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1 Introduction

Stereoscopic reconstruction focuses on estimating the three-dimensional positions of

points from two or more images. This important task has found use in areas such as

autonomous navigation, computer modeling, and virtual reality. Early approaches es-

tablished correspondence by relying on pixel space distances and manually designed

features. With the rise of more powerful computers, deep learning has enabled learn-

ing these correspondence metrics directly from real data.

To achieve stereoscopic reconstruction, rectified stereo images are used, originating

from a calibrated pair of cameras aligned in the same direction, ensuring that the rows

of both cameras lie on the same plane. The goal is to find matching pixels in the left and

right images. The difference in position between matched pixels, known as disparity, is

inversely related to distance: pixels with greater disparity are closer, while those with

less disparity are farther away.

The two main approaches for stereoscopic reconstruction: build upon handcrafted

similarity and end-to-end learning and deep learning-based methods. However, pro-

viding the labeled data for learning the correspondence is hard because it requires ex-

pensive, complex multi-sensor setups. Recently, self-supervised methods have become

popular, as they can learn to produce reliable disparities and predictions by learning on

unlabeled stereo image pairs, even though they aremore complex than supervisedmeth-

ods.
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In this work, we present a self-supervised approach to stereoscopic reconstruction

through pseudo-labeling. [1] and [2] We begin with an overview of the key concepts in

stereoscopic reconstruction and the relevant deep learning models. Next, we describe

our self-supervised learning method, our filtering techniques to improve the accuracy of

pseudo-labels. We then discuss the performance of the supervised stereo model using

these enhanced pseudo-labels. Finally, we present our experimental results and con-

clude with some directions for future work.
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2 Stereoscopic reconstruction

Stereoscopic reconstruction is a challenging and fascinating problem in computer vi-

sion. The problem aims to determine the 3D location of each pixel of a stereo pair. This

problem has significant applications in robotics, autonomous vehicles, and various in-

dustries [3, 4]. Methods for stereoscopic reconstruction are divided into methods with

hand-crafted correspondence i methods with end-to-end learning and deep learning-

based methods.

Stereoscopic reconstruction algorithms with hand-crafted correspondence generally

follow fourmain steps [5]. First, thematching cost is calculated tomeasure pixel similar-

ity between images. Second, these costs are aggregated for robustness. Third, optimiza-

tion finds the best disparity for each pixel byminimizing the aggregated cost, using either

local methods, which consider pixel neighborhoods, or global methods, which optimize

over the entire image. Finally, disparity refinement improves the disparity map by re-

ducing noise and errors. These steps enable stereoscopic algorithms to produce accurate

3D scene representations, essential for applications requiring precise depth information,

such as autonomous driving.

Understanding two-viewgeometry is crucial in stereoscopic reconstruction, as it helps

in grasping spatial relationships between two images of the same object. This involves

concepts such as epipolar geometry and rectified image pairs. The main task in stereo-

scopic correspondence is identifying matching pixels in two images that correspond to

the same point in 3D space. Sparse correspondences involve disparities for pixels,which

are typically used in camera motion estimation, while dense correspondences are used

for scene structure reconstruction. Challenges in dense correspondence include texture-

less regions, reflective surfaces, and occlusions.

5



2.1 Two-view geometry

Two-view geometry describes the relationship between points in images obtained from

two cameras. A significant outcome of two-view geometry is the epipolar constraint,

which greatly reduces the number of points that need to be checked when searching

for corresponding points. Figure 2.1 shows a point 𝑋 in 3D space being captured by two

cameras. Points𝐶 and𝐶′ represent the centers of the left and right cameras, respectively.

The projection of point𝑋 onto the plane of the left camera is 𝑥, and onto the plane of the
right camera is 𝑥′. It is important to note that points 𝑋, 𝑥, and 𝑥′ lie in the same plane
and together with the camera centers 𝐶 and 𝐶′ form the so-called epipolar plane 𝜋.

Figure 2.1: The epipolar plane is defined by the observed point 𝑋 and the centers of the two
cameras, 𝐶 and 𝐶′.

The epipolar plane is defined by the observed point 𝑋 and the centers of the two

cameras, 𝐶 and 𝐶′. Additionally, the image shows epipoles, denoted as 𝑒 and 𝑒′, which
represent the points where the line connecting the camera centers𝐶 and𝐶′ intersects the

image planes. Epipolar lines connect𝑥 and 𝑒, and𝑥′ and 𝑒′. These lines are formed by the
intersection of the epipolar plane with the image plane. The epipole is the point where

all epipolar lines intersect. Knowing that points 𝑋, 𝐶, and 𝐶′ lie in the same plane, and

if the positions of points 𝑥, 𝑒, and 𝑒′ are known, we can estimate the position of point
𝑥′. The potential positions of point 𝑥′ are located on the epipolar line. This epipolar
constraint significantly simplifies the search for corresponding points.

The parameters of a camera system’s geometry can be divided into two types: intrin-

sic and extrinsic. Extrinsic parameters describe the relationship between a pair of stereo
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cameras. Intrinsic parameters describe the properties of the cameras that pertain to each

camera individually. For example, intrinsic parameters describe lens imperfections, sen-

sor displacement from the lens center, and other physical characteristics of the cameras.

Extrinsic parameters, on the other hand, lead to necessary transformations that align

the images to the same projection plane, ensuring that the pixels along a horizontal line

in one image have correspondences on the same line in the other image. This line, al-

ready mentioned, is the epipolar line. Such transformations greatly simplify the search

for corresponding points, which in the rectified case need only be searched along a sin-

gle line along the epipolar line. The problem is thus reduced to one dimension. Intrinsic

and extrinsic parameters are obtained through appropriate calibration procedures.

For the rectification process, extrinsic camera parameters are crucial, while their cal-

culation is influenced by intrinsic parameters. Through image rectification transforma-

tion, we obtain images whose pixels correspond to points at the same height in image

and lie along the same epipolar line.

Figure 2.2 shows a pair of images from stereo cameras that have been rectified. The

images are from the KITTI 2015 dataset and display epipolar lines. It is easy to notice

that the corresponding pixels have the same y coordinat. With this transformation, cor-

responding pixels need only be searched along the same 𝑦-coordinate.

Figure 2.2: Epipolar lines in rectified images from the KITTI 2015 dataset.

Calibration and rectification enable simple depth reconstruction in terms of disparity.

Disparity determines the pixel in the image taken by the right camera that corresponds

to each pixel taken by the left camera, but shifted by a distance 𝑑 pixels along the hori-
zontal axis. Disparity is defined as the horizontal shift 𝑑 between corresponding pixels
in images taken by two concurrent stereo cameras. As a result of disparity calculation, a

disparity map is created that contains the disparity for each pixel of the reference cam-

era. The relationship between pixels in the left camera image, which is the reference in

this case, and the right camera image is defined as:

7



𝐼𝐿(𝑥, 𝑦) = 𝐼𝑅(𝑥 − 𝑑, 𝑦) (2.1)

where 𝐼𝐿 and 𝐼𝑅 are the images taken by the left and right cameras, respectively. The
ordered pair (𝑥, 𝑦) describes the pixels in the left camera image, and their corresponding
pixels in the right camera image are shifted by the disparity 𝑑 along the horizontal axis
(𝑥−𝑑, 𝑦). Using the calculated disparity, the relationship between the camera pixels and
the scene depth can be expressed as:

𝑍 = 𝐵 ⋅ 𝑓
𝑑 (2.2)

where 𝑍 is the scene depth, 𝑑 is the disparity, 𝐵 is the distance between the camera
centers, and 𝑓 is the focal length of the camera. Equation 2.2 shows the inverse pro-

portionality between the object distance from the cameras and the disparity. When the

object is close to the cameras, the disparity will be large. As the object moves away from

the cameras, the disparity decreases, reaching zero at infinity.

Figure 2.3 shows that the epipolar lines are parallel and that the 𝑦-coordinates of
corresponding pixels are equal. The disparity, denoted by 𝑑, represents the horizontal
shift.

Figure 2.3: Object representation in the images from the left and right cameras. The epipolar
plane is marked in blue. The vertical axes indicate the projected points in the left and right im-
ages. The correct projection using the epipolar plane is marked in red, while the transformation
of the left projection is marked in green. Disparity is denoted by the letter 𝑑.
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2.2 Optical flow

Optical flow is a crucial concept in computer vision that involves the analysis and predic-

tion of object movements within a sequence of images. While stereoscopic reconstruc-

tion focuses on reconstructing three-dimensional structures using two or more images

captured from different viewpoints, optical flow concentrates on the temporal analysis

of motion between consecutive images.

The relationship between stereoscopic reconstruction and optical flow arises from

the fact that both methods use information about the disparity or shift between images

to obtain four-dimensional information. In stereoscopic reconstruction, disparity is used

to calculate the depth and three-dimensional structure of an object. In contrast, optical

flow analyzes spatial changes between successive images to predict densemotion vectors

in the scene.

Figure 2.4: The relationship between optical flow and disparity as illustrated in [6].

Akey concept connecting these twomethods is the assumption of consistency, which

implies that corresponding points in two images captured from different views are lo-

cated at the same three-dimensional position. When this assumption holds, disparity

and optical flow can be used together to create a more complete and accurate recon-

struction.

Figure 2.4 illustrates the geometric relationship between disparity and optical flow.

Both concepts involve estimating the change between two images; however, optical flow

seeks changes over the temporal component, i.e., the change from time 𝑡 to time 𝑡 + 1
for two left or right images. It is important to note that in optical flow, changes must be

9



determined for both the 𝑥 and 𝑦 directions.

Furthermore, stereoscopic reconstruction implies movement along the epipolar line,

meaning that the rows in the left and right images lie in the same plane. This implies

that there is no need to determine the shift in the 𝑦 component, as it is zero for all pixels.
Thus, stereoscopic reconstruction can be considered a special case of optical flow where

the 𝑦 component of the flow is set to zero, and two images from the present moment,

separated by a certain baseline, are used instead of images from the current and future

time.

2.3 Deep models for stereoscopic reconstruction

Deep learning models have significantly advanced the field of stereoscopic reconstruc-

tion, providing more accurate and efficient methods for generating 3D structures from

stereo image pairs. These models leverage the power of convolutional neural networks

(CNNs) and other deep learning architectures to automatically learn features from large

datasets, which helps in improving disparity estimation and depth perception.

A typical deep learning pipeline for stereoscopic reconstruction involves several key

stages:

• Feature extraction: CNNs are employed to extract meaningful features from the

input images. These features embed local neighbourhoods into a suitable metric

space.

• Matching cost computation: The extracted features are used to compute amatch-

ing cost, which quantifies the similarity between corresponding points in the stereo

images.

• Cost aggregation: To improve robustness, thematching costs are aggregated over

a local neighborhood. This helps in reducing noise and improving the accuracy of

disparity maps.

• Disparity estimation: The aggregated costs are used to estimate the disparity for

each pixel. This stepmay involve optimization techniques or further deep learning

models to refine the disparity map.
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• Post-processing: Finally, the disparity map may be refined using post-processing

techniques to correct any errors and enhance the overall quality of the reconstructed

3D structure.

Previous advancements have introduced end-to-enddeep learningmodels that stream-

line the entire process, from feature extraction to disparity estimation. These deep mod-

els not only enhance the accuracy of stereoscopic reconstruction but also offer greater

efficiency, making them suitable for real-time applications in robotics, autonomous driv-

ing, and augmented reality.

2.3.1 McCNN

TheMulti-ColumnConvolutionalNeuralNetwork (McCNN)was a state-of-the-artmethod

for stereo matching, developed by Žbontar and LeCun [7] [8]. It leverages deep learning

techniques to compute disparity maps from stereo image pairs. Deep learning signifi-

cantly improves both accuracy and computational efficiency.

Architecture overview: McCNN comprises two distinct architectures tailored for

different performance needs:

• Accurate architecture: This version focuses onminimizing error rates, using a deeper

and more complex network structure. It replaces the traditional cosine similarity

measure with multiple fully-connected layers. Those modifications enhances pre-

cision at the cost of increased computational time. Visualized in Figure 2.6.

• Fast architecture: Designed for real-time applications, this architecture is optimized

for speed. It employs fewer layers and a simpler structure, achieving rapid compu-

tations with a slight compromise in accuracy. Visualized in Figure 2.5

Training examples are created by extracting positive andnegative pairs of image patches

based on known disparities. Positive pairs consist of patches centered around the same

3D point, while negative pairs do notmatch. Image patches from the left and right stereo

images are processed through several convolutional layers with ReLU activation func-

tion.
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Figure 2.5: The fast architecture is a siamese network. The two sub-networks consist of a number
of convolutional layers followed by rectified linear units (ReLU). The similarity score is obtained
by extracting a vector from each of the two input patches and computing the cosine similarity
between them.[8]

Figure 2.6: The accurate architecture begins with two convolutional feature extractors. The
extracted feature vectors are concatenated and compared by a number of fully-connected layers.
The inputs are two image patches and the output is a single real number between 0 and 1, which
we interpret as a measure of similarity between the input images.[8]

The accurate architecture further refines these patches using fully-connected layers,

whereas the fast architecture utilizes a simpler normalization and dot product for sim-

ilarity computation. After generating the initial disparity map, several post-processing

techniques can be applied such as cross-based cost aggregation, semiglobal matching,

left-right consistency check and subpixel enhancement. [8]
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2.3.2 RAFT-Stereo

RAFT-Stereo [9], depicted in Figure 2.2, is an extension of the RAFT [10]model designed

specifically for processing stereo images. The original RAFT model was developed for

optical flow estimation and consists of three key components: a feature encoder, a cost

volume construction module, and an iterative feature update operator, as illustrated in

Figure 2.1.

Figure 2.7: The RAFT model [10] consists of three main components: a feature encoder, a cost
volume construction module, and an iterative flow update operator.

The feature encoder is used to extract features from the input images, which are then

used to construct the cost volume. It is designed as a series of residual blocks, indepen-

dently applied to both images. Additionally, there is a context feature encoder that takes

only the first image as input. The context features are utilized in the update operator.

When addressing the problem of disparity estimation or stereoscopic reconstruction,

it is assumed that the motion occurs only along epipolar lines. The construction of the

correlation volume calculates visual similarity only between pixels at the same height,

i.e., along the same epipolar line. The resulting volume is three-dimensional, whereas in

the original RAFTmodel, it is four-dimensional due to the calculation of the correlation

volume over all pixels in the image.

The third component of the model is the iterative update operator, which consists

of convolutional Gated Recurrent Unit (GRU) cells. These cells search through the cost

volume to refine the disparity estimation.
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Figure 2.8: The RAFT-Stereo model [9]. The cost volume is now three-dimensional since it
assumes movement along the epipolar line.

In the RAFT-Stereo model, multiple convolutional GRU cells are used to search at

various resolution levels, thereby increasing the model’s receptive field and its ability to

reconstruct fine details in the images. During the application of the update operator, the

model uses features at /8, /16, and /32 resolutions.

RAFT-Stereo’s architecture allows to efficiently handle stereo image pairs, leveraging

the epipolar constraint to reduce computational complexity and improve accuracy in

disparity estimation.
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3 Self-supervised stereoscopic re-
construction

Laser scanners (LiDARs) are often expensive and challenging to operate, which has led to

the need for learning algorithms that do not require the ground truth labels. Therefore,

there is a growing interest in developing accurate and efficient methods for disparity

estimation using only images, without relying on any labels.

Self-supervised learning is a form of deep learning where themodel does not have ac-

cess to ground truth labels during training. Instead, it uses the data itself to generate su-

pervisory signals. Several highly effective solutions have been proposed in the literature

for self-supervised stereoscopic reconstruction. Most of these methods rely on training

models based on the cycle consistency.[11] This method involves predicting disparities

in both directions (left-to-right and right-to-left) and ensuring that these predictions are

consistent when cycled through both images. This approach helps in regularizing the

disparity map and reducing errors due to occlusions or textureless regions.

Moreover, self-supervised learning models often incorporate photometric loss [12],

which penalizes differences in pixel intensity between the original and reconstructed

images. This loss function encourages the model to produce disparities that result in

realistic image reconstructions. In addition to these techniques, augmentation strategies

like flipping, cropping, and color jittering are employed to make the model robust to

various scenarios and improve generalization.

Overall, self-supervised learning for stereoscopic reconstructionholds significant promise

due to its ability to train accurate and robust models without the need for expensive la-

beled data. This approach not only reduces the reliance on costly hardware but also

opens up new possibilities for large-scale deployment in real-world applications.
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3.1 Reversing PSM-Net

The method, as proposed by Aleotti et al., focuses on leveraging monocular distillation

techniques to improve self-supervised deep stereo learning. Figure 3.1 illustrates the key

stages of their approach:

1. Initial disparity estimation: Calculation of an initial disparity map (𝐷) using
traditional stereo methods.

2. Disparity refinement: Application of a filtering mechanism (𝐹) to refine the ini-
tial disparity map 𝐷, reducing noise and outliers.

3. Monocular distillation: Training of a monocular completion network (MCN)

using the refined disparity map (D’) to predict dense depth maps (𝐷𝑂).

4. Pseudo-label generation: Generation of pseudo-labels (𝐷𝑃) through a consensus

mechanism from MCN predictions to supervise deep stereo network training.

Figure 3.1: Overview of the method proposed by Aleotti et al. [1]

To begin, Aleotti et al. utilize a traditional stereo matcher (𝑆), a method introduced
by the authors in their earlier work [13], to compute an initial disparity map (𝐷) from a

stereo pair (𝐼𝐿, 𝐼𝑅):

𝐷 = 𝑆(𝐼𝐿, 𝐼𝑅)

The method (𝑆) involves the classic Census transformation and measures similarity
with Hamming distance. This method allows them to generate a dense disparity map
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without relying on ground truth labels. However, it’s noted that due to the inherent un-

certainties in the Census method, some pixels in the disparity mapmay still exhibit high

levels of uncertainty. To enhance the accuracy of the initial disparity map (𝐷), Aleotti et
al. apply a filtering strategy (𝐹) [1]:

𝐷′ = 𝐹(𝐷)

Tosi et al.[14] introduced a series of filtering and prediction confidence estimation

techniques. This step aims to improve the quality of disparity estimation by removing

noisy or erroneous disparity points, resulting in a more reliable disparity map (𝐷′). Us-

ing the refined disparity map (𝐷′), Aleotti et al. train a monocular completion network

(MCN) to predict dense disparity maps (𝐷𝑂):

𝐷𝑂 = MCN(𝐼𝐿, 𝐷′)

. The MCN is designed to handle occlusions and other challenges inherent in stereo dis-

parity estimation tasks. In their work, the authors employ the deep convolutional model

MonoResMatch [13], which takes the left image as input and produces a percentage of

randomly selected pseudo-labels to serve as initial points for depth completion, while

the rest of the pseudo-labels are used to supervise the learning process itself. With the

trainedMCN, Aleotti et al. generate pseudo-labels (𝐷𝑃) to supervise deep stereo network

training. These pseudo-labels are obtained through a consensus mechanism bymultiple

passes through the MCN model. The consensus mechanism considers only those pixels

for which multiple predictions overlap, meaning there are no significant deviations in

predictions. For these overlapping predictions, the consensus mechanism calculates the

average disparity representation and then computes the standard deviation; pixels with

deviations exceeding a specified threshold are disregarded.

The final phase of the algorithm involves training the deepmodel PSMNet [15], using

the pseudo-labels obtained from the consensus mechanism.
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3.2 Self-supervised learningof stereoscopic reconstruc-
tion through pseudo-labeling

In previous sections, we introduced several approaches for stereoscopic reconstruction.

Our goal was to develop an efficient method based on pseudo-labeling, initially intro-

duced in [2] and further inspired by the works in [1] and [16]. We simplified the method

proposed by [1] by employing the RAFT-Stereo model on filtered pseudo-labels, omit-

ting the need for a monocular completion network (MCN). Additionally, we integrated

pseudo-labels derived from the McCNN model using metric embeddings, enhanced by

several intelligent filtering techniques. Our method consists of two main phases: gener-

ating pseudo-labels and self-supervised learning of deep stereo model on those pseudo-

labels.

3.3 Generating initial correspondences

Initial pseudo-labels are crucial in self-supervised learning for stereo reconstruction. To

perform well, pseudo-labels should be as dense as possible but highly accurate. In this

work, we used two approaches in generating pseudo-labels.

The first approach involves a traditional stereo method, which consists of Census

transformation with corresponding aggressive filtering [14] (further reffered to as Ale-

otti pseudo-labels). This method is derived from [1]. The second approach is based on

the deep convolutional modelMcCNN [7], which is trained in a weakly-supervisedman-

ner using triplet loss [16] (further reffered to as McCNN pseudo-labels). Our ultimate

objective is to bridge the gap between these two types of label generation methods.

3.3.1 Weakly-supervised McCNN pseudo-labels

Our second approach for generating pseudo-labels draws inspiration from the work of

[16]. We intend to replace a complex handcrafted approach that may not be easily ported

to other tasks with a simple transparent approach that trains exclusively on data. Ini-

tially, the left and right images are processed through a neural network to produce a

feature map in a high-dimensional space. We employed a fully convolutional model,

McCNN, as outlined in [7], with several modifications. This model and its associated
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methodology have been detailed in earlier chapters.

Our training method for McCNN leverages a triplet loss function, as originally used

in [7]. However, unlike the original supervised training approach, we adapted it for

weakly-supervised learning.[17] Although we do not have exact pixel correspondences

in weakly-supervised learning, we know that pixels from a row in the left image corre-

spond to pixels from the same row in the right image, while pixels from different rows

do not match, based on the epipolar line assumption.

We train the model by selecting an anchor pixel from the left image and identifying

the positive bag (target) and negative bag (non-target) examples from the right image.

The positive bag contains pixels in the right image on the same row as the anchor in the

left image, while the negative bags are pixels in both images that are 3 rows above and

below the positives.

For the chosen anchor, positives, and negatives, we calculate a similaritymatrix using

a row-wise matrix product. We subtract a threshold value from this similarity matrix to

control the strictness of the similarity criterion, then apply a softmax function to scale

the similarities to values between 0 and 1 and further identifying exact matches through

the maximum value.

The resulting pseudo-labels are relatively dense with low error. To enhance the re-

sults further, we introduced additional consistency checks and filtering techniques. In

the next chapter, we will introduce techniques aimed at producing more accurate, but

sparser disparity maps.

3.3.2 Aleotti pseudo-labels

As previously mentioned, Aleotti pseudo-labels require Census transformation and sev-

eral hand-crafted filtering techniques [14]. In Figure 3.2, the Census transformation is

applied to a random image from the KITTI 2015 dataset. As can be observed, the Cen-

sus transformation enhances borders and internal object structures, which is crucial for

disparity estimation in texture-less areas.
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Figure 3.2: Visualization of the Census transformation on a random image from the KITTI 2015
dataset.

3.4 Self-supervised learning

The second phase of the method involves supervised learning of the stereoscopic model

with respect to the previously generated pseudo-labels. For this purpose, we utilize the

RAFT-Stereo model, which was introduced in one of the earlier chapters.

The training involves L1 loss with scaling based on the iteration. The loss function

is as presented in the original paper. Mathematically, the loss function can be expressed

as:

ℒ =
𝑁∑

𝑖=1
𝛾𝑁−𝑖 ∥ 𝑑𝑔𝑡 − 𝑑𝑖 ∥1 (3.1)

The 𝑖 denotes the iteration from the update operator out of a total of 𝑁 iterations, 𝛾 is
set to 0.9, 𝑑𝑖 represents the model’s disparity prediction at the 𝑖-th iteration of the update
operator, and 𝑑𝑔𝑡 are the pseudo-labels generated in the first phase of the algorithm.

As mentioned, the training is conducted in a supervised manner with respect to

pseudo-labels obtained from a weak supervision on unlabeled data, which makes learn-

ing effectively self-supervised.
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4 Filtering McCNN pseudo-labels

As previously outlined, our primary goal is to bridge the performance gap between the

opaque hand-crafted approach [1] and our simpler alternative based on weakly super-

vised learning.. In the following sections, we will introduce a range of filtering tech-

niques that showed initial promise during our research.

First, we explore the use of Mask2Former [18] for panoptic segmentation. Addition-

ally, we apply a distance transform operator to the panoptic maps to emphasize the dis-

tance from border of an object. Given our objective to rigorously filter McCNN pseudo-

labels, we proposed the use of Lowe ratio filtering based onMcCNN embedding similar-

ity scores. Finally, we experimented with a modified version of the Lowe ratio filtering

technique.

4.1 EmployingMask2Former for panoptic segmentation

Mask2Former is a state-of-the-art architecture designed to handle various image seg-

mentation tasks, including panoptic, instance, and semantic segmentation, with a single

unified model. Mask2Former leverages a masked-attention mechanism within a Trans-

former decoder, which significantly improves the performance across multiple segmen-

tation benchmarks. [18]

Panoptic segmentation aims to classify each pixel in an image into either a seman-

tic category (e.g., sky, road) or an instance of an object (e.g., a specific car or person).

The challenge lies in effectively combining the capabilities of semantic segmentation

and instance segmentation within a single framework. Mask2Former addresses this by

predicting binary masks for each segment in the image.

The architecture of Mask2Former comprises three main components:
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Figure 4.1: Overview of Mask2Former architecture Mask2Former adopts the same meta
architecture as MaskFormer [19] with a backbone, a pixel decoder and a Transformer decoder.
Cheng et al. proposed a new Transformer decoder with masked attention instead of the standard
cross-attention [18]

• Backbone feature extractor: Extracts low-resolution feature maps from the in-

put image.

• Pixel decoder: Gradually upsamples the low-resolution features to generate high-

resolution per-pixel embeddings.

• Transformer decoder with masked attention: Processes object queries using

masked attention, which focuses on localized features within the predicted mask

regions.

Unlike standard cross-attention mechanisms, masked attention restricts the focus

to regions within the predicted masks. This not only speeds up convergence but also

improves the accuracy of segmentation by emphasizing relevant features and ignoring

background noise. To handle objects of various sizes effectively, Mask2Former employs

a multi-scale strategy. High-resolution features from the pixel decoder are fed into the

Transformer decoder, ensuring that both large and small objects are accurately segmented.
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Figure 4.2: Example of panoptic Mask2Former applied to a random image from the KITTI 2015
dataset.

Figure 4.2 presents an example of panoptic Mask2Former applied to a random image

from the KITTI 2015 dataset. We adopted panoptic Mask2Former in our work with the

goal of generating panoptic segmentation maps and subsequently detecting the borders

of objects.

4.1.1 Distance transform operator

The distance transform operator is a technique used to compute the distance from each

pixel to the nearest boundary pixel in a binary image. This operator is particularly useful

in emphasizing regions of interest, such as object borders, by providing a gradient of

distances that highlights proximity to these boundaries.

To apply the distance transform operator in our work, we followed these steps:

• Panoptic boundaries: After generating the panoptic segmentationmapwithMask2Former,

we created a binary image where the object borders were marked with a value of 1,

and all other pixels were set to 0. This binary representation isolated the borders

of objects within the scene.

• Distance transform application: We then applied the distance transform opera-

tor to this binary image. This process computed the Euclidean distance from each

pixel to the nearest border pixel, resulting in a distance map where the intensity of

each pixel indicates its proximity to the nearest object boundary.
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Figure 4.3: Distance transform operator applied to a binary image created using top image.

The resulting distance map, as shown in Figure 4.3, provides a clear visualization

of how close each pixel is to the object borders. This information is crucial for further

processing steps.
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4.2 Lowe Ratio

The Lowe ratio test is a widely used technique in computer vision for feature matching,

primarily employed to filter out incorrect matches between feature points. Named after

David Lowe, who introduced it as part of the SIFT algorithm [20], this method enhances

the robustness of feature matching by considering the best and second-best matches.

The principle behind the Lowe ratio test is based on the assumption that correct fea-

ture matches are significantly closer to each other in the feature space than incorrect

matches. To implement this, features are detected and described in both the reference

image and the target image using a feature extraction algorithm. The distance of the

best match (𝑑1) is compared to the distance of the second-best match (𝑑2). A match is

considered valid if the ratio 𝑑1
𝑑2
is below a certain threshold:

𝑑1
𝑑2

< threshold (4.1)

In our work, we employed the Lowe ratio test on McCNN embedding scores within

the cost volume. The objective was to identify and retain only the most reliable matches

by analyzing the similarity scores of embeddings.

To apply this method, we first extracted embeddings by the McCNN model. A cost

volume was then constructed by calculating the similarity scores between the embed-

dings of the reference and target images. For each embedding in the reference image,

the first and second best matches in the target image were identified based on the simi-

larity scores within the cost volume. The Lowe ratio test was then applied by comparing

the similarity scores of the first best match (𝑠1) and the second best match (𝑠2). A match

is considered valid if the ratio 𝑠1
𝑠2
is below a certain threshold.

𝑠1
𝑠2
< threshold (4.2)

Pseudo-labels that pass the ratio test are considered reliable for further processing.
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4.2.1 Modified Lowe ratio

While the original Lowe ratio test provided significant improvements, we proposed a

modified version to further refine the selection of reliable pseudo-labels. In thismodified

approach, our intention was to consider the second-best match from the entire search

space, excluding a specific interval around the best similarity score disparity. Specifically,

we excluded the interval between the best similarity score disparity ±10 disparities.

By doing so, we aimed to avoid selecting second-best matches that were too close to

the first-best match in terms of disparity, which could lead to false positives in regions

with similar but incorrectmatches. Thismodified Lowe ratio test involves first extracting

embeddings by the McCNN model. A cost volume was then constructed by calculating

the similarity scores between the embeddings of the reference and target images. For

each embedding in the reference image, the first-best match in the target image was

identified based on the similarity scores within the cost volume. The interval of ±10
disparities around this first-best match was excluded and then the second-best match

was identified from the remaining search space.

The modified Lowe ratio test was applied by comparing the similarity scores of the

first-best match (𝑠1) and the second-best match (𝑠2), where the second-best match is cho-
sen from the non-excluded interval. A match is considered valid if the ratio 𝑠1

𝑠2
is below

the threshold.
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5 Implementation

The programming language Python was used for the creation of this work. The PyTorch

framework was utilized for building and training models. This framework offers a wide

range of tools and support, one of which is automatic differentiation, significantly speed-

ing up the process ofmodel building and training. Torch, the core component of PyTorch,

enables tensor computations on a wide array of Nvidia graphics cards.

The Numpy library was used for data preparation and tensor computations. This li-

brary is written in the low-level language C and employs libraries such as OpenBLAS,

whose key components are directly written in machine code for various modern com-

puter architectures. Such implementation makes operations very fast.

The KITTI 2015 dataset was downloaded from a publicly available website owned by

the collaboration between the Karlsruhe Institute of Technology and the Toyota Techno-

logical Institute.

Since we used the RAFT Stereo and McCNN architectures in our work, most of our

code is based on the official GitHub repositories of these models. The implementation of

theRAFT-Stereomodel is available on theGitHubprofile of Princeton’s ComputerVision

Laboratory1, while the implementation of the customized McCNNmodel is available on

the GitHub repository wlrn2. The rest of the code is present in repository tinyrend3.

1https://github.com/princeton-vl/RAFT-Stereo
2https://github.com/nenadmarkus/wlrn
3https://github.com/nenadmarkus/tinyrend
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6 Experiments

In this workwe performed extensive experimenting of the listedmethods in the previous

chapters. We have performed experiments based on Reversing PSM-Net [1] and RS-IPA

[2]. Also, we performed cross-validation to optimize hyperparameters.

All experiments involve self-supervised learning of models, which means we did not

use any disparity labels during training. However, during evaluation, we used subsets

of datasets with available disparity labels to obtain an accuracy measure. We evaluated

all experiments on the KITTI 2015 Stereo dataset [21]. In the experiments on the KITTI

dataset, we used an extended version of the dataset KITTI multiview. The subset for

KITTI training, which contains actual disparity values, was used as a validation set, and

we recorded accuracy on it. The original testing subset of the KITTI dataset does not

have publicly available disparity labels, so we could not use it for validating our method.

6.1 Dataset description

Stereoscopic reconstruction requires a more complex data collection system than many

other computer vision problems. First of all, it is necessary to have a calibrated stereo-

scopic camera with known intrinsic and extrinsic parameters, especially if the data is in-

tended to be used for path planning or 3D object reconstruction. Furthermore, to achieve

supervised learning of the model or to conduct model evaluation with metric recording,

it is necessary to collect disparity or depth labels for each pixel, which is most commonly

done using LIDAR (Light Detection and Ranging). Of course, the cameras and LIDAR

must be carefully calibrated to ensure the collected labels are accurate.

The KITTI dataset (Karlsruhe Institute of Technology and Toyota Technological In-

stitute) [21] is one of the most well-known and popular datasets for stereoscopic recon-
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struction of scenes from a driver’s perspective, collected during sunny days while driving

through the German city of Karlsruhe. The dataset consists of 200 training images and

200 testing images with a resolution of 384 × 1242, where the training set images have

available labels collected with a calibrated camera system.

The labels are sparse - only 30% of the pixels in the scene have valid labels, and in

places where there are cars, the labels are further processed so that they are supple-

mented by fitting the 3D model of the actual car. The KITTI dataset also offers an ex-

tended and raw version of the data that follows the dataset’s recording sequences. The

extended dataset, often referred to as multiview, expands each of the 200 training images

to 20 temporally spaced and subsampled images.

In our experiments, we used the extended version of the dataset since we conducted

self-supervisedmethods of stereoscopic reconstruction, which require the use of a larger

dataset. However, for evaluation, we used the standard training set consisting of 200

images with available disparity labels. To avoid data leakage from the training set into

the test set, we excluded images from the multiview set that were temporally close to the

frames used in the test set, specifically the images labeled with _09, _10, _11, and _12.

Figure 6.1: An example from the KITTI 2015 dataset. The top image shows the reference left
image, and the bottom image shows the corresponding disparity map obtained by a laser sensor.
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6.2 Metrics

In the literature, themost commonly usedmetrics for the problem of stereoscopic recon-

struction are AEPE and D1. The AEPE metric (Average End-to-End Pixel Error) or EPE

(End-to-End Point Error) is calculated as the Euclidean distance between predictions

and actual disparities:

𝐸𝑃𝐸 =∥ 𝑑 − 𝑑𝑔𝑡 ∥2 (6.1)

where 𝑑𝑔𝑡 denotes the actual disparity value, and 𝑑 is the predicted disparity. AEPE is

the averaged value over all valid pixels. Valid pixels are those with valid disparity values.

The D1 metric denotes the percentage of incorrectly estimated disparities. This met-

ric is also calculated only on valid pixels. A pixel is considered incorrectly estimated if

the deviation of its prediction from the actual value exceeds a certain threshold. Specif-

ically, a pixel is incorrectly estimated if its EPE is greater than the given threshold. For

the KITTI dataset, this threshold is 3. The D1 metric is calculated as:

𝐷1 = 1
𝑁

𝑁∑

𝑖=1
∥ 𝑑𝑖 − 𝑑𝑔𝑡,𝑖 ∥2> 3 (6.2)

where 𝑁 is the number of valid pixels, 𝑑𝑖 is the predicted disparity for the 𝑖-th pixel, 𝑑𝑔𝑡,𝑖
is the actual disparity for the 𝑖-th pixel.
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6.3 Overview of the results from the literature

To interpret the results of our experimentalmetrics, Table 6.1 provides an overview of the

literature. As shown, supervised methods perform better, in contrast to self-supervised

methods, which are trained without labels and perform worse. Our ultimate goal is to

approach the performance of the best self-supervised methods.

Method EPE - all EPE - noc D1 - all [%] D1 - noc [%]
RAFT Stereo* [9] 1.82 1.69
RAFT Stereo [9] 1.13 1.10 5.67 5.44
Reversing PSM-Net [1] 1.00 3.85
Flow2Stereo [22] 1.34 1.31 6.13 5.93
DDFlow [23] 1.23 1.21 6.37 6.17

Table 6.1: Results from the literature on the subset of the KITTI 2015 dataset. In the table, meth-
ods are separated by horizontal lines depending on the type of training used to obtain the re-
sults. The first section refers to supervised method, the middle one to method pretrained on
other datasets and evaluated only on KITTI, and the last section shows the three self-supervised
methods.

6.4 Self-supervised learning through pseudo-labeling

In these experiments, we decided to use the RAFT Stereo model since the upcoming ex-

periments will not utilize the geometric relationship between optical flow and disparity,

and the RAFT Stereomodel is specifically tailored for disparity estimation tasks. Most of

the hyperparameters for training the RAFT Stereomodel were adopted from the original

paper: image patch size of 320 × 720, learning rate of 0.0001, AdamW optimizer, data

augmentation including color jittering and random image block erasing, with a batch

size of 8. We conducted training in mixed precision to save on memory. Additionally,

the models were trained from random initialization over 12500 iterations with a learn-

ing rate of 0.0001.

We conducted experiments with McCNN pseudo-labels, applying various types of

filtering methods as presented in previous chapters. Additionally, we compared experi-

ments with Aleotti’s pseudo-labels, where no additional filtering was applied apart from

the defaults described in the method [1].
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6.4.1 Aleotti pseudo-labels

The first method for generating pseudo-labels was adopted from the Reversing PSM-Net

method [1]. As said before, we will refer to them as Aleotti pseudo-labels. The method

for obtaining Aleotti pseudo-labels is a traditional stereoscopic method based on cen-

sus transformation andHamming code distance calculation, meaning that classic model

training was not performed; instead, predictions were generated for each image individ-

ually.

Wedid not further experimentwith filtering and consistency checks for these pseudo-

labels as they are already integrated into the method. These pseudo-labels are quite

sparse precisely because of the built-in filtering and consistency checks.

Method EPE - all EPE - noc D1 - all [%] D1 - noc [%]
Reversing PSM-Net [1] 1.00 3.85
Flow2Stereo [22] 1.34 1.31 6.13 5.93
DDFlow [23] 1.23 1.21 6.37 6.17
Aleotti pseudo-labels 1.00 0.98 3.98 3.81

Table 6.2: Evaluation metrics on the KITTI 2015 dataset demonstrate that we achieved perfor-
mance close to the Reversing PSM-Net [1] method using Aleotti pseudo-labels but with a signif-
icantly simpler training procedure. First three rows are other self-supervised methods. We eval-
uated on ground-truth disparity maps using all valid pixels and only noc (non-occluded) valid
pixels.

Figure 6.2: The visualization shows the accuracy of Aleotti pseudo-labels. The first row displays
the left reference image, the second row the ground-truth disparity maps, the third row the dis-
parity map with Aleotti pseudo-labels, and the fourth row the error map where green pixels are
marked as accurate and red as inaccurate. The accurate pixels are those where the disparity is
within the interval ±3 pixels, known as the 3px error.
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Figure 6.3: The visualization shows the performance of the RAFT-Stereo model trained on Ale-
otti pseudo-labels. The first row displays the left reference image, the second row the ground-
truth disparity maps, the third row the predicted disparity map from the RAFT-Stereo model,
and the fourth row the error map where green pixels are marked as accurate and red as inaccu-
rate. The accurate pixels are those where the disparity is within the interval ±3 pixels, known as
the 3px error.

The table 6.2 demonstrates thatwe achieved performance close to theReversing PSM-

Net [1] method using Aleotti pseudo-labels but with a significantly simpler training pro-

cedure. In figure 6.2, we can observe that Aleotti pseudo-labels are quite sparse but very

accurate, with almost no inaccurate labels. Figure 6.3 shows the performance of the

RAFT-Stereo model trained on Aleotti pseudo-labels. We can observe that the model

struggles in the areas of car instances, especially on reflective or low-texture areas.

6.4.2 McCNN pseudo-labels

In the following section, we present the results of conducted experiments with McCNN

pseudo-labels. As an additional filtering step, we applied left-right consistency filtering.

Furthermore, to assess the similarity with Aleotti pseudo-labels, we conducted two ad-

ditional experiments.

The first experiment is with only raw McCNN pseudo-labels. The second one is Mc-

CNN ∪ Aleotti pseudo-labels, in which we added Aleotti pseudo-labels to McCNN dis-

parity maps. In other words, we used Aleotti disparity values if they were present in

the corresponding map; otherwise, we used McCNN disparity values. In the third ex-

periment, we identified locations where Aleotti disparity values were present and chose

those specific locations from the McCNN disparity map.
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Method EPE - all EPE - noc D1 - all [%] D1 - noc [%]
Reversing PSM-Net [1] 1.00 3.85
Flow2Stereo [22] 1.34 1.31 6.13 5.93
DDFlow [23] 1.23 1.21 6.37 6.17
McCNN pseudo-labels 1.26 1.24 6.53 6.39
McCNN ∪ Aleotti 1.00 0.99 3.99 3.82
McCNN ∩ Aleotti 1.26 1.25 6.55 6.42

Table 6.3: Evaluation metrics on the KITTI 2015 dataset demonstrate performance of RAFT-
Stereomodels trained on different pseudo-labels. First three rows are other self-supervisedmeth-
ods. We evaluated on ground-truth disparity maps using all valid pixels and only noc (non-
occluded) valid pixels.

Figure 6.4: The visualization shows McCNN pseudo-labels. The first row displays the left ref-
erence image, the second row the ground-truth disparity maps, the third row the disparity map
with McCNN pseudo-labels, and the fourth row the error map where green pixels are marked as
accurate and red as inaccurate. The accurate pixels are those where the disparity is within the
interval ±3 pixels, known as the 3px error.
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Figure 6.5: The visualization shows the performance of the RAFT-Stereo model trained on Mc-
CNN pseudo-labels. The first row displays the left reference image, the second row the ground-
truth disparitymaps, the third row the predicted disparitymap from the RAFT-Stereomodel, and
the fourth row the error map where green pixels are marked as accurate and red as inaccurate.
The accurate pixels are those where the disparity is within the interval ±3 pixels, known as the
3px error.

In table 6.3, it can be observed that raw McCNN pseudo-labels perform worse than

Aleotti pseudo-labels by a significantmargin. The second experiment showed that adding

McCNN to Aleotti pseudo-labels did not improve the RAFT-Stereo performance com-

pared to using only Aleotti pseudo-labels. The third experiment further confirms that

McCNN pseudo-labels consistently yield worse results than Aleotti pseudo-labels.

Figure 6.4 shows that rawMcCNNpseudo-labels aremuchdenser thanAleotti pseudo-

labels but contain a vast number of inaccurate labels. The final RAFT-Stereo model

struggles in the same areas of the scene but with significantly more inaccurate pixels,

as depicted in figure 6.5.
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6.4.3 Utilizing distance transform operator

In previous chapters, we discussed the motivation behind using the distance transform

operator. This operator provides a gradient of distances that highlight proximity to object

borders, making it a valuable tool for identifying areas close to the edges of objects. We

also demonstrated an image after applying the distance transform operator on a binary

image representing object borders.

Our primary aim is to discard disparities at the object borders, as there are many in-

accurate predictions from theMcCNNmodel in these areas. To leverage the information

provided by the distance transform, we propose an operation described by the following

equation:

𝑀𝑓 = 1 − 𝜎(𝑀𝑑) (6.3)

where𝑀𝑓 represents the final map with higher values at the object borders, 𝜎 is the
sigmoid function applied to all values, and𝑀𝑑 is themap generated by the distance trans-

form operator on binary image.

By applying the sigmoid function to the distance transformmap, we obtain a smooth

transition of values that enhances the distinction between object borders and other re-

gions. This method ensures that the final map,𝑀𝑓, emphasizes object borders, helping

us to filter out less accurate disparity values and improve the overall performance of our

model.

Method EPE - all EPE - noc D1 - all [%] D1 - noc [%]
Reversing PSM-Net [1] 1.00 3.85
Flow2Stereo [22] 1.34 1.31 6.13 5.93
DDFlow [23] 1.23 1.21 6.37 6.17
McCNN dt=0.33 1.28 1.26 6.47 6.32
McCNN dt=0.38 1.25 1.23 6.40 6.28
McCNN dt=0.43 1.24 1.23 6.39 6.26
McCNN dt=0.48 1.26 1.24 6.53 6.40

Table 6.4: Evaluation metrics on the KITTI 2015 dataset demonstrate the performance of RAFT-
Stereo models trained on different pseudo-labels, where 𝑑𝑡 represents the distance transform
threshold. The first three rows are other self-supervised methods. We evaluated on ground-truth
disparity maps using all valid pixels and only noc (non-occluded) valid pixels.
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In table 6.4, it can be observed that employing the distance transform operator re-

moves inaccurate pixels on the borders of instances in McCNN pseudo-labels, but does

not yield significantly better performance. Figure 6.6 illustrates that there are still a vast

number of inaccurate disparities in the car instances. In the following chapters, we will

focus on filtering out these disparities.

Figure 6.6: The visualization shows McCNN pseudo-labels with different distance transform
thresholds applied. The first row displays the left reference image, the second row the ground-
truth disparity maps, and from the third to the last rows, the error maps with different thresholds
applied (0.33, 0.38, 0.43, 0.48 from top to bottom), where green pixels are marked as accurate
and red as inaccurate. The accurate pixels are those where the disparity is within the interval ±3
pixels, known as the 3px error.
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6.4.4 Excluding semantic classes

Since we have panoptic segmentation maps, we aim to understand the influence of par-

ticular semantic classes. For this purpose, we designed three experiments. We conducted

experiments withMcCNN pseudo-labels excluding car instances, road areas, and a com-

bined experiment excluding car instances and sky/vegetation areas. Additionally, we

applied a left-right consistency check as an additional filtering step.

Method EPE - all EPE - noc D1 - all [%] D1 - noc [%]
Reversing PSM-Net [1] 1.00 3.85
Flow2Stereo [22] 1.34 1.31 6.13 5.93
DDFlow [23] 1.23 1.21 6.37 6.17
McCNN w/o cars 1.27 1.25 6.58 6.41
McCNN w/o road 1.27 1.26 6.52 6.38
McCNN w/o car-sky-vegetation 1.28 1.26 6.68 6.50

Table 6.5: Evaluation metrics on the KITTI 2015 dataset demonstrate the performance of RAFT-
Stereo models trained on different McCNN pseudo-labels. The first three rows are other self-
supervised methods. We evaluated on ground-truth disparity maps using all valid pixels and
only noc (non-occluded) valid pixels.

In table 6.5, it can be observed that excluding car instances and road areas does not

significantly affect the model performance. This suggests that there are sufficient dis-

parity locations remaining for training a RAFT-Stereo model.

6.4.5 Applying kernel filtering to panoptic instances

As we are aware of the problem of discontinuity in disparity within car instances in

pseudo-labels and its impact on final performance, we proposed applying kernel filter-

ing inside car instances. Kernel filtering helps smooth out disparity values by removing

noise and inconsistencies.

Using the generated panoptic segmentationmaps, we identify the regions correspond-

ing to car instances. We then apply a kernel filter specifically within these regions. This

involves defining a kernel size to create a local neighborhood around each pixel within

a car instance. The median disparity value within this neighborhood is computed, and

the pixel values are adjusted to be more consistent with this median. Pixels that deviate

significantly from themedian, based on a predefined threshold, are considered noise and

are filtered out. This process ensures that the disparity values within car instances are
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more uniform and continuous, thereby improving the quality of the pseudo-labels and

the final performance of the model.

With kernel filtering applied to car instances, along with additional filtering using

distance transform threshold and left-right consistency check, we observed a small im-

provement in the RAFT-Stereo model. This suggests that we successfully removed a

significant number of inaccurate pixels. This improvement can be seen in table 6.6 and

figure 6.7.

Method EPE - all EPE - noc D1 - all [%] D1 - noc [%]
Reversing PSM-Net [1] 1.00 3.85
Flow2Stereo [22] 1.34 1.31 6.13 5.93
DDFlow [23] 1.23 1.21 6.37 6.17
McCNN t=0.40 ks=30 ct=2 1.22 1.21 6.28 6.14
McCNN t=0.44 ks=30 ct=2 1.23 1.22 6.32 6.19
McCNN t=0.48 ks=30 ct=2 1.25 1.24 6.34 6.21
McCNN t=0.40 ks=40 ct=2 1.23 1.22 6.30 6.17
McCNN t=0.44 ks=40 ct=2 1.24 1.23 6.35 6.23
McCNN t=0.48 ks=40 ct=2 1.27 1.25 6.38 6.26

Table 6.6: Evaluation metrics on the KITTI 2015 dataset demonstrate the performance of RAFT-
Stereo models trained on different pseudo-labels, where 𝑡 represents the distance transform
threshold, 𝑘𝑠 kernel size for kernel filtering and 𝑐𝑡 consistency threshold. The first three rows
are other self-supervised methods. We evaluated on ground-truth disparity maps using all valid
pixels and only noc (non-occluded) valid pixels.

Figure 6.7: The visualization shows McCNN pseudo-labels with kernel filtering applied to car
instances. The parameters are 𝑡 = 0.40, 𝑘𝑠 = 30, and 𝑐𝑡 = 2. The first row displays the left
reference image, the second row the ground-truth disparity maps, the third row the disparity
map with pseudo-labels, and the fourth row the error map where green pixels are marked as
accurate and red as inaccurate. The accurate pixels are those where the disparity is within the
interval ±3 pixels, known as the 3px error.
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6.4.6 Lowe ratio filtering

In our experiments, we applied the Lowe ratio filtering technique to enhance the accu-

racy of disparity estimation using McCNN embeddings. The objective was to filter out

unreliable matches and improve the robustness of the disparity maps.

WeutilizedMcCNN to extract embeddings fromboth the reference and target images.

A cost volume was then computed by comparing these embeddings, representing the

similarity scores across pixels.

The Lowe ratio test was applied to each pixel in the reference image:

𝑠1
𝑠2
< 𝑞 (6.4)

where 𝑠1 and 𝑠2 denote the similarity scores of the best and second-best disparity in the
target image, respectively, and 𝑞 is a threshold parameter. We conducted experiments
varying the threshold 𝑞 to analyze its effect on the metrics.

The Lowe ratio filtering technique effectively enhanced the reliability of disparity

estimation usingMcCNN embeddings. It demonstrated sensitivity to parameter settings,

particularly the threshold 𝑞, which influenced the balance between match filtering and
accuracy improvement in stereo vision tasks.

Method EPE - all EPE - noc D1 - all [%] D1 - noc [%]
Reversing PSM-Net [1] 1.00 3.85
Flow2Stereo [22] 1.34 1.31 6.13 5.93
DDFlow [23] 1.23 1.21 6.37 6.17
McCNN Lowe q=1.03 1.15 1.13 5.25 5.12
McCNN Lowe q=1.05 1.15 1.13 5.23 5.07
McCNN Lowe q=1.10 1.15 1.14 5.25 5.08
McCNN Lowe q=1.20 1.20 1.17 5.64 5.43

Table 6.7: Evaluation metrics on the KITTI 2015 dataset demonstrate the performance of RAFT-
Stereo models trained on different pseudo-labels filtered with Lowe ratio test, with the threshold
𝑞 set to different values. The first three rows are other self-supervised methods. We evaluated on
ground-truth disparity maps using all valid pixels and only noc (non-occluded) valid pixels.

The Lowe ratio test significantly improved the RAFT-Stereo performance, as shown

in table 6.7 and figure 6.9. However, similar to Aleotti pseudo-labels, it still exhibits poor

performance in low-texture areas.
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Figure 6.8: The visualization showsMcCNN pseudo-labels filtered with the Lowe ratio test with
the parameter set to 𝑞 = 1.05. The first row displays the left reference image, the second row the
ground-truth disparity maps, the third row the disparity map with pseudo-labels, and the fourth
row the error mapwhere green pixels aremarked as accurate and red as inaccurate. The accurate
pixels are those where the disparity is within the interval ±3 pixels, known as the 3px error.

Figure 6.9: The visualization shows the performance of the RAFT-Stereo model trained on Mc-
CNN pseudo-labels filtered with the Lowe ratio test with the parameter set to 𝑞 = 1.05. The first
row displays the left reference image, the second row the ground-truth disparity maps, the third
row the predicted disparity map from the RAFT-Stereo model, and the fourth row the error map
where green pixels are marked as accurate and red as inaccurate. The accurate pixels are those
where the disparity is within the interval ±3 pixels, known as the 3px error.

41



Examining the pseudo-labels in figure 6.8, we observe that almost all inaccurate pix-

els have been successfully removed, aligning closelywith theAleotti pseudo-labels. There

remains only a small area for improvement, particularly in object boundary regions.

Additionally, we conducted an experiment to further optimize hyperparameters. Specif-

ically, we explored different kernel sizes for median filtering and evaluated the impact of

incorporating left-right consistency checks.

Method EPE - all EPE - noc D1 - all [%] D1 - noc [%]
Reversing PSM-Net [1] 1.00 3.85
Flow2Stereo [22] 1.34 1.31 6.13 5.93
DDFlow [23] 1.23 1.21 6.37 6.17
McCNN Lowe q=1.05 median=15 1.18 1.16 5.46 5.33
McCNN Lowe q=1.05 median=25 1.14 1.13 5.22 5.09
McCNN Lowe q=1.05 median=35 1.15 1.13 5.23 5.07

Table 6.8: Evaluation metrics on the KITTI 2015 dataset demonstrate the performance of RAFT-
Stereomodels trained on different pseudo-labels filteredwith the Lowe ratio test, with the thresh-
old 𝑞 = 1.05 and different parameters for median filtering. The first three rows are other self-
supervisedmethods. We evaluated on ground-truth disparitymaps using all valid pixels and only
noc (non-occluded) valid pixels.

Method EPE - all EPE - noc D1 - all [%] D1 - noc [%]
Reversing PSM-Net [1] 1.00 3.85
Flow2Stereo [22] 1.34 1.31 6.13 5.93
DDFlow [23] 1.23 1.21 6.37 6.17

McCNN Lowe q=1.05 lrcons=True 1.15 1.13 5.23 5.07
McCNN Lowe q=1.05 lrcons=False 1.45 1.42 6.92 6.76
McCNN Lowe q=1.10 lrcons=True 1.15 1.14 5.25 5.08
McCNN Lowe q=1.10 lrcons=False 1.43 1.40 6.89 6.69

Table 6.9: Evaluation metrics on the KITTI 2015 dataset demonstrate the performance of RAFT-
Stereomodels trained on different pseudo-labels filteredwith the Lowe ratio test, with the thresh-
old 𝑞 = 1.05 and varying existence of left-right consistency check. The first three rows are other
self-supervised methods. We evaluated on ground-truth disparity maps using all valid pixels and
only noc (non-occluded) valid pixels.

In tables 6.8 and 6.9, it can be observed that choosing parameters for median filtering

results in different, but not significantly better overall performance. However, incorpo-

rating the left-right consistency check is crucial, as it effectively removes a considerable

number of inaccurate disparities.
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6.4.7 Modified Lowe ratio filtering

While the original Lowe ratio test provided significant improvements, we proposed a

modified version to further refine the selection of reliable pseudo-labels. In thismodified

approach, our intention was to consider the second-best match from the entire search

space, excluding a specific interval around the best similarity score disparity. Specifically,

we excluded the interval between the best similarity score disparity ±10 disparities.

By doing so, we aimed to avoid selecting second-best matches that were too close to

the first-best match in terms of disparity, which could lead to false positives in regions

with similar but incorrectmatches. For each embedding in the reference image, the first-

best match in the target image is identified based on the similarity scores within the cost

volume. The interval of±10 disparities around this first-bestmatch is excluded, and then
the second-best match is identified from the remaining search space.

Themodified Lowe ratio test is applied by comparing the similarity scores of the first-

bestmatch (𝑠1) and the second-bestmatch (𝑠2), where 𝑠2 is chosen from the non-excluded

interval. A match is considered valid if the ratio 𝑠1
𝑠2
is below the threshold.

Method EPE - all EPE - noc D1 - all [%] D1 - noc [%]
Reversing PSM-Net [1] 1.00 – 3.85 –
Flow2Stereo [22] 1.34 1.31 6.13 5.93
DDFlow [23] 1.23 1.21 6.37 6.17
McCNN Lowe+ q=1.50 1.16 1.14 5.43 5.29
McCNN Lowe+ q=1.65 1.15 1.13 5.31 5.17
McCNN Lowe+ q=1.80 1.15 1.13 5.33 5.20

Table 6.10: Evaluationmetrics on the KITTI 2015 dataset demonstrate the performance of RAFT-
Stereo models trained on different pseudo-labels filtered with modified Lowe ratio test, with the
threshold 𝑞 set to different values. The first three rows are other self-supervised methods. We
evaluated on ground-truth disparitymaps using all valid pixels and only noc (non-occluded) valid
pixels.

Table 6.10 summarizes the experimental results with different thresholds (𝑞) applied
to the modified Lowe ratio filtering approach. It suggests that this modification does not

improve the overall performance of the RAFT-Stereo model. Figure 6.10 shows that the

pseudo-labels are denser compared to the experiment with the classic Lowe ratio test,

but they also exhibit slightly more inaccurate disparities. From figure 6.11, it can be

concluded that denser disparity maps do not lead to better overall performance. These

inaccurate disparities appear to significantly impact the model’s performance.
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Figure 6.10: The visualization shows McCNN pseudo-labels filtered with a modified Lowe ratio
test with the parameter set to 𝑞 = 1.50. The first row displays the left reference image, the second
row the ground-truth disparitymaps, the third row the disparitymapwith pseudo-labels, and the
fourth row the error map where green pixels are marked as accurate and red as inaccurate. The
accurate pixels are those where the disparity is within the interval ±3 pixels, known as the 3px
error.

Figure 6.11: The visualization shows the performance of the RAFT-Stereo model trained on
McCNN pseudo-labels filtered with amodified Lowe ratio test with the parameter set to 𝑞 = 1.50.
The first row displays the left reference image, the second row the ground-truth disparity maps,
the third row the predicted disparity map from the RAFT-Stereo model, and the fourth row the
error map where green pixels are marked as accurate and red as inaccurate. The accurate pixels
are those where the disparity is within the interval ±3 pixels, known as the 3px error.
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7 Conclusion

This research explores a self-supervised approach to stereoscopic reconstruction through

pseudo-labeling, based on the work of [1] and [2], demonstrating that enhanced filtering

techniques can significantly improve the accuracy of pseudo-labels and the performance

of supervised stereo models. Traditional methods for stereoscopic reconstruction have

been largely replaced by deep learning-based methods due to their ability to learn corre-

spondence metrics directly from data.

However, these methods often require large amounts of labeled data, which can be

costly and complex to obtain. To address this, we re-evaluated the method proposed by

[1] and introduced a new, simpler self-supervised training procedure based on pseudo-

labels derived from McCNN embeddings ([2], [16]).

This work investigates various filtering techniques to refine pseudo-labels generated

by a weakly supervised McCNN model. Key techniques include utilizing a distance

transform operator to remove problematic object borders and experimenting with ex-

cluding certain semantic classes to assess their influence on model performance. We

identified the issue of discontinuity in disparity estimation in car instances and pro-

posed applying kernel filtering, which reduced the number of inaccurate pseudo-labels.

However, challenges remained in low-texture or reflective areas. Previous experiments

highlighted the importance of removing inaccurate pseudo-labels, leading us to propose

filtering within the scope of McCNN predictions by employing the Lowe ratio and its

modified version, both aimed at improving the precision of pseudo-labels.

The results indicate that denser initial correspondences do not necessarily lead to

better overall performance. Inaccurate disparities within these maps can significantly

impact the model’s performance, emphasizing the need for effective filtering. The best
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performance of McCNN pseudo-labels was achieved through aggressive filtering tech-

niques like the Lowe ratio test, resulting in disparity maps with a minimal number of

inaccuracies. However, the final RAFT-Stereo model trained on McCNN pseudo-labels

still encountered issues such as discontinuities in predictions for car instances due to

reflective areas and low-texture regions like vegetation. The performance of the model

trained onMcCNNpseudo-labels was slightly worse than that trained onAleotti pseudo-

labels. Visualization of error maps helped identify problems in predictions for small ob-

jects, such as car signs or object borders, suggesting areas for improvement to fully bridge

the gap between these pseudo-labels.

Futurework could focus on enhancing theRAFT-Stereomodel by incorporating panop-

tic predictions. This could include Mask2Former predictions obtained from our previ-

ous experiments and adding additional elements to the loss function of the RAFT-Stereo

model, as seen in previous work [24]. They incorporated additional loss elements which

arises from the observation that areas in the image where boundaries of panoptic in-

stances occur, such as changes in class or instance, often exhibit sharp edges and dispar-

ities in disparity maps. This loss aims to emphasize differences in disparities for neigh-

boring pixels in the panoptic instances.
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Abstract

Self-supervised learning of stereoscopic reconstruction
through pseudo-labeling

David Kerman

Thiswork introduces a self-supervised approach to stereoscopic reconstruction through

pseudo-labeling, based on the previous studies. We provide an overview of the fun-

damental principles of stereoscopic reconstruction and relevant deep learning models.

The methodology includes a detailed description of self-supervised learning via pseudo-

labeling, along with our innovative filtering techniques designed to enhance the accu-

racy of pseudo-labels. We demonstrate the performance improvements in the supervised

stereo model achieved using these refined pseudo-labels. Experimental results are pre-

sented to validate the effectiveness of our approach. Finally, we identified problems with

the current method and proposed changes which could potentially improve model accu-

racy.

Keywords: stereoscopic reconstruction; deep learning; self-supervised learning; com-

puter vision; pseudo-labeling
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Sažetak

Samonadzirano učenje stereoskopske rekonstrukcije
pseudooznačavanjem

David Kerman

Ovaj rad uvodi samonadzirani pristup učenju stereoskopske rekonstrukcije pseudo-

označavanjem, temeljen na prethodnim radovima. Pružamo pregled temeljnih principa

stereoskopske rekonstrukcije i relevantnih modela dubokog učenja. Rad uključuje de-

taljan opis samonadziranog učenja pseudooznačavanjem, zajedno s našim inovativnim

tehnikama filtriranja osmišljenim za poboljšanje točnosti pseudooznaka. Nadalje, de-

monstriramopoboljšanje performansi nadziranog stereoskopskogmodela postignuto ko-

rištenjem rafiniranih pseudooznaka. Eksperimentalni rezultati su predstavljeni kako bi

se potvrdila učinkovitost našeg pristupa. Identificirani su problemi i predložene modifi-

kacije koje bi poboljšale trenutnu metodu.

Ključne riječi: stereoskopska rekonstrukcija; duboko učenje; samonadzirano učenje;

računalni vid; pseudooznačavanje
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