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Abstract

We study the influence of numerical conditioning on

the accuracy of two closed-form solutions to the overcon-

strained relative orientation problem. We consider the well

known eight-point algorithm and the recent five-point al-

gorithm, and evaluate changes in their performance due to

Hartley’s normalization and Muehlich’s equilibration. The

need for numerical conditioning is introduced by explain-

ing the known occurence of the bias of the eight-point al-

gorithm towards the forward motion. Then it is shown how

conditioning can be used to improve the results of the re-

cent five-point algorithm. This is not straightforward since

the conditioning disturbs the calibration of the input data.

The conditioning therefore needs to be reverted before en-

forcing the internal cubic constraints of the essential ma-

trix. The obtained improvements are less dramatic than in

the case of the eight-point algorithm, for which we offer a

plausible explanation. The theoretical claims are backed up

with extensive experimentation on noisy artificial datasets,

under a variety of geometric and imaging parameters.

1. Introduction

We consider the recovery of relative orientation [6] (or

relative pose [5]), expressing the relation between the met-

ric coordinates (i.e. Euclidean up to an unknown scale fac-

tor) of the two camera frames. A prominent approach to

achieve that in closed-form relies on the decomposition of

the essential matrix into motion parameters [8]. In gen-

eral, essential matrix can be recovered only if the images

have been acquired with calibrated cameras, allowing the

points to be directly expressed in coordinates of the under-

lying pinhole camera model. In this calibrated context the

essential matrix is strongly related to the well-known epipo-
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lar constraint. In fact, the essential matrix is uniquely con-

strained in many situations of practical importance by the

epipolar constraint alone. This is the main idea behind the

well-known eight-point (8pt) algorithm [6], in which the re-

covery is expressed as a solution to the linear system of ho-

mogeneous equations.

A disadvantage of the 8pt algorithm is that it does not

enforce all available constraints. The 8pt algorithm requires

at least 8 correspondences, while it has been long known

that 5 correspondences in general position provide at most

10 solutions [6, 2]. The additional constraints express the

characteristic algebraic structure of the essential matrix, and

can be enforced by solving a system of cubic equations. An

efficient procedure for achieving that in closed-form is at

heart of the recent five-point (5pt) algorithm [10]. A ma-

jor benefit of the 5pt algorithm is that it can be applied to

subsets of only five correspondences. In a typical random

sampling environment, this ensures faster guessing in pres-

ence of outliers and, together with a fair execution speed,

can significantly release the computational burden in a real-

time application.

The interest for the 8pt algorithm has been revived in

the vision community after the Hartley’s normalization has

been introduced in [3, 1]. There it has been shown that,

in the overconstrained case when more than 8 correspon-

dences are available, substantial improvements are obtained

after subjecting the image coordinates of the employed

point correspondences to a normalizing linear transform.

A different numerical conditioning scheme has been pro-

posed by Muehlich [9], consisting in right-multiplication of

the matrix of the linear system with a suitable equilibration

matrix. Yet two other conditioning schemes have been pro-

posed in [14, 15], but the reported results seem to be close

to the results of Hartley’s normalization.

Despite the dramatic effects of the conditioning ap-

proaches to the 8pt algorithm performance, there are no pre-

vious studies of their eventual suitability in the context of

the overconstrained 5pt algorithm, to the best of our knowl-

edge. The two algorithms are strongly related in the over-



constrained case, since the output of the 8pt algorithm is

one of the four inputs to the main procedure of the 5pt al-

gorithm. We therefore found it intriguing that the 5pt algo-

rithm seems to provide a fair performance without condi-

tioning, while the experimental evidence [3, 9] implies that

unconditioned data produce devastating effects on the 8pt

algorithm.

In this paper, we propose some answers to the above is-

sues, by presenting an advance towards a unified view of

the influence of numerical conditioning to the recovery of

the essential matrix. In order to provide a better intuition

of how exactly unconditioned data spoil the accuracy of the

8pt algorithm, we provide a novel explanation of the for-

ward bias [9] in the recovered epipole, which regularly oc-

curs under common imaging conditions. We also show how

the two conditioning schemes can be applied to the 5pt al-

gorithm, as well as why the obtained effects are in general

less prominent than in the case of the 8pt algorithm.

The paper is organized as follows. Section 2 reviews the

two constraints which have been used to recover the essen-

tial matrix. The explanation of the 8pt algorithm forward

bias is presented in Section 3, as a consequence of a spe-

cial kind of poor conditioning in the input data. The two

conditioning schemes are reviewed in Section 4, while the

suitability of their application in the case of the 5pt algo-

rithm is discussed in Section 5. The extensive experimental

results on noisy artificial data, which support and extend the

theoretic propositions, are presented in Section 6. Finally, a

short discussion and a conclusion are provided in Section 7.

2. Recovery of the essential matrix

Let a common set of 3D points Qi be observed by two

calibrated cameras Ck, k = A, B. Let the rigid body dis-

placement of the camera B with respect to the referential

coordinates of the camera A be given with (R, t). Then,

the 3D points can be expressed in coordinates of the two

cameras as QiA = Qi, and QiB = RQi + t. The rela-

tion between the corresponding homogeneous points qik in

two views k = A, B is defined by the well known epipolar

constraint: [6, 4]:

q⊤

iB · E · qiA = 0. (1)

The above constraint involves the essential matrix E3×3 [6]

only if the two images are calibrated, i.e. their coordinates

are expressed in units for which the focal length in the pin-

hole camera model equals one. Let [a]
×

denote a skew sym-

metric matrix such that [a]
×
· x = a × b, ∀ a,b ∈ R

3.

Then the relation between the essential matrix and the rel-

ative orientation is E = [t]
×
· R. The magnitude of the

translation can not be recovered since the constraint (1) is

homogeneous. Thus, the essential matrix has only 5 de-

grees of freedom, while the remaining 3 degrees of freedom

towards a general homogeneous matrix are enforced by the

following cubic constraint [2]:

2 · EET E − trace(EET )E = 0 (2)

The algorithms for recovering the essential matrix can

be divided in calibrated and uncalibrated ones, depending

on whether they enforce the cubic constraint (2) or not. The

eight-point (8pt) algorithm [6] is the most widely known

uncalibrated procedure. It relies exclusively on the epipo-

lar constraint which is linear in coefficients of the essential

matrix. Thus, each correspondence pair defines one row of

the system

An×9 · e = 0, (3)

yielding the vector e with elements of the essential matrix:

e = [ E11 E12 E13 E21 E22 E23 E31 E32 E33 ]⊤ (4)

The system is usually solved by enforcing |e| = 1 using

SVD [12]. Eight or more distinct correspondences uniquely

define the relative orientation, except in some special ar-

rangements of the camera and the imaged points, known as

degenerate configurations [4]. The only degenerate configu-

ration which occurs frequently in practice involves a planar

scene and arbitrary positions of the two cameras, and will

be further discussed in Section 3.

The recent 5pt algorithm [10] is the most evolved cali-

brated algorithm for recovering the essential matrix. It con-

structs the solution E satisfying (2), as a linear combina-

tion of matrices Ei, corresponding to the four lowest right-

singular vectors of the matrix A, ei, i=6,7,8,9:

E = a · E6 + b · E7 + c · E8 + d · E9. (5)

Thus, the procedure is applicable to sets of only five corre-

spondences. However, due to the involved nonlinearity, the

solution is not unique: the algorithm may return up to 10

motion hypotheses. Spurious hypotheses can be rejected by

looking at the reprojection error [11] corresponding either

to an additional (6th) point or to all available correspon-

dences in the two images. Due to the enforcement of (2),

the 5pt algorithm faces no degeneracy in the planar case.

However, in the presence of planar ambiguity [7, 13], two of

the returned hypotheses will satisfy all available constraints

up to deviations due to noise. Without further assumptions,

the disambiguation can be performed using a third view of

the scene [10].

3. The forward bias of the 8pt algorithm

Assume that two cameras observe a common planar

scene and denote the corresponding homography as H.

Then the class of matrices satisfying the epipolar constraint

(1) can be concisely written as [4]:

E(H) = [a]
×
· H, ∀ a ∈ R

3. (6)



Thus, an algorithm enforcing the epipolar constraint in the

planar case is confronted with a projective subspace of so-

lutions, although at most two of them can be correct [7].

A base for the subspace can be obtained by setting a in (6)

equal to the three canonical unit vectors. The resulting three

matrices are linearly independent (assuming that H has full

rank), which implies that the subspace has two dimensions.

Despite this degeneracy, previous researchers [10] have

noticed an “excellent” performance of the unconditioned

8pt algorithm in the case of the forward motion. This

anomaly is due to the known bias of the unnormalized 8pt

algorithm [9]. We shall show that, in the case of a distant

plane, the 8pt algorithm favours a solution with an approx-

imately correct rotation and the epipole t in the middle of

the second image, regardless of the actual displacement.

Consider again the matrix A of the linear system (3).

The i-th row of A is obtained by applying the epipolar

constraint to the point correspondence qiA ↔ qiB, where

qik = [xik, yik, 1]⊤, k = A, B:

Ai = [xiBxiA xiByiA xiB yiBxiA yiByiA yiB xiA yiA 1] . (7)

Assume the uniform distribution of the points in a square

image and independent zero-mean noise with same variance

in both images σ2 = σ2
A = σ2

B. Denote the error in variables

with ∆, and label the unperturbed counterparts with a “hat”.

Then the elemens of the column 1 of A can be expressed as:

ai1 = x̂iBx̂iA + x̂iB∆xiA + ∆xiBx̂iA + ∆xiB∆xiA

≈ âi1 + x̂iB∆xiA + ∆xiBx̂iA. (8)

The above equation implies that the error in the entries of A

is also zero-mean [9], so that their variance is equal to:

var(aij) = E[(aij − âij)
2]. (9)

If we now consider the point coordinates as random vari-

ables too, we can determine the expected variance of the

columns of the matrix A. Denote the field of view of the

square image as α. Then, due to independent noise and

a decorrelated point distribution, the expected variance for

column 1 is:

E[var(ai1)] ≈ E[(x̂iB∆xiA + ∆xiBx̂iA)2]

= E[(x̂iB)2] · σ2
A + σ2

B · E[(x̂iA)2]

= 2 · σ2 · (2 tan(α/2))2/12 . (10)

The same result would be obtained for any other column

with quadratic entries, j=1,2,4,5. On the other hand, the

variance of linear entries is simply:

var(aij) = σ2, j = 3, 6, 7, 8. (11)

For usual cameras with α=45◦, the ratio of the two vari-

ances above is 0.111. Thus the columns 3,6,7 and 8 of A

1 The ratio equals one for α ≈102◦, and then the bias disappears.

will be affected most by the noise in the input data2. The

noise is conveniently suppressed in solutions having small

values in the four involved entries of E: (1,3), (2,3), (3,1),

(3,2). Define the measure of the convenience as:

conv(E) = |[ E13 E23 E31 E32 ]|−1 (12)

We have experimentally verified that, for moderate rotations

(less than π/4) around an arbitrary axis, the convenience of

[a]
×
R attains a maximum very close to the optical axis:

am = arg max
a

conv([a]
×
R) ≈ [ 0 0 1 ]⊤. (13)

This does not come as a surprise since only for am, two of

the four linear components are always zeroed out.

The above discussion shows that the unconditioned lin-

ear algorithm tends to recover a forward motion whenever

the solution to (3) is not distinctive enough. The disorder

occurs especially in the presence of planar degeneracy, but

also disturbs the correct solution in the presence of noise.

In usual configurations, the target distance is substantially

greater than the baseline. Under these conditions, large

translation errors can be approximately compensated by

slight rotation deviations. In other words, relatively small

changes in the residuals are obtained in the whole spec-

trum of translation directions. Consequently, the system (3)

can trade-off the translational accuracy in order to suppress

the residuals which are most corrupted by the noise. The

favoured solutions have small rotational errors, and transla-

tions giving rise to high convenience (12). Due to the prop-

erty (13), this results in a bias on the epipole towards the

optical axis.

4. The two numerical conditioning schemes

Solving the linear system A · e = 0 is equivalent to op-

timizing the following algebraic criterion:

min |A · e| , subject to |e| = 1 (14)

The optimal e turns out to be a solution of AF·e = 0, where

AF is a rank-defficient matrix closest to A in the sense of

the Frobenius norm [4]. If the error due to noise is unevenly

distributed across the entries of A, the quadratical nature of

the Frobenius norm can provide enough leverage to the few

noisiest entries to take complete control over the output of

the procedure, as shown in Section 3. Beneficial modifica-

tions to the standard procedure can therefore be achieved

by manipulating either the input correspondences qik or di-

rectly the matrix of the system A. Note however that any

conditioning approach can improve the results only in the

2A similar analysis of variances has been employed to weight contribu-

tions of individual correspondences in a statistical validation of Hartley’s

normalization [1]



overconstrained case, when (14) involves an algebraic least-

squares solution.

The unevenness of the noise distribution can be allevi-

ated by a general approach for manipulating linear systems

known as equilibration [9]. Equilibration consists in multi-

plying the matrix of the system A with appropriately chosen

weight matrices from both sides: Aeq = WL ·A·WR. The

new, equilibrated system is:

Aeq · e′ = 0 , where e′ = WR
−1 · e (15)

A theoretically sound equilibration approach defines WR

in a way that the expected error of the right-singular vectors

of A⊤
eq be zero [9]. This results in enforcing an unbiased

solution for e. Let Â denote the noise-free version of A,

and let D = A− Â. Then, an unbiased solution is ensured

under an assumption of zero-mean noise by the following

constraint on WR:

WR
⊤ · E[D⊤ · WL

⊤WL · D] · WR = c · I. (16)

E[D⊤WL
⊤WLD] can be estimated from the input data,

by an analysis similar to (10). In the absence of prior es-

timates of the correspondence error, WL can be set to the

unit matrix. From (7) it can be seen that not all columns of

A have errors, which implies that rank(D) < 9. The sim-

plest way to resolve that is by inserting small values at the

corresponding diagonal entries of E[D⊤WL
⊤WLD]. The

original article [9] derives the optimal equilibration matrix

by assuming the error only in one image. We have con-

structed the equilibration matrix under a more widely used

model with error in both images. Perhaps surprisingly, the

two equilibration variants perform nearly the same.

Hartley’s normalization procedure [3, 1] transforms the

points in both images before solving the linear system. This

results in an essential matrix E′ = T2
−⊤ET1

−1 relating

the transformed points q′
ik = Tkqik, k = A, B:

q′⊤

i2 · E′ · q′

i1 = 0, (17)

A proper choice of T1 and T2 ensures a more uniform dis-

tribution of entries in matrix A. The recommended trans-

formation [3, 4] consists of translation and isotropic scaling

such that the centroid of the transformed points is at the ori-

gin, while their root-mean-square radial distance is
√

2 [1].

It has been shown that the Hartley’s normalization achieves

a uniform variance of the n residuals of the linear system

(3), in view of varying image coordinates [1].

Note that the columns of the linear system (7) obtained

from normalized correspondences (17) can be expressed as

a linear combination of the original columns: for each nor-

malization there is an equivalent equilibration. On the other

hand, equilibration with e.g. WR = diag{1, 1, ....1, 1000}
can not be achieved by any normalization. Thus, equilibra-

tion is a proper superset of normalization.

5. Conditioning the five point algorithm

The conditioned 8pt algorithms (15) and (17) solve a

modified linear system which is less susceptible to noise.

The obtained solution is simply transformed back into the

original problem domain before the obtained essential ma-

trix is decomposed into motion parameters. Unfortunately,

this simple procedure can not be easily applied to a cal-

ibrated algorithm which enforces the constraint (2). The

5pt algorithm can therefore only solve for genuine essen-

tial matrices, and is not applicable to the solutions of the

conditioned problems.

Nevertheless, the groundtruth solution of the conditioned

problem ê′ is expected to be close to the span of the four

lower right-singular vectors of the conditioned problem

e′
i
, i = 6, 7, 8, 9. In the case of the right equilibration, we

would have:

WR
−1ê,= ê′ ≈ a · e′6 + b · e′7 + c · e′8 + d · e′9

for some a, b, c, d ∈ R. (18)

Consequently, the real solution should not be far from the

span of the transformed right-singular vectors WR · e′
i
, i =

6, 7, 8, 9. These four vectors can be supplied to the 5pt algo-

rithm which does not require the vectors to be orthogonal,

but just finds up to 10 tuples (a, b, c, d) for which the linear

combination results in an essential matrix.

6. Experimental results

We present experimental results obtained on artificial

noisy data. First we describe the experimental setup. Then

we show experiments with the forward bias of the 8pt al-

gorithm, backing up the propositions from Section 3. After

that, we present results explaining the relative robustness

of the 5pt algorithm to the poorly conditioned input data.

Finally, we evaluate the two conditioning schemes in both

algorithms, for planar and non-planar scenes.

6.1. The experimental setup

The employed experimental setup is very similar to [10],

however additional specifications are provided in order to

ensure the repeatability of the results. Refer to Figure 1.

The left-oriented coordinate system of each camera is set

so that the image plane is defined by the equation z = 1.

The default horizontal field of view is αH=45◦, while the

vertical field of view depends on image resolution (see be-

low). The coordinate system of the camera A is set as the

reference. The geometry of the camera pair is defined by

the two angles θ,φ. The unit translation in the x-z plane is

defined by θ, as the angle between the optical axis of the

first camera and the baseline. The angle φ defines the ro-

tation of the 2nd camera around the common y axis. Thus,

(θ, φ) = (0, 0) implies forward motion with no rotation.



(−5◦,90◦,10,5,0◦) (−23◦,60◦,2,1,0◦) (23◦,−60◦,2,1,−30◦)

Figure 1. The default experimental setup (left), and two custom

setups (middle, right), for αH=45◦. The numbers in parentheses

indicate θ, φ, distance, depth, and slant. The baseline is al-

ways 1.

The random point cloud is instantiated in a volume visi-

ble by both cameras, between two parallel planes. The pa-

rameter distance denotes the distance from the first cam-

era to the closer plane of the volume. The distance between

the two planes is given by depth. The angle between the

comon normal of the two planes and the optical axis of

the first camera is given by slant. The default values are

distance=10, depth=5, slant=0◦. The distribution of

the points in the volume is uniform. In most experiments

φ is set in a way that the two optical axes intersect in the

middle between the two planes.

The points are projected to the two images, and both co-

ordinates of each projection are perturbed with zero-mean

Gaussian noise [4]. The standard deviation of the noise

is expressed in pixels of a 384 × 288 image obtained for

αH=45◦, with the default value of σ = 1.0. In experiments

with different αH , the resolution to which σ refers changes

in a way that the pixel size (and the effective noise) remain

the same. Thus, for αH=30◦ and 60◦, the resolution is set

to 248×186 and 535×401, respectively.

We evaluate the 5pt and the 8pt algorithm on random

samples of 50 points, using normalization and equilibra-

tion (the -hartley and -muehlich variants), as well as

without conditioning (the -standard variant). The exper-

iments in subsections 6.2 and 6.3, as well as each datapoint

in subsection 6.4 involve 10000 repetitions. The experi-

ments were performed in Matlab and C++ using the imple-

mentations of the five-point algorithm provided at the web

site of the authors3, and within the library VW344 from the

University of Oxford, respectively.

6.2. The bias of the 8pt algorithm

It has been shown in Section 3 that the standard 8pt algo-

rithm is biased in the presence of degenerate or noisy data.

3http://vis.uky.edu/∼stewe/FIVEPOINT/
4http://www.doc.ic.ac.uk/∼ajd/Scene/Release/vw34.tar.gz

The bias concerns the epipole t which tends to be near the

optical axis regardless of the actual displacement. Some il-

lustrative experimental results are summarized in Figure 2.

The bias towards forward motion is clearly visible: the

mode of the distributions is always near the z axis implying

that the algorithm recovers forward motion for any motion.

The figure shows that the bias is present in non-planar noisy

contexts as well.

Equations (10) and (11) imply that the bias should disap-

pear when the horizontal field of view approaches 101.5◦.

Figure 3 shows that the experimental results are in concor-

dance with the theory. The bias also disappears in easier

conditions (smaller noise, nearer target) or when normal-

ized or equilibrated versions of the 8pt algorithm are used.

Figure 3. Frequency distributions of the epipole t recovered by the

8pt algorithm. Common conditions: distance=10, depth=5,

θ=135◦, φ=0◦, αH=45◦, σ = 1. Top: αH=(60◦,90◦,100◦,120◦).

Bottom: σ=0.2, distance=3, normalization, equilibration.

Equilibrated and normalized 8pt algorithms perform

quite similarly, except for approximately forward motion

|θ| < 20◦, where the advantage of the equilibrated algo-

rithm is substantial for realistic noise levels. The advantage

of the equilibrated algorithm is illustrated in Figure 4.

Figure 4. Frequency distributions of the epipole t obtained by nor-

malized (left group) and equilibrated (right group) 8pt algorithm,

for σ=0.5 (left) and σ=1.0 (right). distance=10, depth=5,

θ=170◦, φ=0◦, αH=45◦, σ=1.

6.3. The stability of the input to the 5pt algorithm

In order to evaluate sensitivity of the 5pt algorithm to

poorly conditioned data, we analyze the stability of the

right-singular vectors ei of the matrix A (3). We consider

the conditions in which the sensitivity is most likely to ap-

pear: sidewise motion (θ = 90), considerable error (σ = 1)

and a planar scene (depth=0). As an illustrative measure

of deviation, we first calculate the deviations δi from the

groundtruth vectors êi as:

δi = min(|ei − êi|, |ei + êi|). (19)

http://vis.uky.edu/~stewe/FIVEPOINT/
http://www.doc.ic.ac.uk/~ajd/Scene/Release/vw34.tar.gz


Figure 2. Frequency distributions of the epipole t projected to the unit sphere, as recovered by the standard 8pt algorithm, The unlabeled

arrow denotes the groundtruth t. The shifted modes clearly reflect the forward bias both for planar scenes and moderate noise. Top:

depth=0, σ=0. Bottom: depth=5, σ=1. Left: θ=(120◦,150◦,180◦,210◦), φ=0◦. Right: θ=135◦, φ=(-20◦,-10◦,10◦,20◦,). Backward

motion has been specified (|θ| >90◦) in order to obtain t with a positive z coordinate.

The results summarized in Figure 5 imply that the span of

the last four vectors (being determined by the span of the

first five vectors), is quite stable under noise, although the

individual vectors are very sensitive. This explains why the

5pt algorithm is much more resistant to poorly conditioned

data than the 8pt algorithm.

3 6 9

0.5

1

1.5

right−singular vectors
3 6 9

0.5

1

1.5

right−singular vectors
3 6 9

0.5

1

1.5

right−singular vectors

Figure 5. The deviations δi from (19) for default conditions θ =

90, αH = 45
◦, σ = 1, depth=5 (left), planar scene depth=0

(middle) and large field of view αH = 120
◦ (right).

A more precise metric of the span deviation would be

based on dot-products between êi, i = 1, 2, 3, 4, 5 and

ei, i = 1, 2, 3, 4, and vice versa. Denote the matrix of right-

singular vectors as V, so that V = [ei]. Then the matrix

of the dot-products can be expressed as C = V̂⊤V. The

desired metric can be expressed as the sum of the Frobenius

norms of the matrices D1 and D2 obtained as:

D1 = C[1:5,6:9]

D2 = C[6:9,1:5] (20)

The obtained values for |D1|F + |D2|F are plotted against

the horizontal field of view αH in Figure 6, for ei ob-

tained by standard, equilibrated and normalized procedures.

The figure suggests that best results can be expected by

Hartley’s normalization, until the horizontal field of view

reaches 120◦, when the stability of all three methods be-

comes roughly equal. Thus, the results confirm the previous

finding that the data are much better conditioned at wider

fields of view.

6.4. Performance evaluation

We evaluate the influence of the two conditioning sche-

mes (17) and (15) on the accuracy of the recovered rela-
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Figure 6. The dependence of |D1|F + |D2|F from (20) on the

field of view for the default conditions above.

tive pose. The experiments address the error in the recov-

ered epipole ∆t as the harder part [9, 10] of that task. The

experiments consider the dependence of median ∆t on the

groundtruth translation direction.

6.4.1 Results for non-planar scenes

The results obtained for non-planar scenes (depth=5) are

presented in Figures 7 and 8. The multiple hypotheses pro-

vided by the 5pt algorithm are disambiguated by looking at

the overall reprojection error, using all correspondences. As

suggested by Figure 5 in 6.3, the benefits of the condition-

ing are much more substantial in the case of the 8pt algo-

rithm. As shown in Figure 4, equilibration significantly out-

performs normalization for forward motion, while slightly

inferior results are obtained for other motions. However,

in the case of the 5pt algorithm, normalization has an edge

over equilibration, as suggested by Figure 6. The results

show that the 5pt algorithm is usually not the most con-

sistent option in the overconstrained volumetric context, for

common sets of parameters. This is not in concordance with

claims in [10], where the conditioning of the 8pt algorithm

has not been considered, especially for σ < 1.0 [13].



Figure 7. Angular epipole error ∆t plotted against the translation

direction θ, for the 5pt (left) and the 8pt (right) algorithm. σ=0.5,

depth=5, αH=30◦ (top), 45◦ (middle) and 60◦ (bottom).

6.4.2 Results for planar scenes

In the context of planar scenes, the 5pt algorithm is com-

pared with a specialized solution based on the decompo-

sition of the planar homography (hg). Since the planar

ambiguity [7] is more often present than not, we disregard

the disambiguation issues by simply taking into account the

best among the returned hypotheses. The results are sum-

marized in Figure 9. The conditioning benefits are bigger

than in the volumetric case. Despite the improvement, the

homography approach performs better [13].

6.4.3 Results for other parameters of the setup

The experiments presented in the previous two paragraphs

have been performed over the following parameter ranges:

distance ∈ 〈2, 10〉, slant ∈ 〈−30, 30〉, σ ∈ 〈0.2, 2.0〉,
αH ∈ 〈15◦, 90◦〉. The 8pt algorithm conditioning bene-

fits are present in most parameter combinations. They are

proportional to σ, inverse proportional to αH , and vanish

below σ=0.2 and above αH=60◦. Equilibration is substan-

tially better than normalization for forward motion, while

normalization is slightly better for sidewise motion. The

difference between the two is again proportional to σ ·α−1
H .

The 5pt algorithm conditioning benefits are most pro-

nounced for |θ|>45◦, and are always present in planar

Figure 8. Angular epipole error ∆t plotted against the translation

direction θ, for the 5pt (left) and the 8pt (right) algorithm. σ=1.0,

depth=5, αH=30◦ (top), 45◦ (middle) and 60◦ (bottom).

scenes. In volumetric scenes, the benefits start being no-

ticeable at σ=0.5, but their growth stops at σ>1.0. The

benefits are present for αH ∈ 〈45◦, 60◦〉, and vanish for

αH ∈ {30◦, 90◦}. For narrow fields of view αH<30◦, the

conditioning actually worsens the results.

The variation trends for different values of distance

are analogous to the variations in σ. The variations in

depth produce similar results as the variations in σ−1,

however the 8pt algorithm is more affected than the 5pt al-

gorithm. The variations in slant affect the 5pt algorithm

and the homography more than the 8pt algorithm. Never-

theless, the qualitative overall relations are similar to what

has been presented above.

7. Conclusion

The paper addressed the influence of the numerical con-

ditioning schemes to the two prominent algorithms for re-

covering the relative pose. The contributions of the paper

are (i) an original explanation to the forward bias of the

standard 8pt algorithm, (ii) a study on the suitability of the

normalization schemes for the 5pt algorithm, and (iii) per-

formance evaluation in a rigorous artificial environment.

In the choice between 5pt and 8pt algorithms in the over-

constrained non-planar case, there is a subtle trade-off. The

5pt algorithm relies on the stability of the upper 5 right-



Figure 9. Angular epipole error ∆t plotted against the translation direction θ, obtained with the 5pt algorithm and homography decompo-

sition. The scene is planar, depth=0. αH = 30
◦ (left), αH = 45

◦ (middle) and αH = 60
◦ (right). σ=0.5 (top), 1.0 (bottom).

singular vectors and internal constraints of the essential ma-

trix. On the other hand, the 8pt algorithm relies on the low-

est right-singular vector, which becomes much stabler with

normalization. The experiments suggest that the recovery of

the lowest singular vector has an advantage which becomes

lower with noise: in the considered setup for αH=45◦, the

break-even point is above σ=1 pixel of a 384×288 image.

The experimental results suggest that the choice of the

algorithm for recovering the relative pose is highly context

dependent. It therefore seems that a general solution should

make an attempt to choose the best among the three options

(8pt, 5pt, hg). The design of the appropriate tests in the

calibrated context is an open area for future research.
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