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Introduction: about
Semantic segmentation: image understanding at the pixel-level

□ pixel-level: associate each pixel with a class
□ image understanding: classes have a high-level meaning

traffic participants: person (red), car (blue), bicycle (dark red)

objects: pole (light grey), traffic sign (yellow), traffic light (orange)

landscape: road (purple), sidewalk (pink), building (dark grey),
vegetation (dark green), terrain (light green), sky (light blue)
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Introduction: agenda

1. About semantic segmentation
□ overview, fully convolutional approach, problems

2. Achieving scale invariance by depth-driven selection
□ improve recognition with reconstruction

3. Restoring the resolution with ladder-style upsampling
□ blend semantic information with spatial accuracy

□ recover semantic information with the DenseNet architecture

4. Experiments
□ performance criteria, datasets, results

5. Conclusion
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Overview: recognition
Example: discriminate bison from oxen

[image-net.org]

1. express the program with many free parameters
□ the parameters determine a transformation which we call the model

2. fit parameters on the training set

3. evaluate performance on the test set

Success depends on the model, training set and processing power.
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Overview: architecture
Deep convolutional model for image classification [krizhevsky12nips]

□ input: image; output: distribution over 1000 classes
□ fitness criterion: average log probability of the correct class
□ structure: a succession of convolutions and poolings

□ gradual decrease of resolution and increase of the semantic depth

□ recent architectures: O(102) layers, O(106) parameters, O(109)
multiplications for a 224x224 image!

224×224×3

55×55×96 27×27×256 13×13×384 13×13×384 13×13×256

1×1×4096 1×1×4096 1×1×C

bison: 80%
ox:     10%
bear:  5%
...
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Overview: sliding window
A classification model can be applied to the segmentation task:

□ analyze the image in the sliding window fashion
□ each patch produces one pixel of the semantic map

□ segmentation groundtruth allows end-to end training
□ each pixel becomes one component of the fitness criterion
□ optimized implementation required in practice

□ 106 pixels × 109 multiplications?

road:         1%
sidewalk:   2%
...
person:    85%
...
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Overview: going fully convolutional
Luckily, the processing of neighbouring patches involves calculating
many common latent activations

More efficient: perform the classification layer-wise [long15cvpr]:
□ the resulting semantic map is subsampled due to pooling
□ this can be relaxed to some extent with dilated filtering [yi16iclr]

[long15cvpr]
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Problems: large objects
Classifying pixels at large objects may require a huge receptive field.

□ many local neighbourhoods are not discriminative enough
□ their center pixel can only be recognized in a larger context
□ problem arises when the context is larger than receptive field

[kreso16gcpr]
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Problems: small objects
Detecting small objects with a huge receptive field wastes resources:

□ small and simple objects can be recognized with few layers

□ latter layers forward their activations over and over again

□ that leads to loss of the representational power

[kreso16gcpr]
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Problems: memory requirements
Successful segmentation architectures rely on pretrained models
designed for ImageNet: small input resolution, single pixel output

□ in segmentation we have large resolution both on input and output
□ brute force output restoration (dilated filtering) is feasible up to 8x ↑

D=256
D=512 D=1024 D=2048

w=W/4
w=W/8 w=W/16 w=W/32

h/32×w/32

Mainly relevant for training, where all activations must be cached
□ however, lean memory requirements favour short evaluation times
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Scale invariance: idea
Use stereo reconstruction to disentangle appearance from scale

□ independently extract features from all levels of image pyramid

□ analyze each pixel at the pyramid level determined by its distance
from the camera

□ effect: image objects are perceived at the common scale
regardless of the camera distance

W×H W/α×H/α W/α7×H/α7W/α5×H/α5

[kreso16gcpr]
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Scale invariance: architecture
We introduce a new layer: the scale selection multiplexer

□ the multiplexer assembles pieces from appropriate pyramid levels

□ the back-end receives a scale-invariant feature mosaic

□ the scale multiplexer is compatible with end-to-end training
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[kreso16gcpr]
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Scale invariance: results
Scale selection solves the problems of large and small objects:

□ nearby objects are recognized in diminished images

□ far objects are recognized at the original resolution

Effects of scale selection (mIoU): 56.4 → 64.4

Predictions are still subsampled, the memory problem remains
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Smart upsampling: idea
Using a full-fledged ImageNet-class model in each pixel is wasteful:

□ boundary refinement should be easier than recognition
□ upsample a deep representation by blending it with a higher

resolution earlier layer [valpola14arxiv,ronneberger15arxiv]

The resulting architecture operates as follows:
□ the downsampling datapath infers the semantic information
□ the upsampling datapath refines the boundaries
□ the lateral connections ensure the blending: F̂t = gt(Ft, F̂t+1)

F2 F2F3 F3F1 F1
Input
image Loss

Loss
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Smart upsampling: densenet
The downsampling datapath can be any classification architecture

□ we compare ResNet [he16cvpr] and DenseNet [huang17cvpr]
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□ both architectures favour the gradient flow towards the early layers

□ hypothesis: DenseNet is better when the class complexities vary
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Smart upsampling: ladder-style
Hypothesis: recognizing objects is harder than boundary refinement

□ use a lean representation in the upsampling datapath
□ this results in huge memory savings, unlike [jegou16arxiv]
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We split DB4 into DB4a and DB4b to increase receptive field
□ this results in 64× downsampling (appropriate for large objects)
□ this compromises ImageNet initialization for DB4b
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Smart upsampling: results
We train on full Cityscapes resolution with bs=2 on two GTX1070

We recover fine details lost due to 64× downsampling
□ middle: upsampling 64× by interpolation
□ bottom: upsampling 16× by blending and 4× by interpolation

Effect of blending (mIoU): 62.5 → 72.8
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Evaluation: datasets

□ Pascal VOC 2012x [everingham10ijcv]:
□ generic photographs

□ 10 indoor, 10 outdoor classes

□ 12000 images, <.25 MPixel

□ KITTI [geiger13ijrr]:
□ driver's perspective, 11 classes

□ 450 stereo images, 0.5 MPixel

□ reconstruction groundtruth

□ odometry groundtruth

□ Karlsruhe, fine weather
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Evaluation: datasets (2)
□ Cityscapes [cordts16cvpr]:

□ driver's perspective, 19 classes

□ 5000 stereo images, 2MPixel

□ 20000 coarsely annotated images

□ instance level annotations

□ 50 cities, spring to autumn

□ Vistas [neuhold17iccv]:
□ driver's perspective, 100 classes

□ 25000 images, 2-8 MPixel

□ instance level annotations

□ worldwide, various weather
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Evaluation: cityscapes [cordts16cvpr]

Pros: fine annotation, many classes, well-chosen categories, complex
cluttered scenes, variety of scale
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Evaluation: performance characterization
Widely used performance metric: intersection over union (IoU)

□ set A: groundtruth pixels of class c

□ set B: predicted pixels of class c

□ IoUX = |A ∩ B| / |A ∪ B|
[image-net.org]

Typically, the performance is expressed as mean IoU over all classes

□ mIoU =
∑

c IoUc
C

□ this increases the influence of rare classes with few training pixels

□ examples: wall, fence, pole, bottle, potted plant

To ensure integrity, labels of test subsets are withheld from public datasets

The performance on the test set is determined by submitting results to the
evaluation server
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Evaluation: test errors
bus/truck
road/sidewalk

tram/bus
sidewalk/road
pole/sign

bus/car/building
sidewalk road
pedestrian/rider
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Evaluation: test errors (2)
truck/car
motorcycle/bicycle
building/wall
building/sign

bus/building/truck
pedestrian/rider
car/building

tram/bus/truck
road/sidewalk
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Evaluation: test errors (3)
bus/tram
sidewalk/road

bus/tram/car
bus/truck/wall/fence

car/truck/tram/
car/building/sign
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Evaluation: worst performance on val

Problems: i) ambiguous sidewalk, ii) unusual fence, iii) large truck, iv)
fence vs wall, occlusions.
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Evaluation: performance

ICNet

Ladder-DenseNet

[zhao17arxiv]
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Conclusion

Scale selection: Cityscapes mIoU 56.4 → 64.4

Ladder-style upsampling (mIoU): Cityscapes 62.5 → 72.8

ResNet vs DenseNet: Cityscapes 69.5 → 72.8; VOC12 63.0 → 70.2

Performance on test (mIoU): Cityscapes 74.6; VOC 2012 AUG 78.0

Able to train at full Cityscapes resolution with bs=2 on 2×GTX1070

Able to process 1024×448 images at 31Hz with a 74.6 mIoU model

Able to recover from 64× subsampling
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Conclusion: discussion

Thank you for your attention!

Questions?

This presentation has been fully supported by Croatian Science Foundation under the project I-2433-2014.
http://multiclod.zemris.fer.hr

The Titan X used in experiments was donated by NVIDIA Corporation.
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Appendix: adversarial examples
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