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Abstract. We consider the problem of tracking a given set of point
features over large sequences of image frames. A classic procedure for
monitoring the tracking quality consists in requiring that the current
features nicely warp towards their reference appearances. The procedure
recommends focusing on features projected from planar 3D patches (pla-
nar features), by enforcing a conservative threshold on the residual of the
difference between the warped current feature and the reference. How-
ever, in some important contexts, there are many features for which the
planarity assumption is only partially satisfied, while the true planar
features are not so abundant. This is especially true when the motion
of the camera is mainly translational and parallel to the optical axis
(such as when driving a car along straight sections of the road), which
induces a permanent increase of the apparent feature size. Tracking fea-
tures containing occluding boundaries then becomes an interesting goal,
for which we propose a multi-scale monitoring solution striving to maxi-
mize the lifetime of the feature, while also detecting the tracking failures.
The devised technique infers the parts of the reference which are not pro-
jected from the same 3D surface as the patch which has been consistently
tracked until the present moment. The experiments on real sequences
taken from cars driving through urban environments show that the tech-
nique is effective in increasing the average feature lifetimes, especially in
sequences with occlusions and large photometric variations.

? The presented work has been performed within the french national project Predit
Mobivip (Individual Public Vehicles for Mobility in the City), and within the project
Robea Bodega. The authors would also like to acknowledge Prof. Axel Pinz for a
helpful discussion on this subject.



1 Introduction

Tracking point features in a sequence of image frames is an important low-
level problem of early computer vision. The quality of the recovered trajectories
directly affects the performance of attractive higher level tasks such as structure
from motion [1], visual odometry [2], concurrent mapping and localization [3],
and visual servoing [4]. However, the priorities of the desired tracking behaviour
may differ between the particular contexts, since the former two involve larger
numbers of “nameless” features, while the latter ones usually focus on fewer but
more important landmarks. Thus, achieving the longest possible contact with
each of the tracked features, being the focus of this paper, is highly desired
in the latter tasks, even though the former ones can operate with considerably
shorter feature lifetimes.

The two main approaches for conceiving a point feature tracker are iter-
ative first-order differential approximation [5, 6], and exhaustive matching [2,
7]. In both approaches, a straightforward implementation based on integrating
inter-frame motion is a viable solution only for short-term operation, due to
the incontrollable growth of the accumulated drift. It is therefore necessary ei-
ther to adapt the higher-level task to work only with short feature tracks [2],
if applicable, or to devise a monitoring approach which would try to correct
the drift by aligning the current appearance of the feature with a previously
stored template image or reference. The desired alignment is usually performed
by minimizing the norm of the error image, which is obtained by subtracting
the current feature from the reference [8]. Shi and Tomasi [5] have addressed
the monitoring over linear deformations of the planar surface, which have been
described with a 2D affine transform, under reasonable assumptions of the fea-
ture position with respect to the camera. An extension of their work has been
proposed by Jin et al. [6] who devised a scheme which additionally compensated
for affine photometric deformations of the grey level value in the image.

An important issue in monitored long-term tracking is being able to recog-
nize when a match with the reference can not be confidently established any
more, so that the tracking of the feature can be discontinued in order to prevent
errors at the higher levels. Previously, this has been accomplished by using cri-
teria based on the RMS (root-mean-square) residual of the error image [5], and
normalized cross-correlation score combined with the ratio between the two ar-
eas [6]. However, the richer deformation models pose a bigger danger of allowing
a warp producing an incorrect match with a low residual [9]. This danger can
be mitigated by enlarging the size of a feature window: larger windows provide
a better security that a good match score is not due to a chance. On the other
hand, large features are more likely to include a 3D surface discontinuity, which
usually makes a correct warp towards past appearances impossible. The odds
for straddling a discontinuity are especially high if we consider the tracking of
features that are initially distant. For a usual horizontal field of view of 30◦ and
a resolution of 320× 160 pixels, a 15× 15 pixels region corresponds to a perpen-
dicular planar patch of over 1 × 1 m at a distance of 50 m. In such a scenario,



characteristic for an observer situated in a car moving along a straight road,
there may indeed be too few planar features for the needs of a higher task.

A technique is therefore proposed for alleviating the problems with features
which are only partly projected from a distinctive quasi-planar 3D surface, while
keeping the good behaviour for the true planar features. The well behaved por-
tion of a feature window is termed as feature support, while its robust and adap-
tive detection is the main objective of the paper. The technique is related to
robust estimation of the warp parameters [10, 11], but is more suitable for de-
tecting correct feature supports which often contain statistical outliers. Here we
do not consider updating the reference [12, 13, 11] despite its potential for in-
creasing the tracking flexibility, since it offers less precision while requiring more
processing power. The related research also includes the cumulative similarity
transform [14] which is suitable only for tracking homogeneous regions, and the
probabilistic filtering of the feature position [15, 13, 11], which has been used for
handling temporary total occlusions.

The paper is organized as follows: the theoretical background is briefly sum-
marized in Sect. 2. Sect. 3 describes the two complementary procedures to infer
the feature support. Experimental results are described and discussed in Sect. 4,
while Sect. 5 contains a short conclusion and the directions for future work.

2 Theoretical Background

2.1 General Differential Tracker with Warp Correction

Let the feature in the current frame is given by I(x), its appearance after a
warp with parameters p by IW (x,p), and the corresponding reference by IR(x).
Then the tracking consists in finding p̂ which minimizes the error image norm,
or equivalently, the error over the feature window:

p̂ = arg min
p

∑

x

‖IW (x,p)− IR(x)‖ . (1)

The minimization is performed in a Gauss-Newton style, by employing a first-
order Taylor expansion of the warped feature around the previous approximation
of p̂. This can be expressed in different ways [8], and here we present a “forward-
additive” formulation with which the best accuracy has been obtained. The
current feature warped with a sum of the previous parameter vector p and an
unknown additive improvement ∆p is therefore expanded as:

IW (x,p +∆p)
.
= IW (x,p) +

∂IW
∂p
·∆p . (2)

The scalar residual norm appearing in (1) can now be represented as:

R(∆p) =
∑

x

‖IW (x,p +∆p)− IR(x)‖

.
=
∑

x

‖IW (x,p) +
∂IW
∂p
·∆p− IR(x)‖ . (3)



For clarity, we omit the arguments, denote the previous error image as e, and
introduce g as the transposed warped feature gradient over the warp parameters:

R(∆p)
.
=
∑

x

‖e+ g>∆p‖ . (4)

The requirement (1) can be enforced by finding a ∆p̂ for which the gradient of
the residual vanishes. In case of the L2 norm, this is easy to perform:

∂R(∆p̂)

∂∆p̂

.
=
∑

x

2 · (e+ g>∆p̂) · g> = 0> . (5)

After transposing both ends of (5), we arrive at the final expression for an
iteration in the context of a general warp (note that e is a scalar function):

∑

x

(ge+ gg>∆p̂) = 0 . (6)

Thus, in each iteration, the additive improvement is calculated by solving a linear
system of equations. The procedure stops when the norm of the improvement
‖∆p̂‖ falls below a threshold, or when the new feature position falls outside the
image bounds, or when the determinant |gg>| becomes too small.

2.2 Tracker with Isotropic Scaling and Contrast Compensation

In order to mitigate the danger that a physically unrelated image patch might be
well transformed towards the reference, a trade-off between the modelling power
and the tracking security should be carefully chosen. For our application, a good
balance is obtained by a 5-dimensional warp consisting of a 2-dimensional trans-
lational offset (d), an isotropic scaling parameter (m), and the two parameters of
the affine contrast compensation model (λ, δ) [6]. It is convenient to express the
warp in terms of geometric and photometric components as p = (q, r), where
q = (m,d), and r = (λ, δ). The warped feature is then obtained as:

IW (x,p) = λ · I(m ∗ x + d) + δ = U(I(T (x,q)), r) . (7)

In order to use the general formulation from 2.1, an expression for ∂IW
∂p = [∂U∂q

∂U
∂r ]

must be derived using the chain rule. The second term is simpler to obtain:

∂U

∂r
(I(T (x,q)), r) =

[
IT 1

]
, (8)

where IT is the current feature warped with T: IT = I(T (x,q))). The derivation
of the first term is a little bit more involved:

∂U

∂q
(I(T (x,q)), r) =

∂U

∂I
(I(T (x,q)), r) · ∂I

∂T
(T (x,q)) · ∂T

∂q
(x,q)

= λ · IxT ·
[
x1 1 0
x2 0 1

]
= λ

[
IxTx Ix1

T Ix2
T

]
, (9)

where IxT is the gradient in the feature warped by T: IxT = ∂I
∂T (T (x,q))). The

combined result, (9) and (8), can be plugged into (6), with g given by:

g> =
[
IxTx Ix1

T Ix2
T IT 1

]
. (10)



2.3 The Running Average Gaussian Estimation

The proposed tracking approach relies on estimating the gray scale value distri-
bution for each single pixel within the feature window. This can be achieved by
a space-efficient approximation of the running average, which has been exten-
sively used in the field of the background subtraction. For each feature pixel x,
the current estimate of a distinct normal distribution is updated as follows [16]:

µx,t = (1− α) · µx,t−1 + α · xt
σ2
x,t = (1− α) · σ2

x,t−1 + α · (xt − µx,t)2 . (11)

The parameter α ∈ 〈0, 1〉 represents the learning rate, or alternatively, how many
previous frames are taken into account for the estimate. Although there are no
guarantees that a certain pixel is normally distributed (indeed, the pixels which
are interesting in our context may have arbitrary distributions, depending on
the scene), the estimates do offer an insight into the pixel mean and variability.

3 The Feature Support Concept

3.1 Assumptions and Basic Notions

The high level application context assumes robot navigation in urban environ-
ment, controlled by techniques in which a long term contact with the features
from a given set is highly desired. The considerations are therefore focused on
tracking over a significant forward motion, as illustrated in Fig. 1. The features
which are visible throughout the whole sequence are located quite far from the
initial observer location, so that they experience considerable changes of scale
and photometry. The 3D surfaces projecting into initial feature windows are
quite large (due to the distance), so that many features cross a discontinuity. In
fact, #20 is the only feature in Fig. 1(a), for which the final appearance does not
substantially deviate from the affine transformation model. Under recommenda-
tions from [5], that would be the only survivor at the end of the sequence3.

The proposed concept strives to enlarge the application field of a differential
tracker with warp correction onto the features for which the initial windows are
only partly projected from a plane. The resulting convergence of the feature sup-
port provides a valuable shape information allowing the non-rectangular features
to be introduced in (6), and in the calculation of the monitoring residual. To il-
lustrate the proposed objectives, the obtained supports for several features from
sequences rennes1 and compiegne2 are shown in Fig. 2. The need for the feature
support arises most often when the feature is on a foreground structure occlud-
ing the background, either because the feature is at the boundary (#24, #C59),
or the structure has holes (#8). The concept can also be helpful if the feature

3 Due to the particular motion, parts of the scenery behind the car, to the left from #28

and to the right from #39, were out of the field of view in some frames of rennes1.
A total of 62 features were discontinued due to the contact with the image bounds.
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Fig. 1. Illustration of the tracking task: the first (left) and the last (right) frames of the sequences
rennes1 (a) and compiegne2 (b), with the designated windows of the tracked features

is situated on a background structure which is at times occluded by the fore-
ground (#44), and when there are complex surface radiance variations which can
not be counterbalanced by a feature-wide contrast compensation model (#C59).
The relation between the obtained residuals (Ra¿Rt, see Fig. 2) illustrates the
effectiveness of the technique.

3.2 The Volatile Feature Support Due to a Robust Rejection Rule

In the first investigated approach, the pixels not belonging to the feature support
are identified as outliers within the distribution of the squared grey level value
within the current error image {e2

i }. The outliers are detected following a robust
X84 rejection rule, which has also been used to reject the entire features (not the
individual pixels), based on the magnitude of their RMS residual [17]. The rule
uses the median as an estimator for the distribution location, while the scale of
the distribution is estimated by the median absolute deviation (MAD):

Ce2 = med{e2
i }

MADe2 = med{|e2
i − Ce2 |} . (12)

Due to a further noise suppression, much better results are obtained when tempo-
rally smoothed values are used within (12). This can be achieved by substituting



Rt:20.9 Ra:7.9

l2:26.7
[0.9,11.3]
[4.0] Rt:42.5 Ra:9.0

l2:16.3
[0.6,10.0]
[1.2]

#24 in rennes1, frame 220 #C59 in compiegne2, frame 250

Rt:21.6 Ra:10.6

l2:10.4
[0.7,65.4]
[1.7] Rt:21.8 Ra:6.3

l2:27.3
[1.0,-13.0]
[1.2]

#8 in rennes1, frame 220 #44 in rennes1, frame 220

Fig. 2. The enlarged triples of the reference, the warped current feature and the feature support
(non-masked areas) for the four features from Fig. 1. The numbers in the reference images indicate
the RMS residuals for the whole feature window (Rt), and for the feature support only (Ra). The
numbers in the warped features indicate the smaller eigenvalue of the second-order moment matrix
(l2), the photometric warp (λ, δ) and the isotropic scaling (m).

the error image pixels ei with a difference between the mean value of the warped
feature pixel estimated by (11), and the corresponding reference pixel.

The pixels of the feature support can finally be identified by testing for:

(|e2
i − Ce2 |) < max(thmin, k ·MADe2) . (13)

The choice of k = 5 is often appropriate here, since 5 ·MAD corresponds to 3.5 ·σ
in a Gaussian distribution. Experiments have shown that the threshold thmin is
required for suppressing the bad behaviour when there are no real outliers.

3.3 The Persistent Feature Support Due to Temporal Consistency

Experiments have shown that the previous approach for inferring the feature
support is surprisingly effective in increasing the tolerance to the occasional out-
liers. However, that approach assumes that all the inlier error image pixels come
from the same distribution, which is rarely the case. Good features usually have
pixels originating from different materials which are likely to generate different
error distributions. Thus, the obtained instances of the feature support usually
do not resemble the part of the window projected from a continuous surface.

The second approach makes a more explicit check for the temporally consis-
tent feature window pixels, by analyzing the standard deviation estimated by
(11). During the motion of the observer, the pixels belonging to a different con-
tinuous surface than the one which is consistently tracked, will refer to different
points of the scene. In the case of natural scenes which are rich in texture, this
will be reflected by occasional spikes in the standard deviation. These spikes can
be detected by a threshold on the standard deviation σth, while the correspond-
ing pixels can be persistently excluded from the feature support. An inverse
process (adding a pixel to the feature support if it is consistently similar to the
corresponding pixel of a reference) could be easily devised, in order to try to
recover after temporary occlusions. However, we do not consider that, since it



would imply relinquishing the knowledge of the feature structure which is not
always attainable (e.g. in the case of a homogeneous background).

A critical notion in both approaches is controlling the learning rate of the
Gaussian estimates in (11). A fixed value would not be acceptable, since it would
imply obtaining different results for different dynamics of the same motion. Per-
haps the best solution would be to modulate α0 by a perceived translational
displacement with respect to the structure on which the feature resides. How-
ever, this would bring a serious increase of the implementation complexity, due
to the coupling of the tracker with pose estimation. A simpler solution is there-
fore proposed, in which the modulating factor is computed from the interframe
change of geometric warp parameters d and m:

α = α0 · ρ(|∆m| · wx + |∆dx|, |∆m| · wy + |∆dy|) , (14)

where ρ is a 2D metric, and (wx, wy) are the feature window dimensions. If the
camera motion is strictly translational and the feature occludes the background
at infinity, the proposed solution gives each background fraction a fair amount
in the distribution of a feature pixel. The behaviour would be less satisfactory
for a chiefly rotational motion and for occlusions of distant features, but these
cases do not occur in many realistic situations, as confirmed by experiments.

3.4 Multiscale Considerations

Due to the expected increase in the feature scale, it is suitable to initialize the
tracking by the features at the smallest feasible scale. In order to ensure a good
behaviour for large features (e.g. the feature #24 in Fig. 2 is more than 4 times
larger than the reference), the tracking is performed at the level of the image
pyramid which most closely resembles the previous scale of the feature. This is
achieved by a simple scaling of the parameters of the geometrical warp before
and after the tracking procedure for each individual feature. However, due to
discretization issues, this sometimes causes artificial spikes in the parameters
of the pixel Gaussians. The mean estimates for the feature pixels are therefore
reinitialized to the corresponding actual values at each change of the pyramid
level, in order to avoid the degradation of the feature support.

4 Experimental Results

The performed experiments were directed towards three different goals. The first
goal was to investigate whether a threshold on the feature RMS residual can be
at least partially substituted by other, hopefully more discriminative indicators
of bad tracking. The second goal was to obtain a qualitative insight into the
benefits of the proposed technique, by analyzing its sensitivity to the change of
feature monitoring parameters. The final goal was an objective assessment of
the influence of the technique to the measured lifetime of the tracked features.

The provided experimental results were obtained exclusively by the persis-
tent support described in 3.3. The volatile approach described in 3.2 was not



evaluated due to the ad-hoc threshold in (13), which undermines the capability
to find a right ballance between the feature longevity and the tracking security.
The recovered support is used for restricting the area of the feature window
both in the tracking equations (6), as well as in the sum for calculating the error
image norm (1). In order to be able to deal with large scale changes, a 3-level
image pyramid is employed, obtained by successive smoothing and 1:2 subsam-
pling. The switch of the pyramid level occurs whenever the feature window at
the current resolution becomes greater than 1.8 times the size of the reference.
The initial feature windows are 15 × 15 pixels wide, while the feature support
modelling parameters are: α0 = 0.005, σth = 12. The source code used for per-
forming the experiments is based on a public implementation of the KLT feature
tracker [5] (see http://www.ces.clemson.edu/~stb/klt/) .

4.1 Criteria for Evaluating the Warp Correction Quality

Knowing when to abandon the tracking is a very important quality of a point
tracker. In the previous work [5, 6], this was achieved chiefly by relying on the
RMS residual. However, the discriminative power of that criterion in real scenes
with complex photometric variations leaves to desire, since for a given threshold,
there are often both correctly rejected and incorrectly tracked features. For il-
lustration, similar non-masked residuals (Rt) are obtained for the good features
in Fig. 2, and for the problematic ones in Fig. 3 (#17, #31, #38, #104).

The two most difficult situations for a point tracker are (i) when a foreground
structure occludes the feature, which then tends to “jump” onto the foreground,
and (ii) when the feature is on a face which is nearly parallel to the motion,
when the warp may approach singularity. In both cases, the tracker may diverge
from a consistent local minimum, but fortunately, this often can be detected
by observing some common divergence symptoms. The latter scenario can be
detected by testing for a “blanc wall” condition within the warped feature, by
setting a threshold on the smaller eigenvalue of the second-order moment matrix

31

17 38

104

143 51

94

48

enlarged frame 1 of rennes1

Rt:23.1 Ra:23.1

l2:96.2
[0.7,58.3]
[1.0] Rt:18.2 Ra:18.2

l2:14.9
[0.5,128.0]
[2.3]

#17 in rennes1, frame 190 #31 in rennes1, frame 205

Rt:20.8 Ra:20.8

l2:21.4
[0.7,51.0]
[1.2] Rt:13.8 Ra:13.8

l2:4.7
[0.9,34.0]
[0.7]

#38 in rennes1, frame 55 #104 in rennes1, frame 56

Fig. 3. The position of some features from rennes1 which will be discussed in the further text (left),
and the four problematic ones (right). The abrupt magnification change test detects #17 and #31,
but not #38. The gradient test detects “dissolved” features such as #104. See Fig. 2 for annotations.



[9]. Naturally, in the proposed context, the test is only performed for the pixels
of the feature support. This test is very effective in avoiding tracking errors
in low gradient areas, where a bad match often produces a small residual (see
#104 in Fig. 3). Despite the efficacy in pruning the bad features, the test is a
candidate for refinement because some features can be well tracked in spite of
the low gradient (see #48, #51 and #94 in Fig. 3 and Fig. 5).

Although the foreground structure and the background feature may be quite
similar, as for features #17 (the car occludes the fence), #38 (the car occludes
the bush), and #31 (the car occludes the building) in Fig. 3, the transfer is
seldom smooth. This can be detected by an abrupt change of the recovered
warp parameters. In particular, a threshold of 10% on the interframe relative
magnification change4 detects many of such situations, while seldom reporting
false alarms. Nevertheless, the transfer of the feature #38 (see Fig. 3) involves
only a 6% interframe relative magnification change. The proposed technique
deals successfully with this situation since the feature support decreases with the
occlusion, and the tracking is abandoned when a threshold of 40% is reached.
However, as explained in 3.3, this would not work for a very distant feature,
since the modulation factor for α would have been zero. Thus, unfortunately, the
residuum threshold cannot be completely avoided in the current implementation.

4.2 Sensitivity to threshold parameters

The choice of the threshold parameters used to detect the bad tracking is a
trade-off between the security and the multiplicity of the tracked features. For
the case of the RMS residual threshold, this is illustrated in Table 1. The re-

Table 1. Count of features tracked until the end of rennes1, for different thresholds
on RMS residual r between the reference and the warped current feature. For the
discussion on feature #38, see 4.1 and Fig. 3.

r = 10 r = 15 r = 20 r = 25

without feature support 1 3 8 12+#38

with feature support 3 11 13 13

sults suggest that the feature support offers better tracking results, even with
a stricter residuum threshold. For example, the basic tracker with r = 25 pro-
duces a 18% magnification error for #8, while #18 is discontinued due to the
abrupt magnification change. Both features are well tracked using the proposed
technique, while the development of their supports is shown in Fig. 4.

4 This is also true for other affine degrees of freedom: anisotropic scaling, skew, ro-
tation. These parameters are not allowed since they actually decrease the tracking
quality, by providing a way for the tracker to “escape” towards wrong local minima.



Rt:21.6 Ra:10.6

l2:10.4
[0.7,65.4]
[1.7]

reference 80 90 100 220 220 (cur.)

Rt:17.2 Ra:8.0

l2:6.9
[0.6,74.8]
[1.7]

reference 80 90 100 220 220 (cur.)

Fig. 4. The development of the support for the two features #8 (up) and #18 (down) from rennes1,
which are not correctly tracked when the feature support is not used. See Fig. 2 for annotations

Similar considerations hold for the threshold on the condition of the second-
order moment matrix. If this threshold is released, two more features survive
to the last frame in the basic tracker (#94, #143), only one of which is well
tracked. However, when feature support is used, additional two features are
tracked without errors (#48, #51). These facts are illustrated in Fig. 5.

4.3 Quantitative experiments

The effects of the proposed technique are quantitatively evaluated on several real
sequences taken from cars moving in urban environments. In the experiments,
we test whether the proposed technique can provide longer feature lifetimes even
with a more restrictive residuum threshold. We consider eight fragments of the
four sequences which are briefly described in Table 2. The fragments contain real
images obtained for mainly translational movements of the vehicles on which the
camera was mounted. For each sequence from the table, the tracking procedure is
invoked with and without the feature support enabled, for different combinations
of the RMS residual threshold. The relation between the two sets of obtained
lifetimes (liFS) and (linoFS), is analysed exclusively for features in which the
tracking was discontinued due to the one of the criteria described in 4.1. In
particular, we do not consider the features discontinued after a contact with

Rt:18.7 Ra:9.9 Rt:11.1 Ra:6.2 Rt:20.8 Ra:12.3

#51 #94 #143

Fig. 5. Three features from rennes1, which are tracked only if a threshold on l2 is lowered. The
features #51 and #94 are confidently tracked, but the #143 slightly oscillates along the horizontal
axis. The magnification parameter is correct for all features. See Fig. 2 for annotations



the image border, which introduces a bias towards shorter-living features. Two
different measures of average feature lifetime were used:

1. geometric average of individual lifetime ratios: Mg = n
√∏

i l
i
FS/l

i
noFS

2. ratio of the total feature lifetime: Ma = (
∑
i l
i
FS)/(

∑
i l
i
noFS)

The latter measure is judged as better since it reduces the bias towards short-
living features. The obtained results are summarized in Table 2, and they show
that the proposed technique favourably influences the feature lifetimes. Besides
the occlusions and large photometric variations, the technique also allows to
deal with structural changes, affecting the roof silhouettes (see #C30 in Fig. 1),
and moderate affine deformations occurring on the pavement signalization. Con-
versely, the results for compiegne1 and compiegne3 suggest that there is no
negative impact if the addressed effects are absent.

Table 2. Quantitative comparison of the total feature lifetime ratio Ma, for different
combinations of RMS thresholds RFS : RnoFS.

sequence description 15:15 20:20 15:20

rennes1 approaching a building with holes 1.32 1.14 1.06
rennes2 a tour in the inner court 1.23 1.11 1.01
compiegne1 traversing a large square into a street 1.09 1.10 0.96
compiegne2 towards a square in the sunlight 1.20 1.23 1.03
compiegne3 a very narrow street 1.05 1.07 0.93
compiegne4 a street bordered by buildings and trees 1.17 1.18 0.98
antibes1 some trees on the left and far away 1.09 1.13 0.99
antibes2 a narrow downhill winding street 1.07 1.07 1.02

5 Conclusions and the Future Work

A technique for increasing the feature lifetimes in extended real sequences ac-
quired during a mainly translational forward motion of the observer has been pre-
sented. The technique addresses “almost good” features, for which the deforma-
tions during the tracking can not be completely explained by linear transforms,
due to occlusions, photometric variations or small structural developments. The
experiments suggest that the technique favourably affects the tracking quality,
on both accounts of the correct tracking and the correct rejection.

The future work will be concentrated on applying the technique in the field of
the autonomous robot navigation. There we would like to explore the potential of
using all geometric warp parameters recovered by the tracking procedure (d,m).
Further improvements might be obtained by devising more sophisticated ways
to regulate the modulation speed α for estimating the distribution parameters
of the warped feature pixels. An eventual faster convergence would allow the



monitoring procedure to rely more heavily on the size and the shape of the feature
support, and consequently further improve the chances for early detection of ill-
conditioned situations, and confident tracking during extended time intervals.
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