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Abstract—In this paper, the performance of a topological-
metric visual path following framework is investigated in dif-
ferent environments. The framework relies on a monocular
camera as the only sensing modality. The path is represented
as a series of reference images such that each neighboring pair
contains a number of common landmarks. Local 3D geometries
are reconstructed between the neighboring reference images in
order to achieve fast feature prediction. This allows recovery
from tracking failures. During navigation the robot is controlled
using image-based visual servoing. The focus of the paper is on
the results from a number of experiments conducted in different
environments, lighting conditions and seasons. The experiments
with a robot-car show that the framework is robust against
moving objects and moderate illumination changes. It is also
shown that the system is capable of on-line path learning.

Index Terms—visual servoing, mapping, localization, visual
memory, path following

I. INTRODUCTION

Intelligent autonomous vehicles have performed amazing
feats outdoors. They have driven thousands of kilometers on
freeways [31], navigated on the surface of Mars [6] and driven
over 200km on a challenging desert route [37]. Systems based
on visual odometry, stereo vision and inertial measurement
unit based systems have achieved significantly high preci-
sion, for example just 9m error after a 9km travel [18].
Even monocular vision based map building is in the realm
of mapping whole suburbs [27] or rapidly performing loop
closure detection on images collected over a 1000km path [10].
However, reliable autonomous navigation outdoors using one
camera and no other sensor still remains an exciting challenge.

One of the approaches for autonomous navigation using
monocular vision is visual path following. In visual path
following, a path to follow can be represented by a series of
reference images and corresponding robot actions (go forward,
turn left, turn right) as in [24]. There a mobile robot navigated
through indoor corridors by applying template matching to
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current and reference images and by using the stored actions.
However, storing the robot actions is not necessary for naviga-
tion. In [33] a robot navigates a 127m long path outdoors while
saving only a series of images from a camera with a fish-eye
lens. To enable pose-based control of the robot in a global
metric coordinate frame, a precise 3D reconstruction of the
camera poses is performed of the frequently (approximately
every 70cm) saved reference images. In the 3D reconstruction
process applied to feature points of the reference images,
global bundle adjustment is used which results in a long (1
hour) learning phase unsuitable for on-line use. The lengthof
the path measured by odometry is used to correct the scale of
the map. After learning the path, the robot can very accurately
reproduce it at 50cm/s velocity.

It turns out that reconstructing the robot’s path, or hav-
ing 3D information is not necessary either. In [4] a robot
navigated 140m outdoors at a speed of 35cm/s with 2D
image information only. During mapping, image features were
tracked and their image patches together with theirx image
coordinates were saved approximately every 60cm traveled.
During navigation, the robot control was based on simple rules
applied to the tracked feature coordinates shared between the
next reference and current image. The robot however relied on
frequent reference image switches to recover from occlusions
due to moving objects. A person walking across the camera’s
field of view between two reference image switches could have
caused a problem due to covering up each tracked feature. In
a later work [5] the authors of [4] added odometry to be able
to compensate for roll on non-flat terrain.

The work described in [15] aimed at indoor navigation, can
deal with occlusion at the price of using 3D information.
A local 3D reconstruction is done between two reference
omnidirectional images. During navigation, tracked features
which have been occluded get projected back into the current
image. The recovered pose of the robot is used to guide the
robot towards the target image.

Similarly to [15], in the work described in [2] indoor nav-
igation is performed using omnidirectional vision. However,
the epipolar geometry is only calculated to validate SIFT
descriptor [21] matches between current and reference image
keypoints and to calculate the required heading direction.In a
thorough experimental evaluation they demonstrated that their
system was capable of planning and executing motions in pure
appearance based topological maps while significant part of
the robot’s view was covered up by moving people.

Recently, Courbon et al. in [9] have successfully demon-
strated outdoor visual path following on a 754m long outdoor
track using a pose based control strategy. Their topological
map consisted of reference images. During navigation, the
robot pose was estimated using homography recovery applied



to images covering 185 degree field of view. A step towards
commercialisation is presented in [8] as a similar framework
is applied to an indoor robot with a potentially inexpensive
processing unit entailing an ARM9 microprocessor and an
FPGA.

Not all robots in the visual path following literature use
manually controlled map acquisition. In [13] the robot gener-
ated an indoor topological-metric map by performing random
motions. During mapping the 3D positions of point features
of individual reference images were estimated using visual
and odometry measurements fused together in a Kalman filter.
The estimation of point feature positions continued during
navigation as well.

Convincing experimental results for outdoor visual path
following using omnidirectional vision and odometry are
presented in [40]. In the simple and effective approach, one
dimensional localization along the path is performed usinga
particle filter in conjunction with odometry and an effective,
patch normalized implementation of correlation based image
matching. In the thorough experimental results, the accuracy
and the effects of illumination were investigated.

Building an accurate and consistent 3D representation of the
environment can also be done using monocular SLAM [11].
For example in [19] a robot mapped a 100m path outdoor
using a monocular camera and odometry. There were only
350 features in the map which may approach the limit that
a simple Kalman filter SLAM implementation can handle
in real time on current PCs. However the simulation result
in [14] of closing million landmark loops and building large
hierarchical maps with monocular SLAM [7] predicts that
monocular SLAM may be a viable choice for creating accurate
maps with large numbers of landmarks.

In this paper a visual path following framework is presented
to the research community in the field of intelligent transporta-
tion systems. General concepts such as representing paths as a
series of images and extracting these series of images from an
image database were presented in [32]. The current paper on
the other hand is oriented towards applying the same general
idea for controlling real autonomous cars. An account of the
employed vision system has been previously presented in [35].
In this paper the presented experiments describe the behaviour
of the system in many different outdoor environments, and
thus provide a qualitative and quantitative insight into the
feasible range of navigation performance. Additionally, this
paper presents a more advanced implementation of the system,
with a refined control law and an improved implementation
of the vision system. Consequently, the system presented in
this paper exhibits faster, smoother and safer motions and is
capable to perform online mapping.

The contribution of this paper, based on [12]1, is the
application of the vision system to a robotic vehicle using
an image-based visual servoing strategy and the experimental

1Compared to [12] a gap in the experimental work has been filled and more
details of the vision system are given.

exploration of the implementation’s limits2. Experiments were
carried out mostly on roads using an autonomous electric
vehicle capable of carrying two passengers.

The presented framework is similar to [15] in that only
local 3D reconstruction is used and that occluded features get
projected back into the image. However the rest of the details
are different. For example in this paper a standard camera is
used instead of an omnidirectional one, tracking is used for
mapping instead of matching, experiments are done outdoors
and not indoors and the centroid of image features is used to
control the robot.

The paper is organized as follows: a description of the
framework is given in Section II. More details of the vision
system for the interested reader are given in Section III fol-
lowed by a description of the experiments. After a discussion
of the results the paper ends with conclusions.

II. VISUAL NAVIGATION

This section briefly describes the implemented visual nav-
igation framework. The teaching of the robot (mapping) is
described first, followed by the description of the navigation
process consisting of localization and robot control.

A. Mapping

Discard
bad points

NO YESgeometry?
OR

Bad 3D

Not enough 
points?

Track tracker

Save new
ref. image

Reinitialize

3D geometry

Get image

Init. tracker
Save image

Fig. 1. The steps involved in building a representation of a path from a
sequence of images, i.e. mapping.

Learning a path (i.e. mapping) starts with the manual driving
of the robot on a reference path while processing (or storingfor
off-line mapping) the images from the robot’s camera. From
the images an internal representation of the path is created,
as summarized in Fig. 1. The mapping starts with finding
Harris points in the first image, initializing a Kanade-Lucas-
Tomasi (KLT) feature tracker [36] and saving the first image

2Videos showing results presented in this paper can be
accessed at http://www.irisa.fr/lagadic/video/CycabNavigation.mov and
http://www.zemris.fer.hr/∼ssegvic/pubs/diosiet al 07iros 0581 VI i.mp4.
[Accessed: February 22, 2011]



current

3D geometry
point corresp.,

3D geometry
point corresp.,

3D geometry
point corresp.,

previous next next−nextprevious
previous−

Fig. 2. The map consists of reference images, point correspondences, 2D
and 3D information. During navigation, the point features from the map are
projected into the current image and tracked.

as the first reference image. A version of the KLT3 tracker was
modified as proposed in [17] in order to improve performance
in outdoor sequences acquired from a moving car. In the
tracker, position, scale and contrast parameters of features are
tracked. In the next step a new image is acquired and the
tracked features are updated. The tracking of features with
a large appearance change compared to their reference image
appearance is abandoned. The rest of the features are then used
to estimate the 3D geometry between the previous reference
and the current image. In the 3D geometry estimation, the
essential matrix is recovered using the calibrated 5 point
algorithm4 [29] used in the MLESAC [38] random sampling
framework. The inlier points are then used in a final 3D
geometry calculation using the 8-point algorithm [38]. If the
3D reconstruction error is low and there are enough tracked
features a new image is acquired. Otherwise the previous
image is saved as the new reference image. The relative pose
of the previous image with respect to the previous reference
image and the 2D and 3D coordinates of the point features
shared with the previous reference image are also saved. Then
the tracker is reinitialized with new Harris points added tothe
old ones and the processing loop continues with a new image
acquired by the camera.

To handle gaps in the image sequence and to close a loop
between the first and the last image of the teaching sequence,
wide-baseline matching is utilized as described in sectionIII.

The resulting map (Fig. 2) is used during autonomous
navigation in the localization module to provide stable image
points for image-based visual servoing.

B. Localization

The localization process during navigation is depicted in
Fig. 3. The navigation process starts with initial localization
where the user selects a pair of reference images close to
the robot’s current location. Then an image is acquired and
matched to the selected reference images. The wide-baseline
matching is done using a correlation based approach [42] and
by matching SIFT descriptors [21] applied to DoG [21], multi-
scale Harris [25] and MSER [23] keypoints. The estimation of

3The source code of the KLT tracker maintained by Stan Birchfield can be
found at http://www.ces.clemson.edu/∼stb/klt/ [Accessed: February 22, 2011]

4An implementation is available in the VW library downloadable
from http://www.doc.ic.ac.uk/∼ajd/Scene/index.html. [Accessed: February 22,
2011]

the camera pose using the matched points enables to project
map points from the reference images into the current image.
The projected points are then used to initialize a KLT tracker.

After the initial localization a new image is acquired and the
point positions are updated by the tracker. Using the tracked
points a three-view geometry calculation (see Section III)is
performed between the current image, previous reference and
next reference image (Fig. 2). If the current image is found to
precede the next reference image, then points from the map
are projected into the current image using the estimated local
pose. The projected points enable one to restart the tracking of
points currently not tracked and to stop the tracking of points
which are far from their projections. A new image is acquired
next and the whole cycle continues. However, if it is found
that the current image comes after the next reference image,
a topological transition is made i.e. the next-next reference
image (Fig. 2) becomes the next reference image. The tracker
is then reinitialized with points from the map and the process
continues with acquiring a new image. Similarly to forward
transitions, a topological transition is performed backwards if
the current image precedes the previous reference image.

To achieve seamless switching between nodes, points from
next-next, previous and previous-previous reference images are
also tracked in the current image (see Fig. 2).

Wide-baseline matching is only used outside the initial
localization phase if most features are lost for example due
to a total obstruction of the camera’s field of view. In such
case the robot stops and automatic re-initialization is carried
out by matching with the nearest reference images.
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Fig. 3. Visual localization during navigation.

C. Motion Control

In the motion control scheme the robot is not required
to accurately reach each reference image of the path, nor
to follow accurately the learned path since this may not be
useful during navigation. In practice, the exact motion of the
robot should be controlled by an obstacle avoidance module
that will constitute future work. Therefore a simple control
algorithm was implemented where the difference in thex-
coordinates (assuming the forward facing camera’s horizontal



axis is orthogonal with the axis of robot rotation) of the
centroid of features in the current (xc) and next reference
image (xn) are fed back into the motion controller of the robot
as the steering angleΦ:

Φ = − a(xc − xn), (1)

wherea is the gain. To smoothen rapid steering actions when
switching reference images, a feed-forward part is added to
the steering angle. The calculation of the feed forward partis
based on the centroids of the shared features in the current
and next-next (xnn) reference image. Thus the final equation
is:

Φ = − a(xc − xn)− b(xc − xnn), (2)

whereb is the feed forward gain.
The translational velocity is set to a constant value, except

during turns, where it is reduced to a smaller constant value
to ease the tracking of rapidly moving features in the image.
Such turns are automatically detected during navigation, by
thresholding the difference in the feature centroids in the
current, next and next-next image.

The decision of when to stop when reaching the goal posi-
tion is carried out similarly to the reference image switching
strategy of [4] by detecting when the variance of the difference
between current and last-reference image feature coordinates
starts to rise.

III. V ISION TECHNIQUES AND ALGORITHMS

This section describes the main details about the employed
vision techniques and algorithms. A key ability in vision-
based path following is to correctly locate mapped featuresin
images acquired during navigation. We therefore first introduce
two basic approaches for establishing point correspondences
between images: wide-baseline matching in III-A and tracking
in III-B. Section III-C presents an empirical performance eval-
uation of the two correspondence approaches. The experiments
indicate that correspondences recovered by tracking provide
considerably more accurate 3D reconstructions (besides being
several times faster to obtain). Consequently, we employ wide-
baseline matching only for obtaining initial localizationat the
beginning of the navigation session (cf. the top box of the
flowchart in Fig. 3). Other localization steps and the whole
mapping stage employ tracking, as detailed in II-B and II-A.

The proposed localization subsystem often needs to (re-)-
start the tracking of features which for various reasons were
not tracked in the previous frame (cf. the right branch of
the flowchart in Fig. 3). During the typical forward motion,
tracked features gradually leave the field of view and need to
be replaced by new ones. Additionally, tracked features maybe
lost in any moment due to local disturbances such as occlusion,
motion blur, illumination effects, noise, or any combination
thereof. A suitable geometric procedure has therefore been
devised for predicting the locations of mapped features which
are currently not tracked. This procedure is described in III-D.
Note that a part of this procedure (caching the recovered two-
view geometries between the key-images) is performed during
the mapping stage (cf. Fig. 1), while the actual prediction
is employed during navigation (cf. the box ”Predict point
positions” in Fig. 3).

A. Keypoint detection for wide-baseline matching

The purpose of wide-baseline matching is to detect corre-
spondences without any prior knowledge about the relative
orientation of the two views. Our images are acquired from
a moving car so that we especially require robustness against
appearance distortion along the scale axis. The desired robust-
ness can be achieved by matchinginvariant feature descriptors
[26] which are independently extracted in both images. This
approach is based on recent advances in robust and repeatable
detection of characteristic image locations calledkeypoints
[39]. Usually the detected keypoints are locally distinctive with
respect to position, scale and rotation, while some approaches
even address affine invariance [25]. The obtained descriptors
are exhaustively compared against the descriptors from the
other image, typically with respect to L2 distance. The cor-
respondences are usually established as distinctive pairsfor
which the best distance is less than 60% of the distance of the
second-best match [21].

We evaluated three keypoint detectors: the maxima of
the difference of Gaussians [21], multi-scale Harris corners
[25], and maximally stable extremal regions [23]. The three
detectors extract different kinds of features (blobs, corners
and regions, respectively [39]) and complement each other
with more or less success, depending on the scene. Our
final procedure combines the correspondences obtained by
individually matching the descriptors extracted by all three
algorithms.

B. Point feature tracking

When approximate current feature locations are known
(as is often the case when processing an image sequence)
correspondences can be established by tracking. The two
main point feature tracking approaches are iterative first-
order differential approximation [36], [17], and exhaustive
matching of light-weight point features [28], [22] such as
Harris corners. We believe that the former approach is better
suited to appearance-based navigation since it tends to be less
susceptible to association errors and provides more accurate
point tracks.

In order to tolerate significant inter-frame displacements,
the features are first tracked between the previous and the
current image across a multi-level resolution pyramid5. Then,
in order to avoid drift accumulation, the current appearance
is warped to achieve optimal resemblance with the stored
template image orreference6. This alignment can be achieved
by minimizing the norm of theerror image obtained by
subtracting the warped current feature from the reference [1].
Shi and Tomasi [36] have described the warp as a 2D affine
transform. An extended warp which additionally compensates
for affine photometric deformations of the grey level value in
the image has been proposed in [17].

In the rest of the subsection, we first provide a formulation
of the general point feature tracker [36], [17], [1] in III-B1,

5We used two additional pyramid levels which are iteratively obtained by
subsampling each second pixel in a properly smoothed image.

6During mapping, the reference is obtained by simply storing the first
appearance of the feature. During localization, the reference is taken from
the corresponding key-image.



and then in III-B2 we describe our variant of the concept
with which we obtained best results. The main changes of our
final implementation with respect to the public KLT library
are outlined in III-B3, while in III-B4 we summarize some
computational considerations.

1) General differential tracker with warp correction: Let
the feature in the current frame be given byI(x), its appearance
after a warp with parametersp by IW (x,p), and the corre-
sponding reference byIR(x). Then the differential tracking
consists of findingp̂ which minimizes the norm of the error
over the feature window:

p̂ = argmin
p ∑

x
‖IW (x,p)− IR(x)‖ . (3)

The minimization is performed in a Gauss-Newton style, by
employing a first-order Taylor expansion of the warped feature
around the previous approximation ofp̂. This can be expressed
in different ways [1], and here we present a “forward-additive”
formulation with which the best accuracy has been obtained.
In this formulation, the current feature warped with a sum
of the previous parameter vectorp and an unknown additive
improvement∆p is approximated as:

IW (x,p+∆p) ≈ IW (x,p)+
∂ IW
∂p

·∆p . (4)

The scalar residual norm appearing in (3) can now be repre-
sented as:

R(∆p) = ∑
x
‖IW (x,p+∆p)− IR(x)‖

≈ ∑
x
‖IW (x,p)+

∂ IW
∂p

·∆p− IR(x)‖ . (5)

For clarity, we omit the arguments, denote the previous error
image ase, and introduceg as the transposed warped feature
gradient over the warp parameters:

R(∆p) ≈ ∑
x
‖e+g⊤∆p‖ . (6)

The requirement (3) can be enforced by finding a∆p̂ for which
the gradient of the residual vanishes. In case of the L2 norm,
this is easy to perform:

∂R(∆p̂)

∂∆p̂
≈ ∑

x
2· (e+g⊤∆p̂) ·g⊤ = 0⊤ . (7)

After transposing both ends of (7), we arrive at the final
expression for an iteration in the context of a general warp
(note thate is a scalar function):

∑
x

(ge+gg⊤∆p̂) = 0 . (8)

Thus, in each iteration, the additive improvement is calculated
by solving a linear system of equations. The procedure stops
when the norm of the improvement‖∆p̂‖ falls below a
threshold, or when the new feature position falls outside the
image bounds, or when the determinant|gg⊤| becomes too
small.

2) Differential tracker with isotropic scaling and contrast
compensation: In order to mitigate the danger that a physically
unrelated image patch might be well transformed towards the
reference, a trade-off between modelling power and tracking
security should be carefully chosen. For our application, a
good balance is obtained by a 5-dimensional warp consisting
of a 2-dimensional translational offset (d), isotropic scaling
(m), and the affine contrast compensation model (λ ,δ ) [17].
It is convenient to express the warp in terms of geometric and
photometric components asp = (q, r), whereq = (m,d), and
r = (λ ,δ ). The warped feature is then obtained as:

IW (x,p) = λ · I(m∗x+d)+δ = U(I(T (x,q)), r) . (9)

In order to use the general formulation given in (8), an
expression for∂ IW

∂p = [ ∂U
∂q

∂U
∂ r ] must be derived using the chain

rule. The second term is simpler to obtain:

∂U
∂ r

(I(T (x,q)), r) =
[

IT 1
]

, (10)

whereIT is the current feature warped with T:IT = I(T (x,q))).
The derivative of the first term is more involved:

∂U
∂q

(I(T (x,q)), r) =

=
∂U
∂ I

(I(T (x,q)), r) ·
∂ I
∂T

(T (x,q)) ·
∂T
∂q

(x,q) =

= λ · Ix
T ·

[

x1 1 0
x2 0 1

]

= λ
[

Ix
T x Ix1

T Ix2
T

]

, (11)

where Ix
T is the gradient in the feature warped by T:Ix

T =
∂ I
∂T (T (x,q))). The combined result, (11) and (10), can be
inserted into (8), withg given by:

g⊤ =
[

λ Ix
T x λ Ix1

T λ Ix2
T IT 1

]

. (12)

3) Implementation: Our implementation of the KLT tracker
derives from the public library maintained by Stan Birchfield
at Clemson university7. We performed several modifications
to the original code, but the most important among them
are contrast compensation warp extensions such as the one
described in III-B2 and evaluated in III-C. Additionally, we
provided code for (re-)starting the tracking of features at
predicted locations. Finally, we also improved warp correction
results for features at large scales by employing the pyramid
level which most closely matches the current feature size.

4) Computational considerations: The performance of dif-
ferential tracking comes at a price of considerable computa-
tional complexity. In fact, code profiling8 showed that feature
tracker is a major performance bottleneck of the navigation
system presented in this paper. We are currently working
on several opportunities to address this problem. Preliminary
results indicate that the performance can be more than doubled
by harnessing vector extensions of the x86 instruction set.

7URL: http://www.ces.clemson.edu/∼stb/klt/ [Accessed: February 22, 2011]
8We employed GNU profiler gprof.



C. Performance evaluation of the correspondence approaches

Evaluating the correspondence performance for real scenes
is tricky since ground-truth correspondences typically can not
be recovered in experiments with real 3D scenes. Conse-
quently, it is very difficult to assess the alignment accuracy
of the correspondences. However, a correct correspondence
alignment is very important in feature-based navigation, since
the existing correspondences are employed to predict locations
of previously unseen features. Bad predictions can be excep-
tionally troublesome, since they may give rise to association
errors and subsequent degradation of the geometrical quality
within a positive feedback spiral.

Here we estimate the correspondence alignment accuracy
by looking at the reprojection error of the recovered two-view
geometries. The smaller the reprojection error of the resulting
two-view geometry — the better the correspondence approach.
The four evaluated correspondence approaches are:

• isotropic scaling with contrast compensation (track5)
• affine warp with contrast compensation (track8)
• affine warp without contrast compensation (track6)
• wide-baseline matching by employing Lowe’s keypoints

and SIFT descriptors (match)

The experiment is designed as follows. For each of the
23 key-images of the sequence referenced in IV-G, we look
at correspondences between the key-image (indexi in the
sequence), and the five subsequent images at indicesi + 1,
i + 2, i + 3, i + 4, and i + 5. For matching, we simply match
the pairs(i, i+1), (i, i+2) etc. For tracking we initialize the
tracker at indexi, and then track 5 frames forward. In each case
we record 5 reprojection errors, for geometries from(i, i+1)
to (i, i+5). The results are summarized in figure 4, as means
of the five reprojection errors.

The results illustrate that the correspondences obtained
by tracking with contrast compensation yield overall better
and significantly more stable two-view geometries than the
correspondences obtained by matching (track5 vs match).
The figure also shows that contrast compensation provides a
significant performance gain when tracking outdoors (track5
vs track6). Finally, the figure suggests that track5 is somewhat
better than track8 (track5 vs track8). Our result regarding
tracking performing better than matching is consistent with the
findings in [34] where a similar comparison was performed.

D. Decomposed point transfer in the calibrated context

The main shortcoming of tracking is that it requires an
auxiliary technique for establishing initial correspondences
and recovering from tracking failures. We address this problem
by providing a module for predicting the locations of features
which are currently not tracked. After an approximate feature
location is provided by the prediction module, the correct
location can be recovered by differential tracking with warp
correction with respect to the reference appearance acquired
during the mapping stage. Feature prediction is therefore a
critical task which enables the system to deal with large
motions and local disturbances, by providing means for a
dynamic update of tracked features.

The adopted feature prediction approach exploits geometric
constraints provided by currently tracked features and their
mapped correspondences, within the frame of a technique
known aspoint transfer [16]. Point transfer locates an un-
known 2D point in the current image by employing i) the
known projections of the same 3D point in two other images,
and ii) some additional correspondences across the three
images. This problem is illustrated in Fig. 5. In order to
perform the point transfer, one needs to recover the three-view
geometry between the current image and two key-images from
the map.

Fig. 5. The point transfer problem: given two known projections of the same
point Q onto key-images A and B, find its projection in a current view X.The
decomposed solution of that problem is: (i) image correspondences are used
to recover the two-view geometry (A,B); (ii) the two known projectionsqA
and qB are used to triangulate the 3D pointQ; (iii) the two-view geometry
(A,X) is recovered and put into the frame of the geometry (A,B);(iv) the
desired pointqX is obtained by projectingQ onto image X.

There are many ways to compute the three-view geometry,
with different assumptions and performance requirements.The
golden standard method described in [16] involves bundle
adjustment with respect to the reprojection error in all views,
which may be costly for a real time implementation. A more
suitable solution would observe that many three-view geome-
tries need to be recovered for the same key-image pair during
navigation, and therefore strive to reuse precomputed two-view
geometries for such pairs. Such decomposed solution has been
proposed in [20]. A similar approach has been employed in
this paper but within the calibrated context, i.e. by assuming
that all observed points have been expressed in normalized
coordinates9 corresponding to the case of unit focal distance
[22]. Some implementation details of our solution will be
described in the following paragraphs.

Each of the two geometries (A,B) and (A,X) (cf. Fig.5)
is recovered independently. The two essential matrices are
estimated by the random sampling scheme MLESAC [38],
using the recent five point algorithm [29] as the generator of
motion hypotheses. The employed implementation has been
provided within the libraryVW3410 maintained at the Imperial
College in London, UK. The decomposition of the essential
matrix into motion components is performed next, followed
by the triangulation of 3D points [16].

9We employ the usual model for transforming pixels into normalized
coordinates comprising of a 5-DOF linear transformation and the fourth order
radial distortion model [41]. We recovered calibration parameters for our
cameras by employing our own implementation of the procedure with a planar
calibration target described in [41].

10URL http://www.doc.ic.ac.uk/∼ajd/Scene/Release/vw34.tar.gz [Accessed:
February 22, 2011]
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Fig. 4. Performance evaluation of four approaches for establishing correspondences between a given image and five subsequent images in the sequence. The
horizontal axis holds the sequential number of the frame, while the vertical axis shows the mean reprojection error.

Consequently, the geometries (A,B) and (A,X) (cf. Fig.5)
are expressed in the common frame. In the calibrated context,
the adjustment involves estimation of only one parameter
(scale), while in the projective context the ambiguity has 4
degrees of freedom [20]. The scale factor between two metric
frames is estimated by requiring that pairs of corresponding
points visible in both frames have the same depth. In practice,
different points vote for different scale factors due to noise,
but a robust result is in the end obtained as the median of all
individual factors.

3D coordinates of the desired pointQ are obtained by
triangulating its projections onto the two key-images A and
B (cf. Fig.5). This can be performed offline, during mapping.
The desired predictionqX of the triangulated pointQ to the
current image X is finally obtained by simple projection.

The described prediction procedure is very sensitive to the
accuracy of the estimated two-view geometries. Thus, it makes
sense to disregard the predictions when the estimates appear
to be inaccurate with respect to the reprojection error [16].
The reprojection error may be determined either in a straight-
forward manner, or as calculated in the presented work by
taking into account the probability that a bad geometry may
produce a low reprojection error by chance (as proposed in
[35]).

IV. EXPERIMENTAL RESULTS

The goal of our experiments is to explore the possibilities
and limits of the current implementation of the framework by
navigating in different scenarios, environments with different
proportions of vegetation to human made structures, and
different illumination conditions. We also explore the limit
in speed and in lateral deviation from the path. A practical
application of on-line mapping and autonomous parking is also
given. The results are evaluated quantitatively.

In all but the last experiment a CyCab, a French-made 4
wheel drive, 4 wheel steered intelligent vehicle designed to
carry 2 passengers was used. On our CyCab all computations
except the low-level control were carried out on a laptop with
a 2GHz Pentium M processor. A 70◦ field of view, forward
looking, B&W Allied Vision Marlin (F-131B) camera was
mounted on the robot at a 65cm height. Except in experiment
3 the camera was used in auto shutter mode, with the rest of
the settings constant.

During all experiments (except the last), no software pa-
rameters were changed except that of the forward and turning
speed. Mapping has been performed off-line, except in experi-
ment 6. The image resolution in the experiments was 320x240.
Tracked feature patch sizes were 15x15 pixels.

A. Experiment 1: Basic experiment

Fig. 6. Paths for experiments 1 and 2.

Fig. 7. Navigation results in experiment 1 shown as reconstructed robot poses
(black) overlaid on 77 reconstructed reference image poses (lighter colored
dots and barely visible sequence numbers). The first reference image pose is
shown at the bottom left.

Experiment 1 (see Fig. 6) was conducted on an overcast day
with a short time between mapping and navigation. Most views
on the 158m long path contained buildings which provided
stable image features. The main potential challenges in this
experiment were (i) motion blur in the teaching sequence
caused by fast driving for the used exposure times, (ii) driving
under a building which caused a quick illumination change
and (iii) people (more than 10) and cars covering up features
during navigation.

In the teaching phase, 958 logged images were reduced into
77 reference images in 257s (3.7fps). While the robot was



Fig. 8. Every second frame of a sequence from experiment 1 demonstrates robust feature (light colored crosses) tracking resumption after occlusion by a
passing car.

moving at 50cm/s in turns and at 90cm/s otherwise during
navigation, 934 images were processed at 4.1fps on average.
Statistics regarding mapping and navigation are shown in
tab. I. Reconstructed robot and reference image poses shown
in Fig. 7 were only used for assessing the performance of the
system.

The quick illumination change when driving under the
building was easily handled due to the implemented illu-
mination compensation in the tracker [17]. Motion blur in
the teaching sequence did not impair the performance of
the system. The moving objects and persons did not affect
the navigation because the tracking of features re-appearing
after occlusion were restarted immediately due to the feature
reprojection scheme. Figure 8 contains images processed atthe
end of the navigation. They describe an interesting situation
where a moving car progressively occludes most features.
It can be seen that the tracking of re-appearing features is
restarted, as there were enough good features tracked for the
camera pose estimation used in point reprojection.

B. Experiment 2: Robustness to environment changes

Fig. 9. Navigation results in experiment 2 (left) using a map created 4 months
earlier. As can be seen from the proportion of black and lighter colored dots,
CyCab completed about 80% of the path. A successfully repeated experiment
(right) with a new map suggests the previous experiment did fail near the end
because of large changes in the appearance of the environment.

Fig. 10. Large difference in illumination and vegetation between a 4 month
old reference image (left) and a current image used during navigation in
experiment 2.

Fig. 11. Difference between the reference image (left) and current image
(right) in experiment 2 which the vision system could not handle any more.
Notice the missing flowers in the flowerbed.

Fig. 12. CyCab driving autonomously on the narrow path in experiment 2.

Experiment 2 was conducted on a narrow path along a
small lake (Fig. 6 and 12). Mapping was carried out in
June, under the strong summer sun. Navigation took place
in October, when vegetation and illumination conditions were
very different (Fig. 10). Despite the large change in the
environment, CyCab managed to navigate about 80% of the
path with only one human intervention. At one place CyCab
started brushing the rose plants on the left side of the path
(the inside of the bend) in Fig. 10 therefore we stopped the
vehicle. Such a corner cutting behavior comes naturally with
wide separation between reference images and the chosen
control strategy. Without stopping the vision system, CyCab
was moved 50cm to the right and its automatic motion was
resumed. CyCab’s vision system gave up close to the end
of the track when the change in the environment was too
large (see Fig. 11). Even though CyCab did not complete the
whole path (see the left image in Fig. 9 where it failed), this
experiment still represents a success because of the difficult
conditions CyCab handled.

Shortly after CyCab got lost, we have repeated the experi-
ment using a new map. As it can be seen in the right image
of Fig. 9, CyCab completed the path without any problems
and with smaller localization noise. Note that as image based
visual servoing was used, localization noise had only an



indirect effect on the motion of the robot, as it only influenced
feature point reprojection and reference image switching.

This experiment indicates that seasonal vegetation changes
may negatively affect the performance of the framework
in environments where most features are provided by the
vegetation. This experiment also suggests that in the short
term, under favorable conditions vegetation may provide a
large number of well textured features which can result in
high quality 3D geometry estimation. However, unfavorable
conditions such as wind or rain may easily degrade the quality
of the created map.

The frame rates during navigation are lower in this ex-
periment (see tab. I) due to temporary implementation and
processing platform limitations.

C. Experiment 3: Deterioration due to distant features

Fig. 13. The path for experiment 3.

Fig. 14. Larger noise in the reconstructed robot poses whereall features are
far away in experiment 3.

Fig. 15. Sun shining into the camera in the reference image (left), but not
in the current image (right) during navigation in experiment 3.

In experiment 3 CyCab completed an approximately 304m
track, where in some places (right side in Fig. 13), the closest
features were more than 100m away. As the width of the
footpath matched that of CyCab, it was easy to observe the
lateral error during navigation. The mapping and navigation
part of the experiment was conducted in succession, under very
bright lighting conditions. Instead of the usual auto-shutter
mode, the camera was used in its high dynamic range mode.
The start and end positions were identical.

As one can expect, the error in the estimated pose during
navigation was the largest at those places where there were
no close features. Such large pose errors are represented by
cluttered points in Fig. 14, for example at the right bottom
part of the path. In this case the 3D pose error resulted in
an early switching of a few reference images during turning,
and subsequently following the learned path with a 1m lateral
error for a short section of the path. Other than that, CyCab
performed excellently even when the sun was shining into its
camera as in Fig. 15. With seamless motion over the first and
final reference frame, CyCab demonstrated that the framework
does not require global consistency in the 3D reconstruction.

D. Experiment 4: Driving in a loop

Fig. 16. Navigation results in the loop closing experiment (experiment 4).

Fig. 17. Sun shining into the camera in the reference image (left) of
experiment 4, but not in the current image (right) during navigation.

The aim of this experiment was to investigate navigation
in a loop. The teaching was performed by driving CyCab in
a full loop in a circular parking lot of approximately 119m
circumference. The beginning and end of the loop were closed
by matching the first and last image of the teaching sequence.
If neighbouring nodes were connected with line segments,
then the first and the last light colored dot in Fig. 16 were
connected.

CyCab managed to complete 1.25 loops even though the
experiment was conducted at the end of day where people
were driving their cars away from the car park and the sun
was shining into the camera (Fig. 17). The change in the scene
worsened at the beginning of the second loop where one of
these cars provided the only close features. The lack of good
features in conjunction with a lateral error resulted in very poor
pose estimates as seen in Fig. 16. Therefore this experiment
demonstrated that the lack of global consistency in pose, does
not preclude navigation as long as local consistency is ensured



(in Fig. 16 the path does not join up into a circle). This is
due to the ability of the image based visual servoing scheme
to handle situations where pose based schemes may struggle
when fed with poor pose estimates.

Eventually CyCab was manually stopped when it no longer
followed the curvature of the road (see short straight section
of black dots in Fig. 16 where it happened), however the
experiment was a success because it did demonstrate that
CyCab can connect the beginning and end of a loop and drive
through the joint.

E. Experiment 5: Robustness to speed

Fig. 18. The first images during navigation in experiment 5 (left) and in
6 (right). In experiment 5 the robot drove until the end of the road while
maintaining 1.8m/s speed. In experiment 6 after on-line path learning the
robot parked itself into the garage close to the center of theimage.

Fig. 19. Navigation results in experiment 5.

This experiment investigates how fast can CyCab navigate
on a straight path. On the track shown in Fig. 18 and 19,
CyCab completed a 100m straight path at a 1.8m/s (6.5km/h)
speed. Raising the speed even higher caused oscillations in
the robot’s motion to appear. The oscillations were presumably
caused by the delay between image measurements and control
action and by the frame rate.

F. Experiment 6: Application to automatic parking with on-
line mapping

Fig. 20. Navigation results in experiment 6.

In this experiment on-line mapping (i.e. processing the
images as they are grabbed) and a practical application is
demonstrated. In the current state of the navigation system,
i.e. without obstacle detection-avoidance, etc. the practical
applications are limited. However, even now the framework
can be used for automatic parking on private properties which
are under the control of the user.

During the experiment a map was created on-line while
driving CyCab from the entrance of IRISA to the CyCab
garage approximately 50m away (see Fig. 18 and 20) at about

50cm/s. Then CyCab was manually driven to the entrance of
IRISA where the driver got out and CyCab drove itself into
the garage. During mapping clouds covered the sun, while
during navigation the sky was clear. CyCab even handled the
transition from strong sunshine to the darkness of the garage.

G. Experiment 7: Robustness to lateral deviation
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Fig. 23. The number of points in the map and the average number of tracked
points for each node in experiment 7. With increasing lateraldeviation the
average number of tracked points decreases.

A navigation system based on vision should also handle
situations where the autonomous vehicle is required to deviate
from the reference path to avoid an obstacle. Because obstacle
detection and avoidance is out of the scope of this paper, in
this experiment only the maximum possible lateral deviation
from the reference path is investigated. Unlike in the previous
experiments, a firewire color webcam, the Unibrain Fire-i was
mounted on the top of a 1995 right hand drive Renault Clio.
During the experiment images were logged at 30Hz while the
vehicle was traveling at approximately 5m/s.

The experiment was conducted on a single direction, double
lane, L-shaped road of a small town at 7:30 on a sunny Satur-
day morning in June. The time of the experiment was chosen
to minimize the effect of moving objects as the goal was
to test the sensitivity of localization to lateral deviation. The
place of the experiment was chosen to emulate an unfavorable
scenario where the houses are close to the road (Fig. 21), Such
situations where the lateral deviation is large compared tothe
distance from the scene are challenging, as the tracked points
undergo a large amount of appearance and position change.
The distance between the camera and the nearest house on the
left was often just 2m during the mapping of the approximately
100m long path. The right side of the road was occupied by
parked cars. During mapping, one car drove past. Data was
gathered for localization in the subsequent runs, at estimated
lateral deviations of 0m (left side), 2.5m (middle) and 5m
(right side) from the reference path.

Off-line localization during the 0m deviation and the 2.5m
deviation was successful, however the initial localization with
wide-baseline matching at the 5m lateral deviation failed for
the first few reference images. After a later successful initial
localization, the framework kept the camera localized until
the pose tracking failed just after the turn. One can observe
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Fig. 22. Off-line localization result in experiment 7 whilstdriving on the reference path (left), in the middle (center) and on the right (right) of the path.
Notice the increase of noise in the reconstructed robot poses with increasing lateral deviation. The point of getting lost in the rightmost track coincided with
performing a right angle turn while being close to the trackedpoints.

the increase of jitter with increasing lateral deviation inthe
localization results (Fig. 22). A decline in the number of
tracked points with increasing lateral deviation can be seen
in Fig. 23. It is also visible from the figure, that the number
of points in the map increased as the car approached the turn,
and decreased as it came out of the turn.

The results indicate that with increasing lateral deviation
the localization accuracy and the number of tracked points
decreases. The limit of the vision system for lateral deviation
in the tested environment lies between 2.5 and 5m.

V. D ISCUSSION ANDLESSONSLEARNED

A. Scalability and performance

Statistics from experiments 1–6 are presented in tab. I.
By performing simple image-based visual servoing instead

of position-based control of the robot, one can have many
advantages. Because there is no need for an accurate robot
pose during navigation, one can allow a larger 3D recon-
struction error during mapping. Because of this, there is
no need to perform a computationally costly global bundle
adjustment and mapping can be done on-line. During the
experiments it was noticed that, after the baseline between
reference images increased beyond a certain distance, the 3D
reconstruction error increased as well. Therefore if a larger 3D
reconstruction error is allowed, one can have larger distances

between reference images, and the memory requirement for
storing the map is reduced. This can be seen for example in
experiment 3 where the average distance between reference
images was 3.1m. Sparse reference images improve not only
scalability but performance as well as the overhead associated
with the loading of reference images and their switching is
reduced.

The framework enables the learning and navigation of long
paths because the total memory and computational require-
ments for creating a map grow linearly with the length of
the path. The computational cost during each navigation step
is approximately constant. As for the memory requirements,
when calculating with 3.1m between reference images, a 1km
long path can be represented using 25MB of storage if one uses
320x240 uncompressed images and neglects the stored feature
point coordinates. As one can store the reference images on
a hard drive, a 1TB drive may store approximately 40000km
worth of path.

There is a relationship between camera field of view and dis-
tance between reference images. In experiments not described
in this paper due to the lack of space, we noticed that when
using only the center half of the images, or when using a
Logitech Quickcam Pro 4000 camera, the average distance
between reference images increased up to 12m. The detailed
study of the effects of field of view constitutes future work.



TABLE I
SUMMARY OF THE VISUAL PATH FOLLOWING EXPERIMENTS

Learning Navigation
exp. raw ref. proc. fps path meters per images time fps v forw. v turning human

images images time [s] [m] ref. image [s] [cm/s] [cm/s] interv.
1 958 77 257 3.7 158 2 934 226 4.1 90 50 0
2 862 51 208 4.1 96 1.9 532 262 2 50 30 1
3 2454 97 592 4.1 304 3.1 2272 516 4.4 80 30 0
4 1425 48 237 6 119 2.5 1812 385 4.7 50 40 0
5 785 32 167 4.7 100 3.1 280 78 3.6 180 40 0
6 371 22 102 3.6 50 2.4 406 94 4.3 80 40 0

B. Vision techniques

The implemented contrast compensation in the tracker is
able to handle large affine changes of illumination between the
reference and current images which was crucial for example
during experiment 2 (Fig. 10). Even though the tracker was
fairly resilient against illumination changes, the same isnot
true of the wide-baseline matching. Problems occurred from
time to time when buildings holding the majority of the
features reflected the sun light directly into the camera. The
matching of overexposed features with well exposed ones
using SIFT descriptors often failed even when the tracker
was capable of tracking them. As initial localization or re-
localization is done on a stationary robot, the use of exposure
bracketing (see [30] for stereo vision) and the utilizationof
points resulting from all images in the matching process may
alleviate this problem.

The use of 3D information enables to restart the tracking of
features just becoming visible after occlusion as can be seen
in Fig. 8. This property is important in dynamic environments.
Also, having 3D information enables the system to check
the consistency of the tracked features. Tracked points which
“jump” from the background onto a moving object in the
foreground are discarded. Even though having 3D information
may not be necessary for path following as stated in the
introduction, it may extend the area of applicability of an
outdoor path following system.

As only features that were reliably tracked are kept between
two possibly distant reference images, the feature selection for
3D geometry estimation did not pose a significant problem.
One may intuitively think, that maps built with an EKF
based monocular SLAM implementation are more accurate
due to a larger amount of information integrated into the
maps. However the superiority of many EKF based monocular
SLAM implementations is not so clear as unstable features
or features located on slowly moving objects (for example
clouds) may be tracked and incorporated into the map before
being discarded. This incorporation of bad features may grad-
ually compromise the integrity of the map. In contrast, errors
in the 3D reconstructions always stay local in our framework,
and do not affect other nodes of the map. Similar effect can be
achieved with local SLAM maps as well. Local SLAM maps
may also alleviate the effects of linearization errors in EKF
implementations.

The use of normalized image coordinates in the vision
system together with tracked image patch scale estimation
does not preclude performing mapping with one camera and

navigating with a different, but reasonably similar camera.
Such capacity enables mapping by one vehicle and sharing
the map by many.

C. Limitations

As shown in experiment 7, the framework has handled
lateral deviations in excess of 2.5m even when used with
a noisy camera with a high radial distortion. This indicates
that the framework may enable obstacle avoidance as long the
scene is not totally covered up by the obstacle.

In the current implementation the framework relies on
3D pose to switch reference images. In cases where the
3D pose is less accurately recovered, it can happen that a
reference image switch is not performed, or is performed in
the wrong direction. Such behavior occasionally happens when
most of the observed points are located on a plane or on
a tree. A wrong reference image switch more likely caused
problems in turns where not turning in the right direction
quickly reduced the number of visible feature points. With
less points, the reconstructed geometry is often less accurate,
which further worsens reference image switching and also
reduces the accuracy of points projected from the map into the
image. When there is no replacement for lost feature points,
the number of feature points declines... To address the issue
of reference image switches, we are planning to investigatea
reference image switching strategy based on the more stable
image information. Pose estimation based on homography for
planar scenes is also an option.

A further limitation is that of illumination. Extreme illumi-
nation changes such as the sun shining into the camera during
mapping but not during navigation, or the lack of light may
impair the performance of the framework, especially that of
the matcher.

The navigation at night remains an open question. Sen-
sitive cameras and artificial illumination may help in some
cases. Encouraging results in localization have been described
in [3] where image based localization was demonstrated at
night using headlights in sequences taken also at night. The
localization in sequences taken during the day were not so
successful.

Even though the mapping and localization part of the system
is 3D, the control algorithm is 2D. This does not imply that
the framework can only handle flat terrains. Many of the tests
were performed on moderately sloping terrains. The system
also handled twists in the slopes.



Navigation frameworks for uncontrolled environments such
as the one described in this paper should be able to detect
and avoid obstacles. Since this is not implemented in the
framework yet, it constitutes part of the future work.

The choice of the speed of the robot should depend on the
following factors: (i) exposure time as it influences motion
blur, (ii) frame rate and distance to features (as they influence
how much features move between frames) and (iii) safety
considerations.

When considering navigation based on maps created a long
time ago, one can expect vegetation to change significantly.
This restricts the long term application of such system to
places with a slower rate of change such as to urban areas
where buildings are visible.11 It seems to be reasonable
to assume that the appearance of buildings changes slowly.
However, old buildings are rebuilt and new buildings are
erected all the time. A wide field of view camera, or a
panoramic camera may help to capture parts of the scene
which have not changed. To increase the robustness of the
system even more, a mechanism should be added to the
framework, through which new map points can be added
to the map during navigation. Even then snow may change
the facades of buildings sufficiently to stop the system from
working, which may restrict the use of the framework to
climates without snow.

Experts may easily assess environments for vision system
related risks of failures during navigation. However, com-
mercial systems would benefit of such output as part of the
mapping process.

D. Applications

Frameworks such as this may be used one day on arbitrary
systems which have to move on a previously completed
track. Such systems are for example: people carriers, street
cleaning robots, robots transporting goods between buildings
of a factory, etc. The framework is not limited to systems
with wheeled or tracked locomotion. Because the only sensing
modality is a single camera (no odometry), coupled with full
3D geometry estimation, one could likely use the framework
on hovercrafts, blimps, helicopters and airplanes. However for
aircrafts, the affine tracking of the tracker should be enabled
(for the experiments in this paper, this property was disabled
to obtain more accurate results) to be able to handle rotated
image patches, and the control algorithm changed to handle
3D motion. One could also envisage the use of such system
on autonomous boats in places such as canals in some cities
where many stationary features are visible.

As it is reasonable to expect that the framework can handle
teaching while moving forward and executing the path while
moving backward, it could be used on transportation devices
which drive themselves back to their base after use.

In safety critical applications, the addition of IMU, GPS,
odometry or a motion model (predicting the motion of the
vehicle) may be considered to ensure that eventual vision
system failures are handled appropriately.

11In a wider context one could also consider space objects withslowly
changing landscapes as the Moon.

VI. CONCLUSIONS

An experimental evaluation of a framework for visual path
following in outdoor urban environments using only monoc-
ular vision was presented in this paper. In the framework no
other sensor than a camera was used. The path to follow was
represented as a series of images with overlapping landmarks.
It was shown that the use of local 3D information, contrast
compensation and image-based visual servoing can lead to a
system capable of navigating in diverse outdoor environments
with reasonable changes in lighting conditions and moving
objects. On-line learning was also demonstrated.

As the framework does not rely on odometry, the range of
applications may also include boats navigating on urban canals
or aircraft.
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