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PURPOSE

Effects of numerical conditioning in the essential estimation
(calibrated, overconstrained, closed-form)2 analyse the eight-point alg. (8pt) forward bias2 discuss the conditioning of five-point alg. (5pt)2 validation by comprehensive performance evaluation
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BENEFITS

Why I think this might be of interest to you :2 what causes the 8pt alg. forward bias?2 comparison of known conditioning approaches (8pt alg)2 conditioning the 5pt algorithm2 performance evaluation 5pt vs 8pt vs hg in the
overconstrained case
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AGENDA2 Introduction (short)2 Analysis of the 8pt forward bias2 Review of the 8pt conditioning (short)2 Conditioning the 5pt algorithm2 Experimental validation2 Conclusion
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INTRODUCTION

Context :2 re-estimating relative orientation on the set of inliers2 we can’t solve directly for (R,t), use intermediate objects2 ) calibrated, overconstrained, closed-form E, H, ...
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THE ESSENTIAL MATRIX

The recovery approaches rely on two constraints:2 the epipolar constraint:q>iB � E � qiA = 02 the calibrated (5DOF) constraint:2 � EETE� trae(EET )E = 0 (v1)

An�9 � e = 0

AE = a � E6 + b � E7 +  � E8 + d � E9

e> � [ e1 e2 e3 e4 e5 ℄ = 0>
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The eight-point algorithm (8ptAlg) employs epipolar constraint:An�9 � e = 0

The five-point algorithm (5ptAlg) enforces the 5DOF constraint
on the span of lower 4 right-singular vectors of A:E = a � E6 + b � E7 +  � E8 + d � E9

This is equivalent to:e> � [ e1 e2 e3 e4 e5 ℄ = 0> (v2)
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THE 8PT-ALG FORWARD BIAS

The i-th row of the matrix A:Ai = [xiBxiA xiByiA xiB yiBxiA yiByiA yiB xiA yiA 1℄

ai1 = ^ai1 + ^xiB�xiA +�xiB^xiA +�xiB�xiAai3 = ^ai3 +�xiB � = 45Æjai1 � ^ai1j < jai3 � ^ai3j

rEql =pE[var(ai1)℄=E[var(ai3)℄ = tan(�=2) �p2=3rEql(� = 45Æ) = 0;33rEql(� = 102Æ) = 1
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Under default conditions (� = 45Æ):jai1 � ^ai1j < jai3 � ^ai3j!
The deviation ratio can be determined:rEql =pE[var(ai1)℄=E[var(ai3)℄ = tan(�=2) �p2=3rEql(� = 45Æ) = 0;33rEql(� = 102Æ) = 1

Conditioning in relative orientation: The 8pt-alg forward bias 7/18



THE 8PT-ALG FORWARD BIAS (2)

Estimation favours solutions E with largeonv(E) = j[E13;E23;E31;E32℄j�1

am = argmaxa onv([a℄�R) � [ 0 0 1 ℄>
E(H) = [a℄� �H; 8 a 2 R 3;
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THE 8PT-ALG FORWARD BIAS (2)

Estimation favours solutions E with largeonv(E) = j[E13;E23;E31;E32℄j�1

For moderate rotations conv attains maxi-
mum near the forward direction:am = argmaxa onv([a℄�R) � [ 0 0 1 ℄>
The bias especially affects the planar case when the epipolar
constraint is degenerate: E(H) = [a℄� �H; 8 a 2 R 3;

However, the bias also affect the usual 3D contexts , where the
distance to the target is much greater than the baseline

Here the translation errors can be approximately
compensated by slight rotation deviations;
small residual changes in the whole translation spectrum!
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NUMERICAL CONDITIONING

Review of the 8pt conditioning approaches:

In Hartley’s normalization, we recover E0 = T2�>ET1�1,
relating the transformed points q0ik = Tkqik; k = A; B

Aeq =WL �A �WRAeq � e0 = 0 e0 =WR�1 � eWR e0

4n� (3n+ 9)
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NUMERICAL CONDITIONING

Review of the 8pt conditioning approaches:

In Hartley’s normalization, we recover E0 = T2�>ET1�1,
relating the transformed points q0ik = Tkqik; k = A; B
Mühlich considers an equilibrated matrix Aeq =WL �A �WR

The new system is Aeq � e0 = 0, where e0 =WR�1 � e
The proposed WR ensures a zero-mean expected error in e0

Wu et al. have reformulated the linear estimation problem:
the new matrix has only linear entries, but is 4n� (3n+ 9)

Results similar to equilibration
The procedure is much more computationally demanding
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CONDITIONING THE 5PT ALGORITHM

Although the individual right-singular vectors are very sensitive,
their span is quite stable!

Deviations Æi=min(jei�^eij; jei +^eij), sidewise motion, N=104, �=1:
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Hence, the conditioning much less beneficial than with 8ptAlg.
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EXPERIMENTS

Parameters of the artificial experimental setup:2 geometric: �, �, distance, depth, slant2 imaging: �H , �, resolutiony for �H=45Æ is 384�288

(�5Æ;90Æ;10;5;0Æ) (�23Æ;60Æ;2;1;0Æ) (23Æ;�60Æ;2;1;�30Æ)
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EXPERIMENTS (2)
We consider the accuracy of the recovered epipole t
in variants standard, hartley and muehlich

We perform 104 experiments with 50 random points and observe:

2 t ^t2 �t := ℄(t;^t)2 medf�tg

180
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in variants standard, hartley and muehlich

We perform 104 experiments with 50 random points and observe:2 Spherical distribution of the epipole t (the arrow denotes ^t)2 Distribution of the angular epipole error �t := ℄(t;^t)2 Dependence of medf�tg on different parameters of the setup
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EXPERIMENTS (3)
8pt-standard epipoles in degenerate and noisy datasets:

Common: distance=10, �H=45Æ
Top: depth=0, �=0. Bottom: depth=5, �=1.
Left: �=(120Æ,180Æ), �=0Æ. Right: �=135Æ, �=(-20Æ,20Æ).
The shifted modes clearly reflect the forward bias

Backward motion (j�j >90Æ) produces t with positive z
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EXPERIMENTS (4)
The bias goes away for large �H , low �, low distance or
conditioned data:

Common: distance=10, depth=5, �=135Æ, �=0Æ, �H=45Æ, � = 1

Top: �H=60Æ,90Æ,100Æ,120Æ
Bottom: �=0;2, distance=3, normalization, equilibration.
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EXPERIMENTS (5)
Normalization and equilibration perform similarly, except for
forward motion:

Common: distance=10, depth=5, �=170Æ, �=0Æ, �H=45Æ

Left: �=0;5, Right: �=1;0
Top: normalization, Bottom: equilibration
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EXPERIMENTS (6)
5pt vs 8pt for 3D scenes (medf�tg, distance=10, depth=5)

�=1;0; �H=45Æ.
5pt disambiguation relies on the total reprojection error

Conditioning helps more 8pt than 5pt
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EXPERIMENTS (7)
5pt vs hg for planar scenes (medf�tg, distance=10, depth=0)

�=1;0; �H=45Æ
5pt and hg disambiguation
uses groundtruth!

5pt conditioning always
improves the results

hg always better than 5pt
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DISCUSSION

The addressed issues :2 8pt forward bias2 5pt numerical conditioning2 experimental validation

2 �H22 22 Æ Æ2
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DISCUSSION

The addressed issues :2 8pt forward bias2 5pt numerical conditioning2 experimental validation

Conclusions :2 8pt-standard performance strongly depends on �H2 5pt conditioning less beneficial than 8pt conditioning2 5pt better than 8pt for:2 shallow scenes2 small number of points
break-even point: 20 (45Æ),50 (90Æ)2 Model selection required for best results
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