [0..n〉. In the above expression Tk

denotes the transformation between the composite image
and the k-th original image. Often, the composite pixels
are calculated as a weighted average of the original pixels:

qC(x) =
∑

k

αk(x) · qk(Tk(x))∑
l αl(x)

, ∀k,x . (1)

Pixels falling outside the original image do not contribute
to the composite pixel:

αk(x) = 0, ∀k,x : Tk(x) /∈ Ik . (2)

If we set all remaining αk to be equal, we obtain a
technique called averaging:

αk(x) = 1, ∀k,x : Tk(x) ∈ Ik . (3)

A more involved technique sets the contribution of origi-
nal pixels to be proportional to its distance from the image

border dB(Tk(x)):

αk(x) = dB(Tk(x)), ∀k,x : Tk(x) ∈ Ik . (4)

Recent works in image stitching focus on individual
aspects of the problem which arise in specific appli-
cations. Uyttendaele et al. [13] considers the problem
of extracting composite pixels with high dynamic range
starting from original images acquired with different ex-
posure parameters. Mills et al. [14] strive to detect moving
objects in original images and avoid including them into
the composite image. Chen et al. [15] construct a 360◦

panorama around a passenger car by stitching images
obtained by four wide-angle fish-eye cameras mounted
at the four sides of the car. Koo et al. [16] present
an alignment model selection approach which finds the
model which suits best the actual original images.

III. THE EURORAP PROGRAMME

EuroRAP (European Road Assessment Programme)1

is am international non-profit road safety organisation
which aims to reduce traffic injuries on European roads
[3], [4]. The programme has been founded by European
automobilistic organizations and road authorities in order
to improve the safety od the road traffic. Currently Euro-
RAP unites about 50 partners from 30 countries, including
Croatia. The programme has also been supported by
leading car manufacturers, as a sister programme to Eu-
roNCAP, the European New Car Assessment Programme.
EuroRAP designates different road sections with an easy-
to-understand star rating and creates maps with risc fac-
tors derived from the accident history of the correspond-
ing road section. EuroRAP also performs special road
safety inspections [5] and proposes interventions which
are expected to diminish the frequency and/or alleviate the
consequences of traffic accidents. During 2008 and 2009
the first pilot EuroRAP projects have been conducted
on the most important Croatian roads. The obtained star
ratings were found to be in high correlation with the rate
of traffic accidents with fatal consequences. This research
has been recognized by the Croatian National programme
for the road traffic safety, so that the range of operations is
likely to be increased in the upcoming period until 2020.

The road safety inspections are performed according
to the EuroRAP RPS (road protection score) protocols.

1EuroRAP web site is at http://www.eurorap.org.



These protocols define procedures and modalities of col-
lecting and processing the road data. The protocol Euro-
RAP RPS 2.0 defines the data acquisition to be performed
by a service vehicle equipped by three video cameras and
a GPS receiver. The service vehicle acquires multi-view
georeferenced video [6], which is consequently assessed
by trained experts by estimating characteristic attributes
of the road section. The three cameras are attached to a rig
which ensures that the optical axes of the three cameras
are placed in a horizontal plane above the vehicle. The
rig also ensures that the middle camera is aligned with
the longitudinal axis of the vehicle, while the other two
cameras are rotated for 30◦ one towards the left and the
other towards the right. The geometry of the multi-camera
rig is shown in Figure 2.

(a) (b)

Fig. 2. The EuroRAP image acquisition platform is shown on the left
(a). The angular configuration of the three cameras is shown on the right
(b).

When combined with typical higher-consumer-grade
cameras having a horizontal field of view of about 45◦,
the presented geometry of the multi-camera rig ensures a
compound field of view of about 105◦2. This configura-
tion trades-off cost for simplicity: an equivalent industrial
camera with a 105◦ wide-angle lens would probably cost
less than three consumer-grade cameras, however the
consumer cameras are much more easily procured and
configured than custom imaging solutions.

IV. THE EMPLOYED COMPUTER VISION TECHNIQUES

In this section we briefly detail the required lower
level computer vision techniques. We first address wide-
baseline matching (cf. IV-A) which provides point cor-
respondences required for feature-based alignment. Then
we review camera calibration (cf. IV-B) which enables us
to express the extracted correspondences in normalized
image coordinates. This is useful for correcting radial
distortion, and for being able to apply algorithms which
assume the calibrated context. Finally we present the
procedures for recovering parameters of the projective
(cf. IV-C) and the rotational alignment model (cf. IV-D).

A. Wide-baseline matching

Wide-baseline matching is a technique for detecting
point correspondences in arbitrary images of the common
scene. The state of the art approaches are based on
invariant feature descriptors [11] which are independently

2Notice that this is somewhat smaller than the minimum driver’s
visual field which is usually prescribed at 120◦
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Fig. 3. The correspondences recovered between the left image and the
middle image (a), and between the middle image and the right image
(b).

extracted in both images, at characteristic image locations
called keypoints [17]. Usually the detected keypoints are
locally distinctive with respect to position, scale and
rotation, while some approaches even address affine in-
variance.

In this paper, we employ a wide-baseline matching
technique as described in [10], whereby the keypoints
are detected as space-scale extrema of the DoG (differ-
ence of Gaussians) response. The obtained descriptors
are exhaustively compared against the descriptors from
the other image, typically with respect to L2 distance.
The correspondences are established as distinctive pairs
for which the best distance is less than 60% of the
distance of the second-best match. Figure 3 shows the
correspondences which are automatically extracted across
the original images shown in Figure 1.

B. Camera calibration

Camera calibration allows to treat image pixels in nor-
malized coordinates which provide an immediate connec-
tion with the corresponding optical rays. This is important
since it i) corrects the radial distortion effects, and ii) al-
lows one to recover metric measurements such as rotation
and translation components of the underlying two-image
geometry. We employ the usual model for transforming
pixels into normalized coordinates comprising of a 5-DOF
linear transformation and the fourth order radial distortion
model [12]. We recovered calibration parameters for our
cameras by employing our own implementation of the
procedure with a planar calibration target described in
[12]. The required relations are summarised in the fol-
lowing equations:

q = K · fR(q̂, k
ud
1
, kud

2
) (5)

q̂ = fR(K
−1 · q, kdu

1
, kdu

2
). (6)

The radial function fR is defined as:

fR(q̂, k1, k2) = q̂ · (1 + k1 · r
2

q̂ + k2 · r
4

q̂), (7)



where r2q̂ stands for squared radius of the homogeneous
image point q̂ = (q̂x, q̂y, 1) and is calculated as:

r2q̂ = q̂2x + q̂2y. (8)

C. Homography estimation

It is well known that two perspective views of a planar
scene can be related by a planar projective transform or
homography [7]. If the translational displacement between
the two viewpoints is small enough, the same procedure
can be applied to arbitrary scenes. This approximation
is used in most approaches to image stitching [9]. The
standard procedure for estimating a homography from a
given set of point correspondences is as follows [7]:

1) removing the outliers by random sampling [18]
(four point correspondences are required for gen-
erating homography hypotheses);

2) reestimation by a standard linear algorithm, which
also known as the direct linear transform [7];

3) iterative improvement by gradient optimization of
the nine elements of the homography matrix.

D. Estimation of the 3D rotation

It is well known that the relation between correspond-
ing points at infinity in two views can be described by
a homography corresponding to the 3D rotation between
the two views. This rotation can be easily recovered by
solving the orthogonal Procrustes problem as shown in
[19], [9]. The final procedure is analogous to the proce-
dure for recovering the homographies sketched above:

1) removing the outliers by random sampling [18]
(three point correspondences are required for gen-
erating rotation hypotheses);

2) reestimation based on SVD [19];
3) iterative improvement by gradient optimization of

the quaternion representation of the rotation.

V. EXPERIMENTAL RESULTS

We first subjectively compare the composite images
obtained by employing projective (cf. IV-C) and the
rotational model (cf. IV-D), while the composite pixels
are obtained by simple averaging. The results are shown
in Figure 4. We notice that the seams are clearly visible
and that the projective model results in better geometrical
alignment of the compound image.
Subsequently, we repeat the previous experiment, but

in the case where composite pixels are obtained by
weighting contributions by border distance. The results
are shown in Figure 5. We notice that the seams are
much smoother, bu that the geometrical inadequacy of
the rotational model is still visible.
In order to test the correctness of our implementation

of the rotational model, we compare our results with
the commercial software Autostitch [8]. The results are
shown in Figure 6. We notice that the results are quite
similar, although Autostitch does better job in photometric
adjustment (photometric adjustment is out of the scope of
this paper).
The projective model produced reasonably good results

in most of the performed experiments. The results ob-
tained in three more frames are shown in Figure 7.

Fig. 4. The compound images obtained with projective (top) and
rotational model (bottom). Composite pixels are obtained by simple
averaging.

Fig. 5. The compound images obtained with projective (top) and
rotational model (bottom). Composite pixels are obtained by weighting
contributions by border distance.

Our initial ambition was to calibrate the two projective
mappings beforehand, and to employ them to stitch video
frames in near real time. Experiments have shown that
this operation can be performed in about 150ms on a
modern quad-core processor. Unfortunately, we found that
the employed rig hosting the three cameras does not
prevent small interframe camera motions due to vehicle
vibrations. Thus our best results have been obtained
when the mappings are reestimated in each frame triplet,
which typically takes about 10 s per triplet. A short video
demonstration can be downloaded from:
http://www.zemris.fer.hr/~ssegvic/pubs/mipro11stitch.avi.

VI. CONCLUSION

We have presented a technique for improving the
presentation of video footage acquired with the standard
EuroRAP three-camera rig. The common parts of the
corresponding video frames are first aligned by a suitable
projective mapping, and consequently mapped onto the
compound image. Despite the difficulties due to motion
parallax, we have obtained encouraging results which
would clearly be quite useful in assisting road safety
inspection procedures.

It has been found out that enforcing a projectivity



Fig. 6. The compound images obtained with the rotational model (top)
and by the application AutoStitch (bottom).

Fig. 7. Three more results with projective model and border-weighted
contributions.

induced by the plane at infinity results in compound
images with inferior aesthetical quality. This is probably
caused by significant distance between the projection
centers of the three cameras, which effectively invali-
dates the assumptions which are required for this model.
General projectivities achieve better alignment since in
most images the 3D configuration of the scene is better
approximated by some other 3D plane.
Further improvements in the presentation of the multi-

view EuroRAP video footage would have to take into
account the 3D structure of the scene. In the simpler
approach, the scene would be approximated by a piece-
wise planar model. Image regions projected from dif-
ferent planes could be identified either dynamically (by
robust statistical analysis of the point correspondences),
or statically by a machine learning approach. Finally, best

results would be obtained by recovering depths of all point
correspondences, and constructing the compound image
by employing the extrapolated depth information in each
source pixel.
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