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Deep  convolutional  models  are  the  principal  ingredient  in  many
computer vision applications. However, these models are often criticized for
lack of interpretability, that is, inability to explain their decision to humans.
Consequently,  techniques  for  interpreting  and  visualizing  decisions  of
convolutional models represent a very interesting research topic. This thesis
consists  of  the  following  tasks.  Choosing  a  framework  for  automatic
differentiation and getting acquainted with libraries for manipulating matrices
and  images.  Analyzing  and  briefly  describing  existing  approaches  for
interpreting  and  visualizing  decisions  of  deep  models.  Choosing  an
appropriate convolutional model, initializing it with public parameters trained
on ImageNet, and fine-tuning it for classification on FGVCx. Evaluating and
presenting the classification accuracy. Interpreting classification decisions on
high-ranked false positives and low-ranked false negatives. Suggest suitable
directions for future work. The thesis is to be accompanied with source code
of developed methods, as well as with employed datasets, instructions and
documentation. The literature has to be properly cited. Received assistance
has to be documented.
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1 Introduction

Computer vision was always an active research field, and with recent
successes of machine learning and deep learning,  the results  are getting
more impressive with every new day. However, what deep learning models
lack is  interpretability  – a neural  network is  given several  thousand input
images and output labels, and with some linear algebra and calculus and a
little bit of luck, it finds a global minimum of a loss function and it can start to
classify images. Yet, no one actually knows what exactly  is what the model
learns and in what way it really affects the final decision for the class of a
given image. Therefore, if we are to really understand deep neural networks,
we must delve deeper into the models themselves. This thesis uses a basic
type of exploring, using visualizations of feature activation maps for the top
predicted class and how it helps a model learn to classify various images.
The  images  come  from a  publicly  available,  and  a  bit  modified,  FGVCx
dataset.  The  first  chapter  presents  convolutional  models  for  visual
recognition. The chapter introduces the notation, describes the basic building
blocks, presents the typical structure of the model and explains the training
procedure. The second chapter presents the main ingredients of the state-of-
the-art  convolutional  models  such  as  batch  normalization,  residual
connections and adaptive training. The third chapter presents the design and
various  details  of  the  developed  implementation.  The  most  interesting
excerpts  from  the  source  code  are  carefully  explained  at  the  level  of
individual expressions. The fourth chapter presents experimental results. The
final chapter provides the conclusions and suitable directions for the future
work.
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2 Convolutional neural networks

2.1 Artificial neural networks and deep learning

An artificial  neural  network  (ANN)  is  an  artificial  intelligence  model
which was designed after the human brain in the middle of the 20 th century.
Its basic unit is the neuron, a cell which takes an arbitrary number of inputs
and gives only one output by calculating a weighted sum of inputs. In the
early days of the model, the output, or the activation, was a step function
which fired ‘1’ if the weighted sum was over some threshold, but modern era
improvements  use  other  activation  functions  such  as  the  sigmoid,  the
hyperbolic  tangent  and  the  rectified  linear  function,  which  are  all
differentiable.  The neurons are grouped into layers – every neuron has a
separate set of weights used for the calculation of the weighted sum, and
each neuron’s inputs are all of the outputs of the previous layer. That kind of
layer is called a Fully Connected (FC) layer1. The output of the whole layer is
elementwise application of the layer’s activation function, which is then fed as
input to the next layer. The depth of the neural network is defined as the
number of layers the network has, and if it is deep enough, we enter a branch
of machine learning called deep learning2.

xT=[x1 x2…xn]

a0=x
(2.1)

W l
=[
w11 ⋯ w1n
⋮ ⋱ ⋮
wm1 ⋯ wmn] (2.2)

zi
l
=∑

j=1

m

w ij
l a j

l−1

zl=W l
⋅a l−1

(2.3)

a l=σ ( z l ) (2.4)

1 FC layers are the most common, but there are layers which are not fully connected. 
Some of them will be presented later.

2 There is no official threshold, but typically neural networks are two to hundreds of layers 
deep
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More  formally,  a  neural  network  is  a  list  of  linear  and  non-linear
transformations. It is said to be L layers deep if it has L repetitions of linear
and non-linear transformations. The input is an n–dimensional column vector
(2.1), and the  l–th ( 1≤l≤L ) neuron layer with  n inputs and  m outputs is

presented as a matrix W l in (2.2). The weight w ij represents the strength

of the connection between the  i-th neuron of this layer and  j-th neuron of
previous  layer.  Although  this  seems  counterintuitive,  it  allows  a  compact
notation  for  the  weight  matrix.  The  product  (2.3) represents  the  linear
transformation of  the previous layer’s  activation,  and the layer’s  output  is
simply an elementwise nonlinear transformation. If the neural network has L
layers, then the final, L-th layer’s output aL is the output of the whole network.

2.1.1 Training

To train a neural network we need to define a loss, also called cost,
function L(ytrue, ypred) (not to confuse with the number of layers L) which tells
us how far away the network’s prediction is from the value it should predict.
The  most  common  loss  functions  are  mean  squared  error

( f ( y , ŷ )=1n∑i=1
n

( y i− ŷ i)
2) ,  most  commonly  used  for  regression  tasks,  and
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Figure 2.1: Basic scheme of a fully connected artificial neural network with three inputs
and two hidden layers.  As per equation  2.3, the input is first  linearly mapped from 3-
dimensional  to  2-dimensional  space.  This  vector  is  acted  upon  with  the  first  layer’s
activation function, according to 2.4, resulting with a vector which then becomes the input
for  the second hidden layer.  After  repeating the same procedure once again,  second
layer’s output becomes the output of the whole network



cross  entropy  ( f ( y , ŷ )=1n∑i=1
n

( yi⋅ln( ŷ i)+(1− y i)⋅ln(1− ŷ i))) ,  most  commonly

used for classification tasks. The goal of the training is to optimize the loss
function  to  be  as  low  as  possible,  and  for  that  we  need  to  know  the
derivatives of the loss function w.r.t. every prediction and the derivatives of
the activation functions w.r.t. both the input vector and the weight matrix. The
algorithm called backpropagation allows us to propagate the error from the
end of a network through the layers back to the start, updating the weights on
the walk back through the layers.

There  are  two  important  assumptions  for  the  cost  functions:  a)  it
should be written as an average of the costs for individual examples, and, b)
it must be a function of the network’s outputs. In that way, we can use the
loss function as a measure of “error” the network produces. Loss function is
usually differentiable, and that property is exploited to calculate the vector of
gradients w.r.t. activations for the last layer, the exit neurons (δL vector). The
key concept here is that the δ vector for the last layer can be used not just to
compute the gradient of the weights, but to also compute the δ vector for the
second-to-last layer using the chain rule of differentiation. That  δ  vector is
further used for the  δ  vector of the directly previous layer and so on until
every  weight  of  the  whole  network  is  updated.  The  big  downside  of  the
backpropagation  algorithm is  that  all  of  the  temporary  inputs  need to  be
remembered for the correct computation of the backward gradient, which can
require vast amounts of computer resources.

2.2 Convolutional neural networks (CNN)

ANNs and their derivations have proved to be extremely successful for
various tasks such as financial  applications,  speech synthesis,  and video
game AI. Usages of ANNs in computer vision were an improvement over the
usual machine learning methods, e.g., the support vector machine classifier,
but the results were not as spectacular as expected. The problem was how
the network was using its input images, or more precisely, what amount of
input features was taken into consideration. An image is a rectangular grid of
pixels that are only locally correlated. For example, in a typical image of a
cat, the two eyes are close together and the position of a tail has little to do
with  the  position  of  eyes.  Feeding  an  image  ‘as  is’  to  the  ANN  could
potentially make it learn that some distant corner parts are correlated, when
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they shouldn’t be. The convolutions were invented to prevent that, and to
force image to focus on the small region.

2.2.1 Convolutions

Convolutions are the core building blocks of the CNN. The convolution
kernels3 are small, usually square matrices, that are applied in a special way
to a window of the input image to produce a scalar output. They are applied
elementwise to the values of the pixels of the input image, as shown in  figure
2.2. If the input image is grayscale, which means it only has a width and a
height, the applied convolutions are two-dimensional, and if the input image
is in color, which means it has a width and height for each of the three colors,
the  convolutions  are  three-dimensional.  In  any  case,  the  output  of  the
convolution operation is a 3D tensor. The purpose of the convolutions is to
detect what features are present in the input image, so there are convolutions
that detect edges, circle parts or any other meaningful combination of pixels.
There are many convolutions per layer, and each convolution is slid across
the whole image, portion by portion, and applied as described, resulting in a
feature map, which is then stacked together with other feature maps to make
the output tensor. Usually, the dimensions of an image get smaller through
layers, and the number of convolution filters gets larger.

3 The convolution kernels are also called feature detectors or filters. These terms will be 
used interchangeably
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More formally, a convolution kernel is an f-by-f for single channel, or f-
by-f-by-c for  c  channel  input  tensor,  array of  weights  which is  applied as
described  to  the  current  portion  of  the  image  to  produce  a  scalar  which
indicates how strongly the feature is detected. Here f stands for the width and
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Figure 2.2:[12] An application of 2x2 convolution filter w on 3x3 image x. First, the window is
aligned with the top left corner of the image, and the image values underneath are multiplied
with corresponding filter weights. The sum of partial products are stored in a feature map in
the  top  left  corner.  The  convolution  window  is  then  slid  right  with  stride  one,  and  the
procedure is repeated, with the result being stored in the top right corner. As the window now
reached the end of the image, next iteration will start below, repeating the same procedure
and storing results in appropriate cells.



height of the convolutional filter, as they are usually square. It’s important to
notice  that,  if  the convolution is  of  the same size as the input  image,  it
behaves just like the fully connected layer. Each successive application of the
convolution kernel is on a new part of the image moved by s (which stands
for ‘stride’) to the side or down. If we gather all the scalars produced by one
convolution kernel in an array of numbers, we get a feature map for that
convolution. Different convolutions have different feature maps, and they are
stacked together for another important step of the CNNs – the pooling step.

2.2.2 Pooling operation

The pooling  step  is  frequently,  but  not  necessarily,  found after  the
convolution step. The core pooling operation is similar to the convolution, but
it  is  used  for  a  different  purpose.  Images  are  usually  of  very  large
dimensions, and to process an image in reasonable time we must somehow
downsample the  image without  losing too  much information.  Rescaling  is
very expensive so pooling was invented as a fast alternative. The idea is to
have a window, just like the convolution, and to calculate the average of the
numbers inside the window. It’s like a convolution with every weight set to 1/
f2, with the difference being that the weights are not learnable. Also, another
important difference is that no pixel  can show up in more than one pool,
which is to say pooling operations segment the image in disjunctive areas,
unlike convolution which can have a size of, say, 3x3 but have a stride of 2.
The described pool operation is also known as the average pool (avg pool). It
is  mostly  replaced  by  an  alternative,  max  pool  which  simply  takes  the
maximum value in the window, as shown in figure  2.3. It  is nonlinear and
works better in practice.
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Pooling  layers  reduce  the  memory  footprint  needed  to  process  an
image  by  downsampling,  as  it  was  already  mentioned.  They  discard  the
excess information which could potentially misdirect the next layer, since it’s
more important  for  the detected features to be in  relative position one to
another,  than  to  have  an  exact  location  on  an  image.  In  the  cat  image
example, it’s useful for the two detected eyes to be close to the whiskers and
ears as it will allow us to maybe detect the head in the next layer. It was long
thought this was crucial to the success of convolutional models, but invertible
models[3] were  invented  that  retain  the  whole  information  and  can  both
restore  the  original  image  and  have  great  accuracy.  Nevertheless,  the
pooling operation is used very much in practice and yields great results.

The output of the CNN layer (the convolution and pool together) is an
activation function (usually ReLU) applied to the output of the max layer. This
output is the input to the next convolution layer4 and so forth. The output of
the  last  layer  is  then  fed  into  the  global  average  pooling  module.  The
resulting F-dimensional vector is processed by a fully connected layer with
softmax activation which then finally classifies the input image. Convolution
layers here have a role of  feature extraction as they are more powerful, in
comparison to ordinary fully-connected networks, and, in practice, perform
with greater accuracy.

4 Usual number of convolution layers is measured in tens

7

Figure  2.3[6]:A visualization of the max pool operation. In this example, the 4x4 image is
sliced in disjunct 2x2 areas, and the maximum number in respective areas are selected and
stored in a new matrix. That matrix is the output of the max pool layer.



2.2.3 Training

The training  of  convolutional  neural  networks  is  very  similar  to  the
training of fully connected networks. It  starts the same, by calculating the
value of the loss function and backpropagating the δ vector to the start of the
ANN, and it is then applied backwards through the convolutional layers and
its activation functions. In max pool, only one component of a convolution
window has a gradient, the others have 0. In avg pool, all components of the
convolution window have the same gradient. This gradient is then used to
update all the convolutions, and it can be used to calculate a new δ vector for
the previous convolutional layer. The downside of this algorithm is, still, the
need to remember the temporary inputs, with an amplification, since images
are usually very large, just like the number of convolution operations. For
reference, a famous ResNET 50 convolutional model, which was used for
this  thesis’  implementation,  has  ~500MB  of  weight  tensors  by  itself,  but
during training it requires about 7.5 GB of RAM[10].

2.3 A word on PyTorch
PyTorch  is  an  automatic  differentiation  framework,  written  in  the

programming language Python. Its core feature is the dynamic creation of
computational  graphs  in  the  form of  directed  acyclic  graphs,  built  out  of
nodes  which  represent  the  basic  operations  such  as  addition,  scalar
multiplication,  matrix  multiplication  and  so  on.  PyTorch  knows  how  to
differentiate these elementary operations, and by using the chain rule it can
differentiate  any  function  with  respect  to  any  of  the  input  variables  or
intermediary  results.  Simply  invoking  .backward()  method on  the  PyTorch
variable starts the chain rule propagation of derivatives over all input nodes
over the edges of the graph, as every node remembers the inputs it  has
gotten.  This  proved  to  be  very  useful  for  the  implementation  of  the
backpropagation algorithm, and it was heavily used throughout the practical
work  of  the  thesis.  On  a  final  note,  .backward()  propagates  back  and
calculates the differentials, but it does not perform an actual weight update.
The update is usually done in special components called optimizers, of which
the most well known is Adam. The Adam optimizer was exclusively used in
the implementation of the thesis, and is explained in section 3.1.
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3 Modern approaches and state-of-the-art

As the field of deep learning flourished with the exponential increase of
computing power in the late 20th and early 21st century, many new techniques
and procedures were invented to help combat problems models showed in
their  infancy.  Some  solutions  were  directed  towards  the  problem  of  the
vanishing gradient. It turned out some activation functions were pushing the
gradient towards zero, and only a few of the last layers were updating their
weights – the norm of the δ vector was too small for the weight updates to be
meaningful,  so  new  activation  functions  were  invented.  Other  solutions
turned  to  another  frequent  issue,  the  overfitting.  The  idea  of   training  a
machine  learning  algorithm is  for  it  to  generalize  well  –  to  make  correct
predictions  on input  data  it  never  saw –  but  it’s  often  the  case a  model
somehow fails  to  generalize and instead it  focuses on specificities of  the
training set, thus learning in a wrong way. This thesis will cover only some of
the improvements which had the greatest  effect  in  improving training and
accuracy  of  the  neural  network  models,  namely  adaptive  training,  batch
normalization, residual connections and transfer learning.

3.1 Adaptive training
The weight updates are rarely done evaluating the whole training set,

but  small  batches  that  approximate  the  correct  gradient  and  allow  more
frequent weight updates, thus making a model converge faster. The neuron
cells which contribute the most to the outcome, important neurons, usually
get updated most often, and the ones who don’t, usually get small updates.
But,  important  neurons  should  be  updated  with  smaller  increments  to
stabilize  the  learning,  and  less  important  could  be  updated  with  bigger
updates that won’t ruin the stability. 

To  update  weights  differently,  a  new information,  beside  the  global
learning rate,  is  needed,  and it’s  how a  weight  has been updated in  the
previous iterations. One way to accomplish that is to accumulate the previous
updates, and then divide the  δ vector with it. If the accumulation is big, a
neuron gets a smaller update, and vice versa. This is a description of the
AdaGrad algorithm, with a difference it actually accumulates squares of the
gradient, and divides them with a square root.

The  problem  with  AdaGrad  is  that  the  update  magnitude  decays
exponentially and becomes infinitesimally small as the number of iterations
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grows, which in practice means the updates stop being meaningful across
the  whole  network.  A better  solution  comes  from  Geoffrey  Hinton,  who
modified  rprop algorithm to  calculate  a  moving average over  several  last
epochs with exponential decay.  The global learning rate is then divided by
the square root of the average of squares  and multiplied with the δ vector,
hence the name, root mean square prop, or RMSProp. RMSProp calculates
a gradient, it’s square, the new mean and makes the update of weights. The
gradient calculated in this way can make the convergence rather slow, but it
can be improved with Nesterov momentum. After the gradient is calculated
and the weights are updated, another gradient calculation is performed in this
new point, which is then used as a correction for the first gradient. Although
Nesterov  momentum  introduces  some  extra  computational  complexity,  it
allows the learning rate to be bigger due to more precise gradient,  which
makes the network to converge faster.

Algorithms  covered  so  far  only  kept  track  of  the  mean  squared
magnitude of the vector, but not the direction. Algorithm that keeps track both
of the mean gradient and mean momenta is called Adam, and in practice
works the best. The reason is that by calculating a moving exponential decay
average,  perturbations of  the stochastic  gradients cancel  out  and the net
result  is  always pointing in the general  direction of the slope towards the
minimum, which allows us once more to use a bigger learning rates. The
gradient of one batch is, therefore, used only to update the mean so far, and
in the original paper terminology, is considered as “velocity”. Note that this
can also be combined with Nesterov momentum, creating a variant called
Nadam.

3.2 Batch normalization
When training the ANN, the input data is usually normalized to have a

mean of 0 and variance of 1, so the first hidden layer’s inputs always have
the same distribution. But,  other layers as input get the activations of the
previous  layers,  with  the  distribution  which  is  changing  over  time  as  the
weights get updated throughout the epochs. A small change in the first layers
can get amplified, causing a huge shift before it gets to the last layers. This is
a reason to insert  one batch normalization layer after every hidden layer,
which then normalizes a batch of inputs from its mean and variance to some
other  μB and σB. They are learnable parameters that also get updated with
gradient descent.
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It was widely accepted that batch normalization reduces the covariate
shift[7], a change in distribution, but some scholars[4] found out it’s not actually
the case. The covariate shift is still happening, but it’s the objective function
that’s getting smoothed out, which allows a network to converge more easily
with learning rates that don’t have to be as small as before.

3.3 Residual connections
Up until now, this thesis always assumed the input of one layer is only

constituted out of the output of the previous layer. That does not have to be
always the case. We can combine the outputs from two or three layers before
with the outputs of the layer before and feed it in this layer. The type of the
connection that allows this is called residual connection, also known as the
skip connection, as the outputs ‘skip’ a layer or more, as shown in figure 3.1.

The reason behind the name ‘residual’ is, since they as inputs have
both the outputs from a layer and two layers before, is the previous layer only
has to learn a difference, or a residue, between those two vectors. In practice
they  improved  accuracy  and  generalization  the  most  in  comparison  with
Adam or batch normalization. The reason models with residual connections,
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Figure 3.1: A scheme of a residual, or a skip connection. The first weight layer processes its
input  with  linear  and nonlinear  transformation,  producing the output.  This  output  is  then
linearly transformed, but, before applying the activation function, the previous input is added.
The resulting sum is  then acted upon with  the layer’s  activation function.  The output  is
composed of the input and the difference from the input and target output, so the layer only
has to learn that difference, or a residue.



or  ResNets  for  short,  keep  outperforming  other  models  is  that  they  are
effectively  making the network more shallow[5],  allowing the information to
flow further and simplifying the model. Until  2018, Resnets have been the
most successful models in ImageNet training, and then were superseded by
EfficientNet, which will not be discussed.

3.4 Transfer learning
Training a neural network from the scratch is very difficult due to the

vast  hyper-parameter  space  that  needs  to  searched,  even  with  multiple
acceptable solutions. However it was observed that a network, once trained
for a specific task, can further be used for another similar task, after a bit of
fine tuning for the new task. A good analogy is how us humans use things we
learned  in  one  situation  for  another  situation,  e.g.  the  model  that
differentiates  home  cat  species  can  be  later  improved  to  differentiate
between the wild cat species. This observation is called transfer learning.

One explanation for the possibility of transfer learning in the field of
computer vision is that features detected in one type of images usually exist
in  other  types,  such as  borders,  lines  and circles.  The new network  that
would be trained from start would have to learn those same features all over
again,  which  is  very time costly.  Instead,  since the feature  detectors can
theoretically work with new images, we can adapt the old network in much
simpler and shorter way. This also usually yields greater accuracy.

The important assumption is that the old and the new image datasets
are  reasonably  similar.  Cat  classifier  will  may  not  transfer  successfully
towards skin  tumor identification.  For  this  reason,  it’s  important  to  train  a
network  on  a  general  purpose  dataset  which  covers  a  large  number  of
various distinct classes, for the network to generalize well. Examples of such
datasets are ImageNet, MNIST, CIFAR, Pascal VOC and many others. This
way, the convolutions really learn to extract the mutual features which appear
in very different contexts, thus generalizing well. Such trained network can
afterwards be fine tuned for a specific use by first adapting the last layers of
the network to the inputs before and ‘locking’ the earlier gradients to zeroes,
and once the saturation point is reached by unlocking the whole model for
training, which further increases accuracy for the specific purpose.
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4 Activation map visualization model

4.1 Data
To visualize activation maps for images, it’s necessary to have both

the dataset of images and the trained model for image classification. This
thesis  is  based  on  two  works[1][2] which  used  The  Pascal  VOC  2007
dataset[11],  that  contains  just  under  10.000  images  in  20  classes  with  an
average of ~2.5 objects per image. In this thesis’ implementation only one of
several possible annotations was actually used. This dataset was only used
as a support for the main dataset, which was the FGVCx dataset with fungi
species, stripped down to 50 most numerous classes, with a little over 13.300
images, 150 for validation and the rest for train. These images were used in
2018  Kaggle  competition,  and  in  the  original  form  feature  almost  1400
various  fungi  species,  from  underground  truffles,  ordinary  ground
mushrooms,  hoof  mushrooms  and  lichen,  with  occasional  microscope
imagery or schematic drawing. Extra preprocessing includes square cropping
the  images  around  the  center  and  rescaling  them  to  have  an  exact
256x256x3 volume, as some images were grayscale.

4.2 The model
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Figure 4.1: The architecture of ResNet50 model. Input images are 224x224x3 tensors. They
are first processed with 64 7x7 convolutions and 3x3 max pool,  that output 56x56 sized
tensor. Resulting tensor is further processed by iterations of 1x1 and 3x3 convolutions with
varying  count  and  channel  numbers.  After  some  of  the  iterations,  downsampling  is
performed to gradually reduce the tensor size. In the end, entire image tensor is compressed
to  2048  dimensional  vector  which  is  then  fed  to  the  ordinary  ANN with  class_count
number of neurons that finally classifies the image.



As it was discussed in the chapter 3.4, convolutional neural networks
are commonly pretrained on a general dataset and then pretrained for the
specific use. This thesis used Residual nets, specifically, ResNet50 model,
whose architecture is shown in figure 4.15. This model proved to be complex
enough to extract meaningful features from the FGVCx images, but not too
complex for it to train or progress slowly. There was no multi-label classifying,
but  only  one  multi-class  model  with  the  number  of  outputs  equal  to  the
number of classes of the dataset (50 for FGVCx, 20 for Pascal VOC 2007).
The loss function this model was optimizing was Cross Entropy Loss. For
weight updates Adam optimizer was used, but without Nesterov momentum.

Initial learning rate was 8.5⋅10−4 but was exponentially decayed after every
epoch with varying intensity.

4.3 The implementation

5 This is an example of the network which reduces image size but increases the number of
channels
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Figure  4.2:  Model  training  setup  with  Python  programming  language  and  PyTorch
differentiation  framework.  Entire  code  was  developed,  tested  and  run  in  Google  Colab
environment. The dataset was stored in Google Drive and accessed with gdrive module. The
model architecture is freely available to download, pretrained or not.



To train a neural network using PyTorch, it’s necessary to prepare the
dataset of  images, image preprocessing steps, the machine on which the
training will occur, the very model, its loss function, weight optimizer and so
on. As seen in figure 4.2, in line 8, immediately after the imports, the device is
selected. GPU units are preferred over CPU as they can process batches in
parallel  which  speeds  up  the  training  process,  but  a  fallback  option  is
needed.  Next,  a  model  object  is  instanced  by  downloading  an ImageNet
pretrained copy which is freely available for unrestricted usage. Lines 12 to
20  define  a  composition  of  transformations used for  preprocessing  every
image in batch. Images, represented in memory as PIL.Image objects, are
enhanced by random transformations to augment the dataset.

They  could  be  flipped  horizontally,  since  a  mirror  image  of  a
mushroom is still a mushroom, and they could have colors slighty changed,
since darker image is still  of the same class (or any other image property
that’s changed) and then transforming the resulting image to PyTorch tensor
with normalization of the red, the green and the blue color channels of the
image, so the input image distribution has zero mean and unit variance. This
transformation composition is given as an argument in the constructor of the
dataset object, whose structure can be seen in figure 4.3. In this figure, lines
15 to 26 are responsible for loading an image, ensuring it’s not grayscale,
and returning a dictionary with the image and corresponding image class.
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Figure 4.3: Image dataset representation boils down to subclassing a Dataset class, which
abstracts away the details of  image handling. Only two methods must be overriden,  the
getter of one image and its label, and the dataset size. PyTorch automagically packs multiple
these images to tensors which are then given to the mode as input.



Lines 25 to 28 back in figure  4.2 define DataLoader objects,  which
know how to communicate with PyTorch Dataset  classes to  load them in
multiple threads to batch tensors. Other arguments are the number of images
in one batch and whether or not to immediately push the resulting tensor to a
GPU, and whether or not to read the dataset sequentally. In the last steps,
the  model  is  changed  to  reflect  the  classes  of  FGVCx  dataset,  and  not
ImageNet,  and pushed to  the GPU for  faster  computation.  The final  train
function  call  is  then  only  preceded  by  the  definition  of  the  optimizer
component, which is Adam, and the loss function, which is CrossEntropy.

4.4 Training procedure
The  train_model function accepts the following arguments: a model,

dictionary of data loaders, loss (or criterion) function, optimizer, device object,
the number of epochs and the number of the epoch in which updating only
the last layer stops and updating the whole network begins. As the entire
function has a lot of feedback prints and statistic collection, only the most
interesting excerpt is showed in figure 4.4 that directly updates the model.

Lines 35 to 40 prepare the model for one of two phases, training and
evaluating phase. In the training phase, the partial inputs and the gradients
are remembered, as they are needed for the backpropagation algorithm. In
the  evaluation  phase,  the  model  is  not  updated  and  none  of  the
forementioned  tensors  are  needed.  Next,  batch  tensors  of  images  and
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Figure 4.4: Portion of the training procedure



classes are extracted from the data loader. It’s mandatory for the both input
tensors, output tensors and the model to be on the same device, and lines 46
and 47 send the tensors to the same device there the model is. The most
important step is in line 51 where the inputs are finally applied to the model,
giving outputs which are then compared with our criterion function to estimate
the loss. Backpropagating the loss in line 58 computes the derivatives all the
way  back  to  the  very  first  layer  (as  explained  in  section  2.3)  and  then
optimizer updates the weights via method call in line 59.

17

Figure  4.5: OO  approach  to  CAM  visualization.  The  code  was  adapted  from  publicly
available repository of the code this thesis is based on.[9]



4.5 Activation map visualization
Activation  maps  are  maps  of  the  activation  magnitude  in  the  last

convolutional layer. For the ResNet50 example, the last convolutional layer
has 2048 feature maps which are subsequently reduced to a vector by global
average poooling module.  This  is  output  is  then linearly  mapped to  a 50
dimensional  space to get the prediction vector.  The activation map of the
most probable class, the highest exit scalar, is plotted with a weighted sum of
that neuron’s input weights and 2048 convolution activations. The resulting
array  is  the  activation  map  of  an  image  for  the  predicted  class.  This
procedure is illustrated in figure 4.5.

The code for the generation of the images is borrowed from public
repository[9] and adapted to the object oriented paradigm. Constructor of the
CAMapper class in lines 28 to 39 takes the model as input, and registers a
private list for activations to be put in. This way, every time  a picture is sent
through a model the activations can be accessed. The core of the procedure
is  in  method  .process() which  takes NumPy array  and gives  it  to  the
model,  preprocessed  or  not,  to  produce  outputs  and  then  calls  a  helper
function to actually a compute the class activation map of the class with the
highest output. The helper function in lines 12 to 24 takes does the matrix
product of weights and activations in line 18, normalizes the result matrix to
be in range [0, 255] in line 22, and then rescales the resulting matrix to be the
same size as the input image in line 23. Afterwards, back in the process
method in line 65, a heat map is taken of the resulting CAM as to show the
activation magnitudes in colors,  which is finally interpolated with the input
image in line 66 to produce a visualization.
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5 Experimental results

The goal of this thesis was to train a neural net classifier, visualize  the
class activation maps in convolutional neural networks, and test whether or
not the maps can be used as a localization technique.

5.1 Classification results

5.1.1 FGVCx

FGVCx dataset proved to be very hard for training an artificial neural
network classifier.  First  of  all,  the dataset  contains very different  types of
images,  from  ordinary  mushroom  images  in  nature,  over  images  of
mushrooms that are sliced open, to microscope images of fungi spores or
even hand drawn sketches. With that variety comes another difficulty which is
intrinsic to this dataset, and it’s that many species of fungi share a common
‘mushroom-like’ figure. This is proved experimentally by calculating different
top-k accuracies, where k stands for an integer of how many top probabilities
are taken into consideration. It’s easily seen in figure 5.1, last row, that error
drops from 25% when considering only the top prediction, to less than 10% if
considering  top  three  predictions,  and  under  5%  if  considering  top  5
predictions. This means the model has a general idea of what the species
does the fungus belongs to, but cannot pinpoint the exact class because the
classes are simply too similar one to each other. Visual representation of this
data can be seen in figures  5.2 and  5.3. The data shows consistent loss
dropping and accuracy raising for train, but not for val, which shows some
noise around the saturation point. Significant differences between accuracy
thresholds can be seen. This is further shown in confusion matrices for the
train and val set in figures 5.4 and 5.5 respectively. It’s also easily seen the
confusion  matrices  don’t  have  a  strong  diagonal,  but  have  a  few  strong
columns which correspond to the most predicted classes.
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Figure  5.1: Table of  experimental  data  while  training on FGVCx. Training loss is  slowly
converging, but validation loss reached a plateau around 1.6. Visual representation of this
table is shown in the next pages.
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Figure 5.2: Graph of accuracies while training on FGVCx. The gains of taking more than just
the first prediction are significant. Training accuracies are rising steadily over the epochs, but
validation accuracies oscillate around some value.

Figure  5.3: Graph  of  loss  while  training  on  FGVCx.  The  training  loss  is  consistently
converging, but validation loss is oscillating around 1.6, which is acceptable if we compare
this value with the maximum cross entropy loss for 50 classes (ln(50)=3.912.)
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Figure 5.5: Confusion matrix on the FGVCx val set. Although it looks similar to the
figure 5.4, the size of validation is very small, which makes many squares zero.

Figure  5.4: Confusion  matrix  on  the  FGVCx  train  set.  The  numbers  are  not
normalized per class size, but they show original numbers. Ideally, the diagonal
should be strong, but many of the predictions are dispersed in other classes.



5.1.2 Pascal VOC 2007

Since the original paper this thesis is based on worked on Pascal VOC
2007  dataset,  all  of  the  experiments  were  repeated  with  it.  Multi  class
learning was used, as opposed to multi label learning, which means out of
many annotations, only one was used for each image in the training set. The
first thing to notice is that the number of epochs is now much smaller (20 for
VOC as opposed to 75 for FGVCx). Secondly, despite the smaller number of
epochs, the results are much better, both quantitatively, and qualitatively, as it
shall be seen in section  5.2. Here the classes are much more distinct, and
taking  more  than  the  top  three  predictions  doesn’t  really  help  the
classification accuracy, as the gain is under 2%, which is shown by the figure
5.7, last row. It can also be seen that the network reaches some sort of a
validation  plateau  after  just  a  few  epochs,  while  the  training  loss  and
accuracy continue their expected changes.

In this experiment the confusion matrices of the train and validation
set,  shown in figures  5.10 and  5.11 respectively,  are very similar to each
other.  However,  they  both  have  noticeable  first  row  and  column,  which
correspond  to  the  person class,  and  second-to-last  column  which
corresponds  to  the  sofa class,  and  also  a  very  strong  diagonal.  This
indicates  the  network  doesn’t  overfit  to  the  training  set  and   retains  its
generalization capabilities, due to the distinction of the classes.
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Figure  5.7: Table of experimental data while training on Pascal VOC 2007. Here the
results are much better in comparison with the FGVCx dataset

Figure 5.6: Intersection-over-union metric on the Pascal VOC 2007 dataset generated from
confusion matrix on the training and validation image set. Training IoU is consistently greater
than validation IoU, but the two are very correlated.
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Figure 5.9: Graph of accuracies while training on Pascal VOC 2007. Validation accuracies
reach a certain threshold after 5 epochs and don’t increase, while training accuracies tend to
still increase, although slow. Taking more than three top predictions does not really help the
model as it’s almost sure to guess the correct class in those three tries.

Figure 5.8: Graph of loss while training on Pascal VOC 2007
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Figure  5.11: Confusion matrix of the Pascal VOC val set. It looks similar to the
figure 5.10, but more dispersed with a strong first column, the person class

Figure  5.10: Confusion matrix of the training set. Once again original numbers,
and not normalized, are plotted. Unlike figure 5.4, here the diagonal is very strong.



5.2 Activation maps

5.2.1 FGVCx

Class activation maps of the FGVCx dataset are shown in figure 5.12.
It can be seen that the forms of the activation heat maps roughly approximate
the shape and the position of the fungi. An interesting phenomenon can be
spotted:  some  objects  are  shown  to  be  surrounded  by  blue  with  red
background, and some are the direct opposite. Since the heat map maps the
small  numbers (by relation,  not  magnitude) to  the blue color,  and greater
numbers  to  the  red  color,  it  follows  that  for  some  classes  the  activation
vector’s weights are mostly negative. Nevertheless, the absolute magnitude
approximately localizes the object regions. Also, the heat maps mostly have
irregular and ‘wavy’, dispersed forms. This will be explained in section 5.2.2.

25Figure 5.12: Class activation maps for some images from FGVCx. They are mostly around 
the object which is annotated, yet are irregular and ‘wavy’. Some objects are localized with 
the blue color (top left) and some with the red color (next one).



5.2.2 Pascal VOC 2007

Class activation maps for Pascal VOC 2007, shown in figure 5.13, are
much more regular and compact. This is also connected to distinction of the
classes. Since Pascal VOC images are very distinct, a model can only mark
a  general  position  as  important,  since  it’s  very  confident  in  it’s  decision,
resulting in condensed heat maps. This is different from FGVCx where a lot
of classes are mutually similar and the model needs to specify what features
disambiguate  an  input  image,  and  where  they  are  positioned.  This  is
analogous to the humans specifying the features a poisonous fungus could
have. These heat maps show once more the nondeterminism of activation
vector’s  weights,  as some images have the negative blue spectrum as a
central region, and some have the positive red spectrum.
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Figure   5.13: Class  activation  maps  for  some  images  from  Pascal  VOC.  The  same
phenomenon of nondeterministic image localization can be seen. Here the activation maps
are  much  more  compact  and  surround  the  object  more  precisely  in  comparison  with
activation maps of images from FGVCx.



5.3 Lowest ranked false negatives and highest 
ranked false positives

The exit of a neural network classifier is the conditional probability of a
class given the image. Lowest ranked false negative for a given class is the
image labeled as that class, for which the model outputs probability that is
lower than any probability outputted for the other images that are labeled as
that very class. Likewise, the highest ranked false positive for a given class is
the image that’s not labeled as that class, but has the highest probability for
that class among any other images that are also not in that class. These
images  are  usually  mislabeled  in  other  datasets,  or  can  be  assigned  a
different class, but Pascal VOC doesn’t have mislabeled images.

Lowest ranked false negatives for a subset of the Pascal VOC dataset
can be seen in figure  5.14. A quick glance at the feature maps shows that
they  are  mostly  around  the  object  they  should  recognize,  which  hint  the
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Figure 5.14: Lowest ranked false negatives of Pascal VOC. For every class an image was
found for  which  the  model  outputs  the  lowest  probability.  Images are  plotted  with  their
activation  maps,  true  class  /  predicted  class  respectively,  and  true  class  probability  /
predicted class probability respectively. Activation maps are of the class the model predicted,
and not the true class. Only images that are annotated with only one class were considered
for this visualization



model’s certainty in its decision. A more detailed analysis shows how some of
the false classification could be considered as an honest mistake by a model,
e.g.  cow class that was annotated as a dog, due to images of dogs on the
beach perhaps, or how the table tennis table looks like a flower pot from that
angle.  Other  images  show  how  some  class  predictions  depend  on  the
context in the image, such as the left two images for the person class that
was labeled as a train or boat. It’s easy to imagine a boat making those
waves.

Highest  ranked  false  positives,  shown  in  figure  5.15,  have  similar
characteristics as lowest ranked positives. The heat maps are also irregular
but more scattered. Since the images are not labeled as the model predicts,
localization is not very precise. Detailed observation once again shows us
how the context influences model’s decision, for example  tvmonitor can
really be placed in the blue region in the second image, and train does in
fact resemble the shipyards. One could also notice that some images have
smaller differences between the colors. This is due to low activations across
the whole image as the model is insecure in his predictions. This can be
interpreted that the trained model would successfully combat badly annotated
data if they existed, and would generalize well, as he’s fairly certain image is
of some other class, and not the labeled one.

28

Figure  5.15: Highest ranked false positives for a class, sorted by the predicted class. For
every class only the images not labeled as that class were considered. Among them, the
image with the highest model output for the selected class is shown. CAM’s were plotted for
the labeled class, and not for the predicted, to emphasize the model’s insecurity of the real
class. Many of the mispredictions can be attributed to the image context (aeroplane, boat) or
image resolution (tvmonitor, cow).



6 Conclusion
This  thesis  focused  on  convolutional  neural  networks  as  image

classifiers.  By  doing  a series  of  experiments  on  two different  datasets,  it
explored  what  do  the  convolutional  neural  networks  actually  learn.  The
experimental results show that if the classes are distinct enough, learning the
model  will  be  quicker  and  easier,  with  lower  loss,  higher  accuracy,  and
rounder, more compact activation maps. If the classes aren’t distinct enough,
though, the training will  last much longer with less of a progress, and the
activation maps become irregular and dispersed. The activation maps are
usually near or around the object that’s labeled in the image, opening up a
usage  for  object  localization.  Dispersed  activations  usually  concentrate
around the features of an object  that allow the model  to infer the correct
class, and not the whole object. Highest ranked false positives show that the
model  can sometimes correct  a mislabeled picture as it  generalizes well.
Class  activation  maps show that  the  activations  are  closer  to  zero  if  the
model  is  unsure  about  the  resulting  class,  coloring  a  heat  map  more
uniformly,  as  it  cannot  pinpoint  what  image  features  are  decisive  for  the
correct classification.
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8 Summary
This  thesis  focused  on  convolutional  neural  networks  as  image

classifiers by doing a series of experiments on two different datasets. After a
brief  introduction to  deep learning discipline,  a short  overview of the best
practices  was  given.  A  pretrained  model  with  residual  connections,
ResNet50, was selected, in combination with Adam optimizer. It was trained
for  classification  in  appropriate  number  of  epochs.  It  was  shown it  could
guess a correct fungi species, and it classifies general objects with 97% top
three  accuracy.  Later,  if  was  shown  that  over  similarity  of  fungi  species
inhibits further learning of the network. This type of problems is not found in
Pascal  VOC dataset.  While  learning  the  classification  of  the  objects,  the
network implicitly learned how to a) localize objects themselves and b) how
to localize specific features that distinguish one class from another. It’s been
demonstrated with lowest rated positives and highest rated negatives of the
Pascal  VOC  validation  dataset  that  the  network  has  problems  with
ambiguous classes but generalizes well and can correct mislabeled data.

Keywords: convolutional  neural  network,  deep learning,  residual  models,
fungi, Pascal VOC, class activation maps, localization, classification

Ovaj završni rad se fokusirao na konvolucijske neuronske mreže kao
klasifikatore  slika  u  nizu  eksperimenata  na  dva  različita  skupa  podataka.
Nakon  kratkog  uvoda  u  područje  dubokog  učenja,  dan  je  kratki  pregled
najboljih  praksi.  Odabran  je  predtrenirani  rezidualni  model  ResNet50,  u
kombinaciji  sa  Adam  optimizatorom.  Model  je  treniran  za  klasifikaciju  u
odgovarajućem broju  epoha.  Rezultati  pokazuju  da model  predviđa  točnu
vrstu gljive, te da može klasificirati općenite objekte sa preko 97%-postotnom
točnosti  u najbolja tri  pokušaja. Kasnije, dokazano je da prevelika sličnost
različitih  vrsta  gljiva  usporava  daljnje  učenje  i  porast  točnosti.  Ovaj  tip
problema nije bio primjećen u Pascal VOC skupu podataka. Tijekom učenja
klasifikacije objekata, mreža je implicitno naučila i a) lokalizirati same objekte
na  slici  i  b)  lokalizirati  posebne  značajke  koje  razlikuju  jedan  razred  od
drugog.  Demonstracija  najlošije  rangiranih  pozitiva  i  najbolje  rangiranih
negativa pokazala je da mreža ima problema sa višeznačnim razredima, no
generalizira dobro i može ispraviti pogrešno označene podatke.

Ključne riječi:  konvolucijska neuronska mreža,  duboko učenje, rezidualni
modeli,  gljive,  Pascal  VOC,  mapa  razrednih  aktivacija,  lokalizacija,
klasifikacija
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