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O mentoru

Siniša Šegvić doktorirao je u području umjetne inteligencije i računalnog vida na zagrebačkom

FER-u u 2004. godini. Bio je postdoktorski istraživač na institutu IRISA u Rennesu (2005-

2006) te na TU Graz (2006-2007). Nakon toga vraća se na FER gdje predaje u području

računarske znanosti i istražuje u području računalnog vida. Sudjelovao je u uvod̄enju diplom-

skih kolegija Oblikovni obrasci u programiranju, Duboko učenje te Trodimenzionalni računalni

vid. Takod̄er, sudjelovao je i u rekonstrukciji kolegija Računalni vid. Konačno, sudjelovao je

i u uvod̄enju doktorskih kolegija Analiza dinamičkih scena te Modeli za reprezentaciju slike

i videa. Mentorirao je sedam obranjenih doktorata te nekoliko stotina diplomskih i završnih

radova u području računalnog vida i umjetne inteligencije.

Njegovi istraživački i profesionalni interesi uključuju računalni vid, strojno učenje, razu-

mijevanje scena, analizu satelitskih snimaka te obrane od napada putem trovanja podataka.

Objavio je radove na vrhunskim konferencijama (CVPR, ECCV, NeurIPS te AAAI) te vrhun-

skim časopisima iz računalnog vida i umjetne inteligencije (IEEE TPAMI, IJCV, IEEE TNNLS,

Patt Recog i IEEE TITS). Recenzent je u vrhunskim konferencijama i znanstvenim časopisima.

Njegova istraživačka grupa sastoji se od dva postdoktoranda i šest doktoranada koje financiraju

nacionalni projekti, evropski projekti i privatne tvrtke. Zajedno su postigli zapažene rezultate

na više natjecanja u računalnom vidu (ACDC, WildDash, Robust vision challenge, Cityscapes,

Fishyscapes i SegmentMeIfYouCan).

Vodio je tri istraživačka projekta Hrvatske zaklade za znanost (ADEPT, MultiCLOD, MAS-

TIF), jedan projekt iz programa NPOO (VoNoMobil) te industrijska istraživanja koja su finan-

cirali Google, P3M, Rimac automobili, RoMB, MicroBlink te Promet i prostor. Sudjelovao je

u istraživačkom centru izvrsnosti DataCross, projektima iz programa EDF i ERDF (EICACS,

A-UNIT, SafeTram) kao i na jednom projektu iz programa FP7 (ACROSS). Sudjelovao je u

industrijskom razvoju kao tehnički konzultant. Vodio je i dva bilateralna istraživačka projekta

u suradnji s istraživačima iz Austrije i Njemačke te je organizirao nekoliko bilateralnih i jednu

med̄unarodnu istraživačku radionicu.

Siniša Šegvić govori engleski i talijanski jezik te ima osnovne komunikacijske vještine na

francuskom jeziku. Bio je na roditeljskom dopustu od šest mjeseci. Oženjen je i ima troje djece.

i



About the Supervisor

Siniša Šegvić has received a PhD degree in computer vision and artificial intelligence at UniZg-

FER. He was a postdoc researcher at IRISA Rennes (2005-2006) and at TU Graz (2006-2007).

Subsequently, he returns to UniZg-FER where he lectures in computer science and performs

research in computer vision. He has participated in the introduction of graduate courses Design

patterns, Deep learning and Three-dimensional computer vision. He has also participated in the

reconstruction of the master course Computer Vision and the introduction of doctoral courses

Analysis of dynamic scenes and Models for representing images and video. He mentored seven

completed doctoral theses and several hundreds of master and bachelor theses in computer

vision and artificial intelligence.

His research and professional interests include computer vision, machine learning, scene

understanding, recognition of satellite images, and defense from data poisoning attacks. He

has published at top conferences (CVPR, ECCV, NeurIPS and AAAI) and scientific journals

in computer vision and artificial intelligence (IEEE TPAMI, IJCV, IEEE TNNLS, Patt Recog).

He has been a reviewer at top conferences and scientific journals. His research group consists

of several postdoctoral and doctoral students that are funded by national projects, European

projects and private companies. Together they achieved remarkable results to several competi-

tions in computer vision (ACDC, WildDash, Robust vision challenge, Cityscapes, Fishyscapes

and SegmentMeIfYouCan).

He has led three research projects funded by Croatian Science Foundation (ADEPT, Mul-

tiCLOD, MASTIF), one project from the Croatian RRP programme (VoNoMobil) and several

industrial projects funded by Google AI for global goals, P3M, RoMB technology, Rimac Auto-

mobiles, MicroBlink and Promet i prostor. He participated in the Center of research excellence

DataCross, several projects from the EDF and ERDF programmes (EICACS, A-UNIT, Safe-

Tram) as well as one project from the FP7 programme (ACROSS). He participated in industrial

development as a technical consultant. He also led two bilateral research projects in cooperation

with researchers from Austria and Germany and organized several bilateral workshops and one

international research workshop.

Siniša Šegvić speaks english and italian very well, and has basic communication skills in

french. He had a six month career break for paternal leave. He is married and has three children.
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Zahvala

Iskreno zahvaljujem profesoru Siniši Šegviću na savjetima, strpljivosti i trudu uloženom u

našu suradnju. Hvala svim kolegicama i kolegama iz istraživačke grupe profesora Šegvića

na zanimljivim raspravama i ugodnoj radnoj atmosferi. Zahvaljujem profesorici Mariji Brbić i

kolegama iz MLBio laboratorija na tri uzbudljiva semestra koja smo proveli zajedno na EPFL-

u. Najljepše hvala majci Renati, ocu Mati, bratu Ivanu i sestri And̄eli, kao i široj obitelji i

prijateljima, na bezuvjetnoj podršci i ljubavi tijekom čitavog školovanja. Konačno, zahvaljujem

Jasni Galić na potpori i razumijevanju za sve moje izlete po svijetu. U najtežim trenucima nadu

i snagu mi je pružao zagovor svetoga Josipa i Marije Pomoćnice.
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Abstract

Open-set segmentation considers dense recognition models that effectively handle semantic

anomalies in visual input. Prominent previous approaches address this challenge by augment-

ing closed-set classification with dense anomaly detection. However, the existing anomaly

detectors rely either on generative modelling of regular data, or discrimination with respect to

negative training data. These two approaches optimize different objectives and therefore ex-

hibit different failure modes. Consequently, this thesis proposes a novel hybrid anomaly score

that fuses generative and discriminative cues. The proposed anomaly score can be incorporated

into any pre-trained softmax-activated closed-set segmentation model by introducing dense es-

timates of the dataset posterior and unnormalized joint probability of inputs and labels. Our

formulation of the joint probability preserves translational equivariance and eschews estimation

of normalization constant by minimizing the density of negative training crops. Moreover, we

show that real negative crops can be effectively substituted with synthetic samples from a jointly

trained generative model that maximizes the likelihood of inlier crops while favouring samples

with uniform discriminative prediction. Finally, we propose a novel generative architecture that

increases modeling capacity by extending the coupling flows with stochastic skip connections.

Our generative architecture achieves exceptional results in density estimation, and proves as the

most suitable source of synthetic negatives for dense anomaly detection. Experimental results

indicate that the resulting open-set segmentation models consistently outperform existing meth-

ods across benchmarks for dense anomaly detection and open-set segmentation, while incurring

negligible computational overhead.

Keywords: semantic segmentation, open-set segmentation, open-set recognition, anomaly de-

tection, out-of-distribution detection, synthetic negative data, generative models, normalizing

flows
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Sintetički negativni podaci i nenormalizirana izglednost za se-

mantičku segmentaciju slika nad otvorenim skupom razreda

Semantička segmentacija nad otvorenim skupom oznaka razmatra modele za gusto raspozna-

vanje koji učinkovito obrad̄uju semantičke anomalije u vizualnim ulazima. Istaknuti prethodni

pristupi rješavaju ovaj izazov proširivanjem klasifikacije s gustom detekcijom anomalija. Med̄u-

tim, postojeći detektori anomalija oslanjaju se ili na generativno modeliranje regularnih po-

dataka, ili na diskriminaciju u odnosu na negativne podatke za učenje. Ova dva pristupa opti-

miraju različite gubitke te stoga čine različite pogreške. Stoga, ova teza predlaže novu formu-

laciju hibridnog detektora anomalija koji spaja generativne i diskriminativne signale. Pred-

loženi detektor anomalija može se integrirati u bilo koji segmentacijski model sa softmax

aktivacijama prethodno treniran na zatvorenom skupu uvod̄enjem gustih procjena posteriora

skupa podataka i nenormalizirane združene vjerojatnosti ulaza i oznaka. Naša formulacija

zružene vjerojatnosti čuva translacijsku ekvivarijantnost i izbjegava procjenu normalizacijske

konstante minimiziranjem izglednosti negativnih isječaka. Štoviše, pokazujemo da se stvarni

negativni isječci mogu učinkovito zamijeniti sintetičkim uzorcima iz zajednički učenog gener-

ativnog modela koji maksimizira vjerojatnost unutardistribucijskih isječaka, dok istovremeno

favorizira uzorke s ujednačenim diskriminativnim predikcijama. Konačno, predlažemo novu

generativnu arhitekturu koja povećava generativni kapacitet proširivanjem slojeva miješanja

sa stohastičkim preskočnim vezama. Naša generativna arhitektura postiže izvanredne rezul-

tate u procjeni gustoće i pokazuje se kao najprikladniji izvor sintetičkih negativnih uzoraka za

gustu detekciju anomalija. Eksperimentalni rezultati pokazuju da modeli za segmentaciju nad

otvorenim skupom razreda dosljedno nadmašuju postojeće metode na referentnim testovima za

gustu detekciju anomalija i gusto raspoznavanje, uz zanemarivo povećanje računalnih zahtjeva.

U nastavku donosimo sažetak disertacije po poglavljima.

Uvod
Moderni duboki modeli imaju jake generalizacijske sposobnosti usprkos brzom zaključi-

vanju i malom memorijskom otisku. Stoga se najnoviji napretci u robotici, kemiji i medicini

čvrsto oslanjaju na duboke modele. Ipak, ove i mnoge druge aplikacije pretpostavljaju ko-

rištenje dubokih modela u kontroliranim uvjetima i ograničenom kontekstu.

U ovoj tezi analiziramo performanse dubokih modela u stvarnom svijetu koji sadrži prim-

jere izvan trening skupa. Specifično, fokusiramo se na duboke modele za segmentaciju slika u

predefinirani skup razreda. Odgovarajuće ponašanje gustih klasifikatora u ovakvom okruženju

uključuje točno raspoznavanje instanci poznatih razreda te detekciju instanci nepoznatih razreda.

Ovakvo ponašanje postižemo nadogradnjom gustog detektora anomalija nad standardnim klasi-
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fikatorom. Specifičnost predloženog pristupa je uvod̄enje hibridnog detektora anomalija koji

ansamblira generativni i diskriminativni pristup izgrad̄en povrh predtreniranog klasifikatora.

Predloženi model fino ugad̄amo slikama koje sadrže negativne primjere koji imitiraju testne

anomalije. Negativni primjeri mogu biti uzorkovani iz pomoćnog skupa podataka ili generirani

sa združeno učenim generativnim modelom. U slučaju sintetičkih negativa koristimo genera-

tivni model temeljen na normalizirajućem toku sa stohastičkim preskočnim vezama.

Provedena kvantitativna evaluacija otkriva da predloženi modeli prestižu alternativne pris-

tupe u detekciji anomalija, segmentaciji nad otvorenim skupom razreda te procjeni izglednosti.

Kvalitativna analize otkriva točnu segmentaciju poznatih dijelova scene te detekciju anomalnih

dijelova scene.

Prijašnji radovi
Prethodni radovi relevantni za ovu tezu bave se različitim pristupima detekciji anomalija,

raspoznavanju nad otvorenim skupom razreda te generativnom modeliranju. Rani pristupi de-

tekciji anomalija na razni slike uče klasifikator na označenim podacima te detektiraju anomalije

pomoću pouzdanosti klasifikacije. Bolju performansu postižu metode koje u postupak učenja

uvode negativne primjere iz dodatnog raznovrsnog skupa podataka koje imitiraju testne anoma-

lije. Klasifikatori učeni u takvom eksperimentalnom postavu generiraju predikcije s visokim

stupnjem neodred̄enosti u negativnim primjerima. Daljnja poboljšanja se mogu postići post-hoc

adaptacijom klasifikatora kao što su prorjed̄ivanje aktivacijskih značajki. Paralelno, generativni

pristupi detekciji anomalija identificiraju anomalije temeljem procjene izglednosti.

Detekcije anomalija na razini piksela podrazumijeva da je samo dio slike anomalan. Odgo-

varajući pristupi stoga imitiraju testne anomalije dodavanjem negativnih podataka povrh regu-

larnih scena. U ovakvom eksperimentalnom postavu gusti klasifikator možemo proširiti bina-

rnim klasifikatorom koji diskriminira izmed̄u regularnih i anomalnih dijelova scene. Anomalni

dijelovi scene se mogu detektirati generativnim klasifikatorima ili procjenom izglednosti la-

tentnih reprezentacija. Slično, neuspjela rekonstrukcija dijela scene može služiti kao indikator

nepoznatih objekata na sceni.

Raspoznavanje nad otvorenim skupom razreda ima za cilj točnu klasifikaciju poznatih prim-

jera te detekciju nikad prije vid̄enih primjera. Ovaj cilj se može postići ograničavanjem de-

cizijske ravnine u prostoru značajki. Inicijalni pristupi modeliraju prototip svakog razreda u

latentnom prostoru te odbijaju klasifikaciju ako je primjer enkodiran izvan ε-okoline najbližeg

razreda. Alternativno, klasifikator se može komplementirati s detektora anomalija koji nad-

glasava odluku klasifikatora. U oba slučaja je potrebno odrediti hiperparametar koji direktno

definira granicu izmed̄u poznatih i nepoznatih primjera. Slično kao i u zadatku detekcije anoma-

lija, postojanje negativnih primjera poboljšava performansu modela.

Negativni primjeri iz stvarnog skupa podataka se mogu zamijeniti sa sintetičkim negativima

uzorkovanim iz združeno učenog generativnog modela. Ovakav eksperimentalni postav uklanja
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pristranost prema odred̄enim tipovima negativnih primjera vid̄enih tijekom učenja. Prikladan

generativni model može biti brzo uzorkovan stoga se prethodni radovi često oslanjaju na gen-

erativne suparničke modele. Ipak, suparnički modeli su često nestabilni za učenje i ne pokri-

vaju cijelu distribuciju podataka. Alternativno, negativni primjeri se mogu konstruirati pomoću

neprijateljskih perturbacija ili fraktala.

Suvremeni pristupi generativnom modeliranju se uče maksimizacijom izglednosti dostupnog

skupa podataka pod distrbucijom modela. Generativne modele razlikujemo na temelju for-

mulacija izglednosti koje mogu uključivati nenormalizirane vjerojatnosti, modeliranje latentne

varijable, autoregresivnu formulaciju, zamjenu varijabli distribucije i druge.

Gusto povezani normalizirajući tokovi
Normalizirajući tokovi su posebna vrsta generativnih modela matematički utemeljena na

formuli za zamjenu slučajnih varijabli. Formula za zamjenu slučajnih varijabli povezuje re-

alizacije dvije slučajne varijable jednake dimenzionalnosti pomoću bijektivne diferencijabilne

funkcije f . Pretpostavimo li da su primjeri skupa podataka realizacije slučajne varijable x te da

postoji latentna varijabla z koja se ravna po predefiniranoj distribuciji (npr. Gaussova distribu-

cija), tada vezu izmed̄u dvije distribucije možemo modelirati nelinearnom funkcijom z = fθ (x).
Normalizirajući tokovi stoga imaju sljedeću formulaciju: pθ (x)=N (z= f (x); µ,Σ)

∣∣∣det ∂ fθ (x)
∂x

∣∣∣.
Učinkovita procjena izglednosti s normalizirajućim tokom zahtjeva efikasan izračun apsolutne

vrijednosti determinante Jakobijana.

Generiranje novih primjera s normalizirajućim tokovima se provodi u dva koraka: uzorko-

vanje latentne distribucije te transformacija pomoću inverza bijekcije f (to jest x = f−1
θ

(z)).
Učinkovito uzorkovanje normalizirajućih tokova zahtjeva efikasan inverz bijektivne transfor-

macije što uvodi dodatna ograničenja na arhitekturu modela.

Potreba za efikasnim uzorkovanjem i procjenom izglednosti je posebno naglašena kod mod-

eliranja slika koje su u biti visokodimenzionalni podaci. Za rezultat, arhitektura normalizira-

jućih tokova ima značajna ograničenja te se izvodi kompozicijom niza transformacija. Tipične

transformacije su konvolucija s jezgrom 1×1, bijektivna verziju normalizacije po grupi te slo-

jevi združivanja.

Jedno ograničenje bijektivne arhitekture je fiksna dimenzionalnost latentnih reprezentacija

izmed̄u uzastopnih transformacija. U ovoj tezi predlažemo relaksaciju takvog ograničenja uz

pomoć inkrementalnog proširivanja latentih reprezentacija u med̄ukoracima. U praksi, to se

izvodi konkatenacijom slučajnog šuma postojećim reprezentacijama, gdje su parametri dis-

tribucije šuma modelirani temeljem prethodnih latentnih reprezentacija. Navedeno unapred̄enje

nazivamo stohastičkim preskočnim vezama.

Hibridna segmentacija slika nad otvorenim skupom oznaka
Segmentacija slika nad otvorenim skupom oznaka zahtjeva točnu segmentaciju instanci poz-

natih razreda te suzdržavanje od odluke u nepoznatim dijelovima slike. Nepoznati dijelovi slike
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su u biti semantičke anomalije, stoga ovaj zadatak možemo riješiti kombiniranjem gustog klasi-

fikatora i detektora anomalija.

Prethodni radovi koriste detektore anomalija koje se mogu grubo kategorizirati u diskrim-

inativne i generativne pristupe. Diskirminativni i generativni detektori anomalija optimiraju

različite gubitke te stoga čine različite greške čak i kad dijele latentne reprezentacije. Ova teza

predlaže ansambliranje diskriminativnog i generativnog pristupa izgrad̄enih povrh standard-

nog klasifikatora u jedinstveni hibridni detektor anomalija. Generativni detektor anomalija iz-

grad̄ujemo povrh standardnog klasifikatora reinterpretacijom eksponenciranih logita kao nenor-

malizirane zajedničke distribucije ulaza i razreda. Marginalizacijom preko svih razreda osigu-

ravamo nenormaliziranu izglednost ulazne slike. Diskriminativni detektor anomalija gradimo

nad standardnim klasifikatorom kao dodatni binarni klasifikator povrh predlogita. Rezultirajući

model ima tri izlaza: klasifikator poznatih razreda, nenormalizirana izglednost te aposteriorna

vjerojatnost skupa podataka.

Adekvatno ponašanje modela za raspoznavanje postižemo finim ugad̄anjem na negativnih

primjerima. Negativni primjeri se uzorkuju iz pomoćnog skupa podataka te lijepe povrh reg-

ularnih scena kako bi se dobile scene miješanog sadržaja. Ova teza predlaže zamjenu nega-

tivnih primjera iz pomoćnog skupa s umjetnim negativima uzorkovanih s generativnim mod-

elom. Specifično, umjetne negative uzorkujemo iz združeno učenog normalizirajućeg toka sa

stohastičkim preskočnim vezama.

Metodologija
Evaluiranje procjene izglednosti, segmentacije slika nad otvorenim skupom oznaka te guste de-

tekcije anomalija zahtjeva adekvatne skupove podataka koje dijelimo u tri kategorije. Skupovi

podataka s malim slikama rezolucije do 64×64 piksela se koristimo za procjenu izglednosti s

generativnim modelima. Primjer ovakvog skupa podataka je CIFAR10 ili ImageNet32. Skupovi

podataka sa općenitim scenama uključuju slike raznovrsnih objekata. Primjer ovakvog skupa je

MS COCO, koji sadrži guste oznake za preko sto različitih razreda. Ovaj skup koristimo pri val-

idaciji performanse modela za raspoznavanje nad otvorenim skupom oznaka. Konačno, skupovi

sa prometnim scenama sadrže slike vožnje iz perspektive vozača automobila. Primjer ovakvnog

skupa podataka je Fishyscapes koji sadrži semantički bogate slike visoke rezolucije s izvandis-

tribucijskim primjerima. Slike vožnje koristimo za gustu detekciju anomalija te raspoznavanje

nad otovrenim skupom razreda.

Kvantitativnu procjenu performanse na navedenim skupovima podatak provodimo standard-

nim metrikama kao što su prosječna preciznost, površina ispod ROC krivulje i druge. Dodatno,

predlažemo novu metriku pod nazivom open-IoU koja uključuje lažne pozitive i lažne negative

u anomalnim pikselima u procjenu segmentacijske točnosti modela. Konačno,poglavlje sadrži

glavne implementacijske detalje potrebni za reproduciranje provedenih eksperimenata.
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Rezultati
Kvantitativni rezultati validiraju arhitekturu normalizirajućeg toka DenseFlow na standard-

nim testnim skupovima CIFAR10, CelebA i ImageNet. DenseFlow postiže bolju procjenu iz-

glednosti od alternativnih arhitektura normalizirajućeg toka.

Predloženi hibridni detektor anomalija DenseHybrid je validiran na skupovima Fishyscapes

i SegmentMeIfYouCan te postiže bolju performansu od prethodnih pristupa. Slično, segmentaci-

jski model s DenseHybrid detektorom anomalija postiže najbolje rezultate u segmentaciji nad

otvorenim skupom oznaka na skupovima podataka StreetHazards i COCO. Daljnja analiza

pokazuje da DenseHybrid zahtjeva minimalne računske zahtjeve.

Kvalitativni rezultati pokazuju slike generirane s predloženim normalizirajućim tokom, prim-

jere sintetičkih negativa te primjere segmentacije za slike iz različitih skupova podataka.

Zaključak i budući rad
Ova disertacija predlaže novi pristup segmentaciji slika nad otvorenim skupom oznaka koji

kombinira standardne guste klasifikatore i hibridni detektor anomalija. Predloženi hibrindni

pristup agregira generativni i diskirminativni detektor anomalija u jedinstveni detektor. Gusti

klasifikator s hibridnim detektorom anomalija je potrebno fino ugoditi na slikama koje sadrže iz-

vandistribucijske primjere preuzete iz dodatnog skupa podataka ili generirane uz pomoć združeno

učenog generativnog modela. U potonjem slučaju, umjetni negativni podaci su uzorkovani

pomoću normalizirajućeg toka sa stohastičkim preskočnim vezama. Evaluacija predloženih

modela pokazuje poboljšanje performanse u usporedbi s alternativne pristupa na različitim

skupovima podataka.

Budući rad uključuje daljna poboljšanja segmentacije slika nad otvorenim skupom oznaka,

testiranje predložene metode na recentnim pristupima segmentaciji koji koriste raspoznavanje

na razini maski te adaptacija recentnih generativnih modela kao izvor negativnih podataka.

Dodatak
Dodatak sadrži detaljno raspisane dokaze za donju granicu izglednosti kod gusto povezanih

normalizirajućih tokova, detalje dvodimenzionalnog skupa podataka korištenog u ilustraciji

četvrtog poglavlja, detaljne izvode gubitaka korištenih za fino ugad̄anje hibridnog detektora

anomalija, te proširene razulate DenseFlow arhitekture.

Ključne riječi: Semantička segmentacija, Segmentacija nad otvorenim skupom razreda, Raspoz-

navanje nad otvorenim skupom razreda, detekcija anomalija, detekcija izvandistribucijskih prim-

jera, umjetni negativni podaci, generativni modeli, normalizirajući tok
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Chapter 1

Introduction

Extensive generalization capabilities, fast inference and small memory footprint of contempo-

rary neural networks steadily expand the horizon of real-world applications. Recent advances in

robotics [1], chemistry [2] and medicine [3] heavily rely on deep learning technology. However,

many of these applications assume deployment in closed environments with limited variability.

Conversely, open-world applications such as transportation [4, 5], present a challenge for con-

temporary deep models due to the diversity of the environment. Moreover, existing evaluation

protocols related to the open world deployments [4, 6, 7] focus on unrealistic setups that over-

look possible hazards of the real world. For instance, most semantic segmentation datasets [4, 7]

annotate only instances of known classes, while ignoring and deeming the ramaining content as

out of scope.

This thesis aims to go beyond closed-set benchmarks and evaluate deep recognition models

in the presence of irregular test examples that deviate from the training distribution. In partic-

ular, we focus on dense prediction context and a specific kind of out-of-distribution examples

known as semantic anomalies. Semantic anomalies are instances of classes that do not belong

to the training taxonomy [8]. To effectively handle anomalous test data, we enable our segmen-

tation models to detect instances of previously unseen classes, i.e. semantic anomalies, while

correctly classifying the instances of the inlier classes. The described task is commonly referred

to as open-set segmentation.

We extend the standard segmentation by incorporating the ability to withhold the seman-

tic decision by complementing the standard closed-set classification with a dense semantic

anomaly detector [9, 10, 11]. This approach aligns with several prior works [12, 13, 14, 15]

which propose anomaly detectors generally categorized into generative and discriminative ap-

proaches. We hypothesize that the two categories of anomaly detectors exhibit different failure

modes, even when built atop the same feature representations [16]. If our hypothesis holds,

combining the two approaches into a hybrid anomaly detector could yield a more accurate de-

tector than either component alone.
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Given the necessity for computationally efficient inference in practical applications, we con-

struct a lightweight dense hybrid anomaly detector that introduces minimal computational over-

head over the standard dense classifier. Specifically, the generative component of our hybrid

anomaly detector is developed through a reinterpretation of classifier logits [17], while the dis-

criminative component is formulated as an auxiliary outlier detection head [10]. We denote the

resulting method for anomaly detection as DenseHybrid. Our method facilitates open-set in-

ference by implementing straightforward and compact upgrades to pre-trained dense classifiers

[18], typically with negligible impact on inference time. Figure 1.1 illustrates an example of

open-set inference with DenseHybrid. Given an input image, we produce closed-set seman-

tic predictions alongside a dense anomaly map. The anomaly map aggregates generative and

discriminative anomaly scores. The final open-set output is recovered by overriding closed-set

predictions in pixels identified as anomalous.

Override closed-set 
decisions in 

anomalous pixels

Input with known and 
unknown classes Open-set segmentation

Dense anomaly score
DenseHybrid

Dense
classifier

Generative
anomaly detection

Closed-set segmentation

Discriminative
anomaly detecion

Dense hybrid 
anomaly detector

Unknown classes = semantic anomalies

Figure 1.1: Open-set segmentation simultaneously classifies known scene parts and identifies unknown
classes (highlighted in cyan). Our approach exploits the fact that unknown classes are semantic anomalies
[8]. Hence, we construct a dense hybrid anomaly detector and use it to detect anomalous pixels. Our
hybrid anomaly score identifies pixels as unknown visual concepts by efficient ensembling of generative
and discriminative predictions.

The DenseHybrid approach can upgrade any pre-trained dense classifier with open-set recog-

nition capability. We propose a fine-tuning procedure that uses real or synthetic negative data

to simulate test anomalies. The negative data is overlaid onto inliers images to create mixed-

content training images [12]. These images are then used to train the open-set model by op-

timizing appropriate objectives. In the case of synthetic negative data, we jointly train a nor-

malizing flow capable of generating dataset-specific samples with varying spatial dimensions.

Specifically, we use DenseFlow, a normalizing flow with stochastic skip connections [19].

The resulting models are evaluated on various test scenarios, including general images and

application-specific road-driving scenes. We quantify dense open-set recognition performance

in the presence of outliers with the novel open-IoU metric that penalizes both semantic false

positives at outliers and semantic false negatives at inliers. DenseHybrid consistently outper-

forms alternative approaches both in semantic anomaly detection and open-set segmentation.

Altogether, this thesis proposes the following contributions:

1. A hybrid anomaly score that ensembles the discriminative and the generative component

2. An algorithm to learn a translationally equivariant model of the neighborhood density,

which avoids the expensive estimation of the normalizing constant by minimizing the
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likelihood of negative training data

3. Elements of a differentiable module that creates artificial negative examples that are used

for training an open-set semantic segmentation model

4. Generative normalizing flow architecture with stochastic skip connections

These contributions are elaborated in the rest of the thesis with the following structure.

The second chapter, titled "Related work", begins by revisiting previous studies that deal with

image-wide and pixel-wise anomaly detection. The chapter continues by reviewing open-set

recognition and the use of synthetic data in open-set setups. The chapter concludes with an

in-depth overview of existing generative models.

The third chapter, titled "Densely connected normalizing flows", starts with a brief review

of the change of variables formula, the fundamental mathematical concept behind normalizing

flows. The chapter proceeds by describing the standard building blocks of bijective flows and

their adaptations for image data. The final section introduces stochastic skip connections for

normalizing flows, which is the first contribution of this thesis.

The fourth chapter, titled "Hybrid open-set segmentation of images", introduces open-set

segmentation by fusing a closed-set segmentation model with a dense hybrid anomaly detector.

The hybrid anomaly detector fuses discriminative class posterior with dense unnormalized like-

lihood, which is the second contribution of this thesis. The proposed unnormalized likelihood

takes an equivariant form particularly designed for dense prediction, which is the third contribu-

tion of this thesis. The chapter proceeds by elaborating fine-tuning of the open-set model with

real negative data. The real negative data can be replaced with synthetic negative data, which is

the fourth contribution of this thesis.

The fifth chapter, "Methodology" explains the experimental setup used to validate the pro-

posed contributions. The chapter describes datasets and benchmarks used in open-set and den-

sity estimation experiments, followed by performance metrics for model evaluation. The chap-

ter concludes with the main implementation details relevant for reproducibility of our results.

The sixth chapter, titled "Results", includes experimental results for density estimation, per-

pixel anomaly detection and open-set segmentation. The chapter presents quantitative perfor-

mance comparisons with existing baselines and previous works. Ablation studies validate the

proposed methodological contributions while computational analysis covers the practical as-

pects of the proposed contributions. The chapter concludes with qualitative results.

The seventh chapter, titled "Conclusion and outlook", concludes this thesis while the eighth

chapter "Appendix" lists detailed proofs and extended derivations.
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Chapter 2

Related Work

This chapter revisits the related work in anomaly detection, open-set segmentation and gen-

erative modeling. Section 2.1 reviews image-wide anomaly detection. Section 2.2 considers

anomaly detection at the pixel level. Section 2.3 outlines prior research in open-set recognition.

Section 2.4 describes the utilization of generative models for synthetic training data. Section

2.5 describes further advances from open-set recognition towards open worlds. Finally, Section

2.6 revisits contemporary generative modeling approaches.

Detecting observations that deviate from some notion of regularity is a decades-old prob-

lem [20]. In the age of big data, regularity is often specified by the available examples, com-

monly referred to as inliers, while the irregular data is then referred to as outliers. Outliers

significantly differ from the inliers in some way and are often also referred to as anomalies,

out-of-distribution data, or novelties [8]. Throughout this work, we will use these terms inter-

changeably. Modern research in anomaly detection considers different setups with a broad set

of anomalies [21, 22]. We will focus on methods that aim at detecting semantic anomalies,

i.e. instances of classes outside the training taxonomy. In this setup, the set of inlier classes

is known beforehand and the available dataset is annotated. The full spectrum of research in

anomaly detection can be found in surveys [8, 23]

2.1 Image-wide anomaly detection

Given a labeled inlier dataset, early image-wide approach [24] trains K-way classifier and uti-

lizes max-softmax probability to detect anomalous inputs. The succeeding approach ODIN [25]

introduced anti-adversarial input perturbations in order to improve the detection performance.

Anomaly detection with predictive uncertainty can be further improved through Bayesian for-

mulation [26] and ensembling of multiple models [27]. Instead of prediction confidence, max-

logit score (MLS) [15] detects anomalous inputs based on logit scores, while GradNorm [28]

considers the norm of the gradient with respect to model parameters [29]. These approaches
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had limited success since the model training lacked the notion of anomaly.

More encouraging performance has been attained by learning on surrogate anomalies that

we denote as negative training data. [10, 30, 31, 32]. The negative examples are commonly

sourced from a broad auxiliary dataset in order to account for the sheer diversity of all possible

test-time anomalies [31]. Initial approaches require high entropy predictions in negative training

data [30, 31]. Succeeding work [32] fits an energy function to the logits of the discriminative

model and requires low energy in inliers and high energy in negative samples. During the

inference, anomalous samples are detected according to the energy score.

Further performance improvements have been attained by carefully sampling negative train-

ing examples [33, 34]. The seminal work ATOM [33] mines informative negative samples

by ranking them according to the OOD score, i.e. the confidence of K+1-th class. Similarly,

POEM [34] retrieves informative negative samples according to the distance between the in-

liers and candidate negatives in the feature space, which is assumed to be informative. This

idea is further advanced in DOS [35] by introducing a sampling strategy that also accounts for

the diversity in negative samples. In the context of negative samples, the diversity corresponds

to pairwise distances between the sampled negatives. Perturbing samples in the direction of

gradient w.r.t negative loss can further increases the variety of training negatives [36].

The trained model can be further post-processed in order to improve outlier detection per-

formance. For instance, ReAct [37] observes that outliers give rise to feature representations

with large norm in pre-logit space Thus, ReAct truncates the pre-logit features to predefined

treshold and detects anomalies based on different anomaly scores, i.e. softmax confidence [24]

or free-energy [32]. This operation limits the effects of large feature representations for some

inputs. ASH [38] further advances this idea by completely removing some activations, while

DICE [39] sparsifies the model weights to achieve the same effect. Sparse activations prevent

aggregation of uninformative features in the computation of the logits. Alternatively, [40] in-

troduces a memory module that collects inlier feature representations. The collected memory is

then used for detecting anomalous inputs based on the distance from nearest inlier neighbors.

Another line of work detects anomalies by estimating the data likelihood. In this setup, a

low likelihood of a given sample would indicate anomalous input. Surprisingly, this research

reveals that anomalous images may give rise to a higher likelihood than inliers [41, 42, 43]. This

problem can be alleviated by modeling condensed representations of the input, i.e. features in

low dimensional space [13]. Thus, interesting approaches [13, 44] fit a probabilistic density

estimator to features of a discriminative model.
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2.2 Pixel-wise anomaly detection

Natural images include objects within a certain context. The goal of pixel-wise anomaly de-

tection is to segment anomalous image parts, which can include anomalous objects, context, or

both. Image-wide anomaly detectors can be adapted for dense prediction with variable success.

Some image-wide approaches are not applicable in dense prediction setups [45], while others

do not perform well [24] or involve excessive computational complexity [25, 27]. On the other

hand, discriminative training with negative data [12, 30, 31] is easily ported to dense prediction.

Early dense discriminative anomaly detector [10, 12] appends an additional OOD head

that differentiates inliers from outliers and trains the additional head on mixed-content images.

The mixed-content images are obtained by pasting negative content (e.g. ImageNet1k, COCO,

ADE20k) over regular training images. Alternatively, outlier pixels can be detected based on

max-logit value [15] that can be standardized through post-processing for further performance

improvements [46].

Similarly, anomalous scene parts can be detected by considering prediction uncertainty. A

seminal approach [26] models aleatoric and epistemic uncertainty through Bayesian deep learn-

ing. Alternatively, [47] captures uncertainty by explicitly parameterizing a prior over predictive

distributions. In both cases, high uncertainty predictions indicates to anomalous scene parts. Fi-

nally, [11] detects outliers based on prediction entropy of a model trained on real and negative

training data.

Generative dense anomaly detectors detect outlier pixels by estimating the density. Embed-

dingDensity [9, 13] models the likelihood of feature activations at different stages of the trained

model. However, this approach may be sensitive to feature collapse [48]. Interesting approach

GMMSeg [14] constructs a generative classifier and detects anomalies based on per-class like-

lihood. Finally, PEBAL [49] models the energy surface through abstention learning.

Another line of work utilizes image resynthesis for dense anomaly detection. In this con-

text, pixel-wise anomaly detectors can be implemented according to the learned dissimilarity

between the input and resynthesized images [50, 51, 52]. Regions with significant deviation

from the resynthesised image indicate anomalous content. The resynthesis can be performed by

a generative model conditioned on the predicted labels. However, this approach is suitable only

for uniform backgrounds such as roads [50] since reconstruction is an ill-posed problem. Fur-

thermore, conditional generation involves a large computational overhead that precludes many

real-world applications dependent on real-time inference. The burden of resynthesis can be

lessened through reconstruction from low-dimensional latent space [53]. Furthermore, image

resynthesis can be circumvented by comparing the texture of potentially anomalous objects with

the texture of the surrounding road [54].

Different from all previous work, we propose a hybrid anomaly detector for dense prediction
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models that fuses discriminative and generative anomaly scores built atop a dense classifier. In

comparison with previous approaches that build on inlier posterior [10, 30, 31], our method

introduces synergy with unnormalized likelihood evaluation. In comparison with approaches

that recover dense likelihood [9], our method introduces joint hybrid end-to-end training and

efficient joint inference together with standard semantic segmentation. Our method is related

to joint energy-based models [17, 55], since we also reinterpret logits as unnormalized joint

likelihood. However, previous energy-based approaches have to backpropagate through the

intractable normalization constant and are therefore unsuitable for large resolutions and dense

prediction. Our method avoids model sampling by contrastive training on inlier and negative

data.

2.3 Open-set recognition

Open-set recognition requires the identification of inlier classes while withholding (or rejecting)

the decision for instances of unknown classes [56]. Figure 2.1 compares the task of open-set

recognition with the two closest tasks, multiclass classification and semantic anomaly detection.

Different than the multiclass classification, open-set recognition necessitates the detection of

classes unseen during the training. Different from anomaly detection, open-set recognition

requires further identification of inlier content according to the set of known classes.

Anomaly
detection

“Airplane” “Dog”

“Cat”

“Regular”

“Anomaly”
“Airplane” “Dog”

“Cat” “Unknown”

Open-set
recognition

Multiclass
classification

Figure 2.1: The task of open-set recognition requires correct classification of inlier content and detection
of instances unseen during the training [56].

Withholding the decision in instances of unknown can be done by restricting the shape of

the decision boundary [57, 58]. A seminal approach [57] learns class centers in the embed-

ding space and rejects the decision in instances embedded far from the nearest class prototype.

DML [59] further scales this approach for dense recognition. Still, these approaches cannot

deal with outliers that are embedded near the class centers, which may be the case with deep

feature extractors. Feature collapse can be alleviated by learning reciprocal points [60]. In this

training setup, class prototypes are pushed far from representations of other semantic content,

i.e. instances of other classes and the negative examples. The quality of embedding space can
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be further improved by utilizing adversarial training examples [61]. OpenHybrid [45] fits the

normalizing flow on feature representations of inlier content in order to withhold the decision

for instances that yield unlikely feature representations. As with many machine learning tasks,

open-set performance can be drastically improved by supplying more capacity through deeper

architectures [62].

The rejection mechanism can alternatively be formulated by complementing the classifier

with a thresholded semantic anomaly detector [24, 25, 63]. In this case, the binary decision of

the semantic anomaly detector overrides closed-set predictions of the classifier. The resulting

output is again K+1-way recognition map. More details about open-set approaches can be found

in the recent review [64].

Most open-set approaches quantify performance by separate evaluation of closed-set recog-

nition and anomaly detection [9, 24, 65, 66]. However, such practice does not reveal degradation

of discriminative predictions due to errors in anomaly detection [67, 68]. This is especially per-

tinent to dense prediction where we can observe inlier and outlier pixels in the same image.

Recent work proposes a solution for the related problem of semantic segmentation in adverse

conditions [69]. Their uncertainty-aware UIoU metric takes into account prediction confidence

as measured by the probability of the winning class. However, UIoU assumes that each pixel

belongs to one of the known classes, which makes it inapplicable for open-set setups. Different

than all previous work, our open-IoU metric specializes for open-set segmentation in the pres-

ence of outliers. It takes into account both false positive semantic predictions at outliers as well

as false negative semantic predictions due to false positive anomaly detection. Furthermore, the

difference between mIoU and open-mIoU reveals the performance gap of the open-set setup.

2.4 Synthetic data in open-set recognition

Existing datasets for open-set recognition often provide instances of some classes that transcend

the training taxonomy and can be used for the training. These training data points are usually

referred to as negative training data [31] or known unknowns [56]. However, training on real-

world negatives will typically introduce a bias towards the detection of a particular subset of

all possible anomalies. Consequently, the performance metrics will be likely over-optimistic.

depending on the prevalence of such content in the test data.

Recent seminal approaches [70, 71] utilize synthetic negative data produced by a jointly

trained generative adversarial network instead of training negatives. The corresponding GAN is

trained to generate inlier data that give rise to low recognition scores for each known class [71].

However, GANs offer only limited distribution coverage [48]. Consequently, they are unlikely

to span the whole space of possible unknowns. Thus, succeeding works mix real and synthetic

negative examples [72].
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Distributional coverage can be improved by replacing GANs with generative models that

optimize likelihood [48]. Our context calls for efficient approaches with fast sampling since

joint training requires sample generation on the fly. This puts the autoregressive and energy-

based models at a disadvantage, except in the context of very small images. Normalizing flows

are a great candidate for this role due to fast training and fast sample generation at different

resolutions [73, 74]. Instead of targeting negative data, a generative model can also target

negative features [72]. This can be done by modelling inlier features and sampling synthetic

anomalies from low-likelihood regions of feature space [44, 75].

Synthetic negative data can also be crafted by leveraging adversarial perturbations [76]. In

this setup, adversarially perturbed input examples are used as a proxy for negative data. Simi-

larly, [55] uses negative samples from an implicit energy-based generator in the standard mul-

ticlass classifier. Alternatively, negative examples can be constructed by mixing inlier images

with a precomputed set of fractals [77]. Interestingly, applying multiple image augmentations

to inlier images results in a sufficient proxy for real negative data [78]. In the dense prediction

context, one can also crop convex polygons of inlier content and paste them on different spatial

locations within the same image [53].

2.5 Beyond open-set recognition

Once the instances of unknown classes are detected, we can further cluster them to form new

semantic classes. This can be done by incrementally increasing the set of known classes [79,

80]. For instance, features from uncertain image regions could be clustered into new potential

classes by pseudolabeling followed by fine-tuning [80]. Alternatively, novel classes can be

discovered end-to-end starting from self-supervised feature representations [81, 82].

Novel semantic classes can be defined by a small set of examples that are readily available

in the data. This setup corresponds to few-shot learning [83]. Similarly, one can incorporate

meta-information about novel classes, which gives rise to zero-shot learning [84]. We direct the

reader to [85] for an exhaustive analysis of pros and cons of low-shot learning. Note that all of

these approaches are still unable to compete with supervised learning on standard datasets.

2.6 Generative modeling

The main goal of generative modeling is to approximate data distribution pD, loosely defined

by a set of i.i.d samples D , with a model distribution pθ . The set of samples D is of finite size

N and θ ∈ Rd represents learnable parameters. The optimal set of parameters θ ∗ is commonly

9



Related Work

obtained by optimizing the following objective:

θ
∗ = argmin

θ∈Θ

KL(pD||pθ ) = argmin
θ∈Θ

Ex∼pD[− ln pθ (x)]≈ argmin
θ∈Θ

−1
N

N

∑
i=1

ln pθ (xi) . (2.1)

Here, KL stands for Kullback–Leibler divergence between the two distributions. The first equal-

ity in (2.1) holds since the difference between the two objectives is constant and equal to the

negative entropy of pD. The third objective approximates the expectation with the mean over an

i.i.d dataset D . We distinguish different families of generative models depending on their defi-

nition of pθ . We next briefly describe many interesting formulations of the model distribution.

Energy-based models [86] define model distribution via the Boltzmann distribution:

pθ (x) :=
exp(−Eθ (x))

Z(θ)
, Z(θ) =

∫
exp(−Eθ (x))dx . (2.2)

Note that Eθ : X → R denotes a scalar energy function defined using a deep neural network.

Training of energy-based models necessitates approximation of the intractable normalization

constant Z, as detailed in [87]. Generating samples using EMBs necessitates iterative MCMC

sampling that can be carried out according to the Langevin dynamics [88]. In practice, such

sample generation requires computing the gradient of the energy function w.r.t input (∇xEθ ) at

every iteration step [87]. Slow convergence of MCMC algorithms in high dimensional spaces,

makes sample generation with energy-based models notoriously slow.

Autoregressive models [89] assume autoregressive factorization of the model distribution:

pθ (x) :=
dim(x)

∏
i=1

pθ (xi|x<i) . (2.3)

Here, xi denotes the i-th element of the vector (or vectorized tensor) x, while all elements before

i-th element are denoted with < i. Conditional distribution pθ (xi|x<i) is usually implemented

with a deep model to obtain sufficient modeling capacity. Autoregressive models are easily

trained by likelihood maximization but require sequential sampling with dim(x) steps.

Variational autoencoders [90] combine variational inference and autoencoders to model the

relationship between the latent random variable z and the observed random variable x. The log

distribution ln pθ (x) can be modeled as:

ln pθ (x) = ln
∫

qψ(z|x)
pθ (x,z)
qψ(z|x)

dz≥ Ez∼qψ (z|x)[ln pθ (x|z)]−KL[qψ(z|x)||p(z)] . (2.4)

The first equality introduces marginalization of z, while the second inequality follows from the

direct application of Jensen inequality. Here, encoder models qψ(z|x) while decoder models

pθ (x|z). Maximizing the log-likelihood of dataset samples effectively minimizes reconstruc-
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tion error (first term) and aligns qψ(z|x) with latent prior (second term). Both encoder and

decoder can be jointly learned with gradient descent by utilizing the reparameterization trick

[90]. For example, if variational posterior q is a normal distribution, the encoder predicts the

mean and covariance of the posterior q. Sampling the posterior q then proceeds by sampling

the standard normal and transforming the sample according to the predicted distribution param-

eters. Producing new samples with variational autoencoder can be done by sampling the latent

prior and decoding the sampled z into the corresponding x using the decoder.

Diffusion-based models [91] define the model distribution using a T step Markov chain with

latents x1, . . . ,xT of the same dimensionality as the input:

pθ (x0) :=
∫

pθ (x0:T )dx1:T =
∫

p(xT )
T

∏
t=1

pθ (xt−1|xt)dx1:T . (2.5)

Here, pθ (x0:T ) represents joint distribution commonly referred to as the reverse process, p(xT )

is an isotropic Gaussian distribution, and pθ (xt−1|xt) is a Gaussian with mean and covariance

computed using a deep model parameterized with θ . Different from previous models, diffusion-

based models are trained to reverse the forward process q(x1:T |x0) := ∏
T
t=1 q(xt |xt−1). Every

step q(xt |xt−1) = N (
√

1−βtxt−1,βtI) with predefined variance schedule βt essentially adds

Gaussian noise to the input example. Introducing the described forward process as variational

distribution in (2.5) yields the following evidence lower bound:

ln pθ (x0)≥ Eq

[
ln

pθ (x0:T )

q(x1:T |x0)

]
= Eq

[
ln p(xT )+

T

∑
t=1

ln
pθ (xt−1|xt)

q(xt |xt−1)

]
. (2.6)

Generative adversarial networks [92] implicitly learn the data distribution through a minimax

game of two players - discriminator D and generator G:

min
G

max
D

Ex∼pdata(x)[lnD(x)]+Ez∼p(z)[ln(1−D(G(z)))] (2.7)

The discriminator aims to differentiate real dataset examples from artificial examples produced

by the generator. The generator aims to produce samples that trick the discriminator. Given

that the discriminator is optimal, the generator objective boils down to the minimization of

Jensen-Shannon divergence between the data distribution and the generator distribution [92]. In

practice, both the discriminator and generator are deep models. Consequently, optimizing the

minimax objective (2.7) over a large parameter space may be unstable. As a result, the network

generator may produce similar samples without the full coverage of the data distribution [48].

Poor coverage of the inlier distribution is commonly referred to as mode collapse. A more

comprehensive overview of deep generative models can be found in [93].
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Chapter 3

Densely connected normalizing flows

This chapter considers a family of generative models that are known as normalizing flows.

Normalizing flows are mathematically grounded on change of variables, as described in Section

3.1. Section 3.2 presents the standard building blocks of bijective flows. This thesis applies

bijective flows for generative modelling of natural images, as detailed in Section 3.3. Finally,

Section 3.4 proposes a novel family of bijective flows that can gradually increase the latent

dimensionality through stochastic skip connections.

Notation. This thesis deals with natural images of width W and height H. The input images

x ∈X are modeled with a random tensor x of dimensions C×H×W . Thus, a pixel at the lo-

cation (i, j) is modeled by the corresponding C-dimensional random vector xi j. The realization

of a random variable is denoted by omitting the underline while the spatial locations are often

omitted for brevity. Thus, p(x) is a shortcut for p(x = x).

3.1 Generative modeling via change of variables

The main goal of generative modeling is to learn a model pθ that approximates the unknown

data distribution pD loosely defined by a finite set of realizations D . A well-trained model could

then produce new samples by sampling the learned model distribution pθ .

Given a set of training samples D = {xi}N
i=1 of size N, we train generative models by mini-

mizing the KL divergence between pD and pθ . The optimal set of parameters θ ∗ is obtained by

solving the following optimization objective:

θ
∗ = argmin

θ∈Θ

KL(pD||pθ ) = argmin
θ∈Θ

Ex∼pD(x)[− ln pθ (x)]≈ argmin
θ∈Θ

−1
N

N

∑
i=1

ln pθ (x(i)) . (3.1)
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3.1.1 Change of variables

In the case of normalizing flows [94, 95] we define the model distribution pθ by employing

the change of variables formula. Let x and z be two continuous random vectors with proba-

bility density functions p(x) and p(z). Both random vectors have realizations in Rd . Given a

differentiable bijective function f : Rd → Rd , we can rephrase p(x = x) using p(z) as:

p(x = x) = p(z = f (x))
∣∣∣∣det

∂ f (x)
∂x

∣∣∣∣ . (3.2)

Here det(·) represents matrix determinant, | · | returns absolute value while ∂ f (x)
∂x denotes the

Jacobian of f evaluated at x. Consequently, the density of p(x) at x corresponds to the density

of p(z) at f (x) adjusted by the change of volume factor
∣∣∣det ∂ f (x)

∂x

∣∣∣. A more comprehensive

description of the change of variables formula can be found in textbooks such as [96].

Figure 3.1 shows a two-dimensional example where p(x) is a Gaussian mixture of three

components and p(z) is a multivariate Gaussian. The mapping function f : X →Z is nonlinear

since i) linear perturbation of normally distributed data is also normally distributed, and ii)

normal distributions can not describe multimodal distributions such as the one on the left figure.

We will next consider convenient parameterizations of the function f and distribution p(z) in

order to build a generative model of the original data.

f

f-1

x z

Figure 3.1: The change of variables formula involves two probability distributions p(x) and p(z) via a
differentiable bijective function f .

3.1.2 Normalizing flows

We build normalizing flows by parameterizing the function f with a set of learnable parameters

θ and by assuming p(z) is a multivariate Gaussian distribution whose parameters can be either
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learnt or preselected. The normalizing flow pθ then corresponds to:

pθ (x) = N (z = f (x); µ,Σ)

∣∣∣∣det
∂ fθ (x)

∂x

∣∣∣∣ . (3.3)

Modeling natural data with normalizing flows requires mapping a highly complex data dis-

tribution p(x) to a simple Gaussian p(z). This can be done successfully only if the mapping

function f has sufficient capacity. Hence, we next focus on the design of function f .

A composition of bijective functions is a bijective function. Thus, we consider to decompose

fθ into a sequence of K bijections fi with its subsets of parameters θi. This composition can be

visualized as:

z0
f1←→ z1

f2←→ z2
f3←→ ··· fi−1←→ zi

fi←→ ··· fK←→ zK, z⃗K ∼N (0, I). (3.4)

Here, z0 is essentially the sample x drawn from the data distribution pD. The deep model fθ

maps samples z0 to their normally distributed counterparts zK , This will allow for evaluation

of the probabilistic density p(z0) as well as sampling the learned distribution subject to some

additional requirements on fθ .

Following the change of variables formula, log-likelihoods of consecutive random variables

zi and zi+1 can be related through the Jacobian Ji+1 of the corresponding transformation fi+1:

ln p(zi) = ln p(zi+1)+ ln |detJi+1|. (3.5)

The relation (3.5) can be seen as a recursion. The term ln p(zi+1) can be recursively replaced

either with another instance of (3.5) or evaluated under the latent distribution p(zi+1), which

marks the termination step. Consequently, the log density of a normalizing flow equals to:

ln p(x) = ln p(zK)+
K

∑
i=1

ln |detJi|. (3.6)

Normalizing flows can be conveniently sampled in two steps. First, a latent tensor z is

sampled from the latent distribution p(z), which is usually Gaussian. Then, the obtained tensor

z is transformed using the inverse of function f into x. This sampling process corresponds to:

x = f−1
θ

(z), z∼N (µ,Σ) . (3.7)

This procedure corresponds to unconditional generation. Normalizing flows can also perform

conditional generation, as detailed in [97]. We next describe bijections used in contemporary

normalizing flow architectures [19, 95, 98, 99, 100].
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3.2 Building blocks of the bijective flows

The standard building blocks of normalizing flows are designed to encourage efficient com-

putation of the log density (3.6) and fast sampling. In practice, this means that the bijective

building blocks have closed-form inverse and tractable computation of Jacobian determinants.

All transformations process d-dimensional inputs x ∈ Rd .

ActNorm [99] is an invertible substitute for batch normalization [101]. It performs elementwise

affine transformation with per-element scale and bias parameters:

y = s⊙x+b . (3.8)

Scale s and bias b are initialized as the variance and mean of a subset of training samples, while

⊙ stands for Hadamard (elementwise) product. Inverting the ActNorm layer is trivial, while the

Jacobian is diagonal matrix, i.e. J f = diag(s).
Invertible 1× 1 Convolution is a generalization of element permutation [99]. Convolutions

with 1× 1 kernel are not invertible by construction. Instead, a combination of orthogonal ini-

tialization and the loss function keeps the kernel inverse numerically stable. More specifically,

the normalizing flow loss maximizes ln |detJ f | which is equivalent to maximizing ∑i ln |λi|,
where λi are eigenvalues of the Jacobian. Thus, maintaining a relatively large amplitude of the

eigenvalues ensures a stable inversion. The Jacobian of this transformation can be efficiently

computed by LU-decomposition [99].

Affine Coupling [98] splits the input x into two halves x1 = x1:d/2 and x2 = xd/2:d . The first

half is propagated without changes, while the second half is affinely transformed based on the

first half:

y1 = x1, y2 = s⊙x2 + t, (s, t) = coupling_net(x1). (3.9)

Parameters s and t are calculated using an arbitrary differentiable module (coupling_net) that is

typically implemented as a residual block [98]. The two outputs y1 and y2 are concatenated to

output a single tensor y. The Jacobian of this transformation is a triangular matrix:

J f =

 I 0

∂y2
∂x1

diag(s)

 . (3.10)

Thus, the determinant of the Jacobian corresponds to the product of diagonal elements. The

inverse of the affine coupling layer can be done by first splitting the tensor y into two halves.

The first half can be copied to x1 and used for the computation of s and s. Given these values,
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x2 can be easily computed:

x1 = y1, x2 = (y2− t)/s, (s, t) = coupling_net(y1). (3.11)

By merging ActNorm, invertible convolution and coupling layer we obtain an invertible unit

(Figure 3.2) that is the essential building block of normalizing flows

x
x 1

x 2

N
on

lin
ea

r
pr

oj
ec

tio
n

y 2
y 1

y

(s
,t)

A
ffi

ne

C
on

vo
lu

tio
n 

1x
1

A
ct

N
or

m
Affine Coupling

Figure 3.2: Example of invertible unit used in standard normalizing flow architectures.

Note that bijective functions may not have a closed form inverse, as noted in [102, 103].

However, utilizing such bijections as building blocks requires iterative inverse computation that

hampers the sampling efficiency.

3.3 Normalizing flows for natural images

This thesis considers applying normalizing flows on natural images. Natural RGB images are

usually represented as three-dimensional 8-bit tensors with discrete values from [0,255]. Thus,

we first transform the discrete image representations into continuous ones suitable for normal-

izing flows.

3.3.1 Dequantizing the descrete representations

Let x ∈ [0,255]C×H×W be a discrete image representation with C channels, height H and width

W . We transform x into continuous representation y by adding uniform noise [104]:

y = x+u, u∼U. (3.12)

Here, U represents uniform distribution over hypercube [0,1[C×H×W . The corresponding nor-

malizing flow takes the following form [104]:

ln pθ (x) := ln
∫

pθ (x+u)du≥ Eu∼p(u)[ln pθ (x+u)] (3.13)
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The likelihood lower bound follows from Jensen’s inequality. In practice, we approximate the

expectation with a single Monte Carlo sample.

The described dequantization procedure prevents the model from learning Dirac delta func-

tions at discrete data points, which would yield unstable implementations on modern computer

architectures. Still, uniform dequantization spreads the probability volume uniformly on the

unit hypercube, which is often suboptimal. Thus, we can sample noise from learned posterior

distribution q(u|x) that specifies noise distribution for every input image [100]. By utilizing

variational inference, we can write:

ln pθ (x) := ln
∫

pθ (x+u)
q(u|x)
q(u|x)

du≥ Eu∼q(·|x)[ln pθ (x+u)− lnq(u|x)] (3.14)

The distribution q controls the spread of probability volume on the unit hypercube and can be

parameterized with an additional set of learnable parameters [100].

The trained normalizing flow can generate discrete images by sampling the continuous rep-

resentation y followed by quantization via floor operator ⌊·⌋:

x = ⌊ f−1
θ

(z)⌋, z∼ p(z) . (3.15)

3.3.2 Multi-scale image architecture

Mapping input images into Gaussian distribution requires sufficient capacity of nonlinear func-

tion fθ . Thus, the standard image-oriented normalizing flow architectures [98, 99, 100] stack

multiple bijective layers described in Section 3.2. These transformations are applied to image

tensors in a channelwise fashion.

The standard image-oriented architecture stacks multiple invertible layers that operate on

a single spatial resolution into an invertible block, as visualized in Figure 3.3. Between every

two consecutive steps, a portion of the latent representation is resolved according to a decou-

pled normal distribution while the remaining tensor is reshaped [98]. The reshape operator

transforms the tensor of shape C×H×W into 4C× H
2 ×

W
2 .

x

z(drop) ~ N(0, I)
zk~N(0, I)

····

Squeeze&Drop

Invertible unit (mi)

DenseFlow Block 

Inverible layer (mi,j)···

Figure 3.3: The standard image-oriented normalizing flow architecture.
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3.4 Densely connected normalizing flows

Normalizing flows achieve their expressiveness by composing multiple invertible transforma-

tions [98]. This is illustrated with the scheme (3.4) where each of two consecutive latent

variables zi−1 and zi are connected via a dedicated flow unit fi. Each flow unit fi is a bi-

jective transformation with parameters θi. The standard normalizing flows require that f =

fK ◦ fK−1 ◦· · ·◦ f1 be a bijective function. Contrary, we argue that the expressiveness of normal-

izing flows can be improved by making f only piecewise bijective. This way, the dimensionality

of latent representations zi can be gradually enlarged. Furthermore, we introduce skip connec-

tions that can promote feature reuse [105] and smoothness of the loss landscape [106], which

may explain our performance gains. Enlarging latent representations comes at the cost of exact

likelihood estimation, as we show next.

3.4.1 Lower bound of data likelihood

Let ei be a noise variable [107, 108] subjected to some known distribution p(ei), e.g. a multivari-

ate Gaussian. We can concatenate ei to the intermediate latent variable zi to obtain the concate-

nated representation [zi,ei]. The dimensionality of the concatenated representation dim(zi,ei) =

dim(zi)+dim(ei). Given a noise distribution p(ei) and a joint distribution p(zi,ei), the log like-

lihood p(zi) can be recovered as:

ln p(zi)≥ Eei∼p(e) [ln p(zi,ei)− ln p(ei)] . (3.16)

The detailed proof can be found in the Appendix 8.1. Thus, we enable normalizing flows to

arbitrarily increase the dimensionality of the latent representations.

A tractable formulation of this idea can be obtained by estimating the expectation trough

Monte Carlo sampling. In practice, we observed that a single MC sample is sufficient during

the training, thus (3.16) becomes:

ln p(zi)≥ Eei∼p(e) [ln p(zi,ei)− ln p(ei)]≈ ln p(zi,ei)− ln p(ei) . (3.17)

Parameters of the noise distribution p(e) can be preselected or computed based on previous

latent representations. In the latter case, we effectively introduce skip connections [105] to the

normalizing flow architecture.
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3.4.2 Skip connections through reparametrization trick

Let z(aug)
i be a random variable obtained by concatenation of intermediate zi and re-parameterized

noise variable ei, as abstracted with the function hi:

z(aug)
i = hi(zi,ei;z<i) = [zi,σ ⊙ ei +µ], (µ,σ) = gi(z<i). (3.18)

The parameters µ and σ are computed by nonlinear transformation gi that processes previous

latent representations z<i = [z0, ...,zi−1]. We refer to the transformation hi as cross-unit coupling

since it acts as an affine coupling layer [95] over a group of previous invertible units. Observe

that this design choice corresponds to the well-known reparametrization trick [90].

The Jacobian of hi is a diagonal square matrix:

∂z(aug)
i

∂ [zi,ei]
=

I 0

0 diag(σ⃗)

 . (3.19)

Here, square brackets [·, ·] denote concatenation along the features dimension. Given z(aug)
i ,

the initial z⃗i can be conveniently recovered by removing the noise dimensions. This step is

performed during model sampling.

We can now draw a connection between the distribution p(zi,ei) from (3.16) and the distri-

bution p(z(aug)
i ) as:

ln p(zi,ei) = ln p(z(aug)
i )+ ln |detdiag(σ)| . (3.20)

Furthermore, we can connect p(z(aug)
i ) with the initial p(zi) as:

ln p(zi)≥ Eei∼p(ei)[ln p(z(aug)
i )− ln p(ei)+ ln |detdiag(σ)|]. (3.21)

Starting from an input variable, one can now build a normalizing flow by applying the standard

transformation (3.5) or increase dimensionality through skip connections (3.21). Next, we show

an example of likelihood computation with the extended normalizing flow framework.

Example 1 (Likelihood computation) Let m1 and m2 be the bijective mappings from z0 to

z1 and z(aug)
1 to z2, respectively. Let h1 be the cross-unit coupling from z1 to z(aug)

1 , z(aug)
1 =

[z1,σ ⊙ e1 + µ]. Assume σ and µ are computed by any non-invertible neural network g1.

The network accepts z0 as the input. We calculate log likelihood of the input z0 according

to the following sequence of equations: [transformation, cross-unit coupling, transformation,
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termination].

ln p(⃗z0) = ln p(⃗z1)+ ln |detJ f1|, (3.22)

ln p(⃗z1)≥ Ee⃗1∼p∗(⃗e1)[ln p(⃗z(aug)
1 )− ln p(⃗e1)+ ln |detdiag(σ⃗)|], (σ⃗ , µ⃗) = g1(⃗z0), (3.23)

ln p(⃗z(aug)
1 ) = ln p(⃗z2)+ ln |detJ f2|, (3.24)

ln p(⃗z2) = lnN (⃗z2;0, I). (3.25)

Note that the expectation is approximated using MC sampling with a single sample during

training and a few hundred samples during evaluation. Still, our extended framework generates

samples with a single pass since the inverse does not require MC sampling nor utilization of g1.

Figure 3.4 compares the standard normalizing flow (a) normalizing flow with input augmen-

tation [107] (b) and the proposed densely connected incremental augmentation with cross-unit

coupling (c). Each flow unit f DF
i consists of several invertible modules mi, j and cross-unit

coupling hi. The main novelty of our architecture is that each flow unit f DF
i+1 increases the di-

mensionality with respect to its predecessor f DF
i . Cross-unit coupling hi augments the latent

variable zi with affinely transformed noise ei. Parameters of the affine noise transformation are

obtained by a nonlinear function gi which accepts all previous variables z<i.
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Figure 3.4: Standard normalizing flow [95, 98] (a), normalizing flow with augmented input [107] (b),
and the proposed incremental augmentation with cross-unit coupling (c). Unlike (b) which adds noise
only to the input, (c) adds noise to the output of every unit except the last.

We repeatedly apply the cross-unit coupling hi throughout the architecture to achieve incre-

mental augmentation of intermediate latent representations. Consequently, the data distribution
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is modeled in a latent space of higher dimensionality than the input space [107, 108].

3.4.3 DenseFlow: densely connected image architecture

We construct DenseFlow, an image-oriented architecture that extends multi-scale Glow [99]

with incremental augmentations of latent representations through cross-unit coupling. Each

DenseFlow block consists of several DenseFlow units and resolves a portion of the latent repre-

sentation according to a decoupled normal distribution [98]. Each DenseFlow unit f DF
i consists

of N invertible layers (mi = mi,N ◦ · · · ◦mi,1) and cross-unit coupling (hi). Note that our glow-

like modules build coupling networks with densely connected blocks [105] and Nyström self-

attention [109], as visualized in Figure 3.5. On the contrary, the standard glow-like modules

[99] rely on residual blocks [110].
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Figure 3.5: Our affine coupling implements the coupling network as a combination of densely connected
blocks [105] and Nyström self-attention [109].

The input to each DenseFlow unit is the output of the previous unit augmented with the

noise and transformed in the cross-unit coupling fashion. The number of introduced noise

channels is defined as the growth-rate hyperparameter. Generally, the number of invertible

modules in latter DenseFlow units should increase due to enlarged latent representation. We

stack M DenseFlow units to form a DenseFlow block. The last invertible unit in the block does

not have the corresponding cross-unit coupling. We stack multiple DenseFlow blocks to form

a normalizing flow with a large capacity. Between each two blocks, we decrease the spatial

resolution and compress the latent representation by introducing a squeeze-and-drop module

[98]. The squeeze-and-drop module applies space-to-channel reshaping and resolves half of

the dimensions according to the prior distribution. We denote the developed architecture as

DenseFlow-L-k, where L is the total number of invertible modules while k denotes the growth

rate. The developed architecture uses two independent levels of skip connections. The first level

(intra-module) is formed of skip connections inside every coupling network. The second level
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(cross-unit) connects DenseFlow units at the top level of the architecture.

Figure 3.6 shows the final DenseFlow architecture. Grey squares represent DenseFlow

units. Cross-unit coupling is represented with blue dots and dashed skip connections. Fi-

nally, squeeze-and-drop operations between successive DenseFlow blocks are represented by

dotted squares. The proposed DenseFlow design applies invertible but less powerful transfor-

mations (e.g. convolution 1×1) on tensors of larger dimensionality. On the other hand, powerful

non-invertible transformations such as coupling networks perform most of their operations on

lower-dimensional tensors. This leads to resource-efficient training and inference.

x

z(drop) ~ N(0, I)
zk~N(0, I)

····

Cross-unit coupling (hi)

Squeeze&Drop

Invertible unit (mi)

DenseFlow Block 

(fDF
i)

DenseFlowUnit (fDF
i )

Invertible layer (mi,j)···

Figure 3.6: The proposed DenseFlow architecture. DenseFlow blocks consist of DenseFlow units ( f DF
i )

and a Squeeze-and-Drop module [98]. DenseFlow units are densely connected through cross-unit cou-
pling (hi). Each DenseFlow unit includes multiple invertible modules (mi, j) from Figure 3.5.

We use DenseFlow architecture to model synthetic negative samples required for the training

of our open-set segmentation models, as we describe in the following chapter.
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Chapter 4

Hybrid open-set segmentation of images

This chapter constructs open-set segmentation by overriding closed-set predictions with dense

anomaly detection, as presented in Section 4.1. Section 4.2 formulates a novel anomaly score as

a hybrid ensemble of generative and discriminative cues that build upon shared dense semantic

features. Our generative score corresponds to unnormalized joint density that is very hard to

train due to intractable integral in the normalization constant. Section 4.3 proposes an elegant

solution that involves training on mixed-content images with pasted negative content. Finally,

we relax the requirement for a negative training dataset by synthesizing the negative content

with a jointly trained normalizing flow, as presented in Section 4.4.

Notation. We extend the notation from Chapter 3 and define pixel label at the location (i, j) as

a categoric random variable yi j that takes values from a set Y of size K = |Y |. A binary random

variable di j models whether the given pixel is an inlier or an outlier. The realization of a random

variable is denoted by omitting the underline while the spatial locations are often omitted for

brevity. Thus, P(y|x) and P(d|x) are shortcuts for P(yi j = yi j|x = x) and P(di j = di j
in|x = x),

where we write di j
in if a pixel at location (i, j) is inlier and di j

out if the pixel is outlier.

4.1 Open-set segmentation

Open-set segmentation simultaneously recognizes the known classes and identifies anomalous

pixels. We formulate open-set recognition by complementing a pre-trained classifier with se-

mantic anomaly detection. In particular, we override the closed-set segmentation output in

pixels detected as semantic anomalies. This procedure enables simultaneous segmentation of

known classes and identification of anomalous parts of the scene as presented in Figure 4.1. The

described approach relies on accurate anomaly detection to attain satisfactory open-set predic-

tions. Thus, we develop an accurate dense semantic anomaly detector that fuses discriminative

and generative cues into a hybrid anomaly score as we describe next. Many real-world ap-
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plications necessitate real-time inference. Thus, we design an anomaly detector that does not

significantly increase the computational cost.

Road

Terrain

Person

Vegetation

Road

Terrain

Vegetation

Unknown

Standard segmentation model

DenseHybrid

Open-set segmentation model
Append dense hybrid 

anomaly detector

Fine-tune with real or 
synthetic negative data

Standard inference: Misclassification of previously unseen objects. Open-set inference: Previously unseen objects classified as unknown.

Figure 4.1: Dense open-set inference with the standard segmentation models can be achieved by ap-
pending dense anomaly detector that overrides decision in anomalous pixels.

4.2 Hybrid anomaly detection

Many existing methods for anomaly detection can be categorized as generative and discrimina-

tive approaches. Typical generative approaches estimate the likelihood [13, 32] or resynthesise

the input [50, 51], while discriminative approaches model the decision boundary between in-

liers and outliers [10, 12]. We observe that the two approaches exhibit different failure modes

and thus can be joined into a hybrid anomaly score. To show this, we consider the following

toy example. Figure 4.2 presents three anomaly detection approaches on a two-dimensional

toy problem (details in Appendix 8.2). The discriminative approach models the inlier posterior

P(din|x). It often fails far from the inliers since a finite negative training dataset cannot cover

all modes of the test anomalies. The generative approach models the data likelihood p(x). It

often errs along the boundary of the inlier manifold due to over-generalization [41, 48], but does

not expand into the open space. We ensemble these two approaches since they tend to assume

different failure modes. Hybrid anomaly score alleviates both the coarseness of the generative

approach and the inaccuracy of the discriminative approach far from the training negatives. This

synergy favors accurate boundaries near the negative training data while reducing false negative

anomalies in the open space.

Following the described intuition we now state a sufficient condition for the performance

gain of our hybrid ensemble over each of its two components. Let s : X →R be a standardized
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Discriminative P(dout|x) Generative p(x) Hybrid P(dout|x)/p(x)

Inlier data Negative training data Outlier test data

FPR=26.5% FPR=21.5% FPR=14.5%
False negative anomalies far from negative data.

Coarse alignment with the inlier manifold.Accurate boundary near the training negatives.

The boundary does not expand into outlier space. The boundary does not expand into outlier space.

Accurate boundary near the training negatives.

Decision boundary @ TPR=95%

Figure 4.2: Three anomaly detection approaches on a toy problem. Inliers, train negatives and test
anomalies are shown as blue, green and red points (details in the Appendix). The background heatmaps
designate the three anomaly scores with higher values in red. The discriminative anomaly score (left)
is susceptible to false negative responses since the negative training dataset is finite and cannot cover
all modes of test anomalies. The generative anomaly score (middle) errs along the border of the inlier
manifold due to over-generalization [41, 48], but is unlikely to commit errors far from the inlier manifold.
Our hybrid approach prevails by ensembling discriminative and generative cues.

anomaly score which assigns higher values to anomalies. We can decompose the score s into

correct labeling f and error ε:

s(x) = f (x)+ ε(x). (4.1)

Function f : X →{−1,+1} labels anomalies with +1 and inliers with -1. The expected squared

error then equals:

E (s) = Ex[(s(x)− f (x))2] = Ex[(ε(x))2]. (4.2)

Our goal is to show conditions under which the hybrid anomaly score outperforms both of its

components:

E (sH)< inf{E (sG),E (sD)}. (4.3)

The generative anomaly score sG is a function of data likelihood. The discriminative anomaly

score sD is a function of inlier posterior. By defining our hybrid anomaly detector as sH(x) :=
1
2sD(x)+ 1

2sG(x), the condition (4.3) becomes as follows (proof in the Appendix 8.3):

α−3
4

e+C1ρ(εD,εG)+C2 < 0 (4.4)

Here ρ is the Pearson correlation coefficient between the errors, α = sup{E (sG),E (sD)}
inf{E (sG),E (sD)} denotes

the error ratio of the two components, e = inf{E (sG),E (sD)} denotes the smallest expected

error, while C1 and C2 can be viewed as constants. If the errors of the two components are

independent and Gaussian (ρ = 0,C1 = 0.5 and C2 = 0), then our hybrid anomaly detector will

be effective even if α < 3. The condition (4.4) can be satisfied even when the two components

are moderately correlated as in our experiments. This creates an opportunity to build efficient

hybrid anomaly detectors atop generative and discriminative detectors with shared features.
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4.2.1 Efficient implementation atop semantic classifier

Standard semantic segmentation can be viewed as a two-step procedure. Given an input image

x, a deep feature extractor fθ1 computes an abstract representation z also known as pre-logits.

Then, the computed pre-logits are projected into logits s and activated by softmax. The softmax

output models the class posterior P(y|x):

P(y|x) := softmax(sy), where s = fθ2(z), z = fθ1(x). (4.5)

In practice, fθ1 can be any dense feature extractor that is suitable for semantic segmentation,

while fθ2 is a simple projection. We extend this framework with dense data likelihood and

discriminative inlier posterior, the two components of our hybrid anomaly score.

Dense data likelihood. Dense data likelihood can be expressed atop the dense classifier fθ2 by

re-interpreting exponentiated logits s as unnormalized joint density [17]:

p̂(y,x) := exp(sy), s = fθ2( fθ1(x)) . (4.6)

We can now recover dense data likelihood trough marginalization of y:

p(x) = ∑
y

p(y,x) =
1
Z ∑

y
p̂(y,x) =

1
Z ∑

y
expsy. (4.7)

Here, the unnormalized likelihood corresponds to p̂(x) = ∑y expsy and Z denotes the normal-

ization constant dependent only on model parameters. As usual, Z is intractable since it requires

aggregating the unnormalized distribution for all realizations of y and x:

Z =
∫

x
∑
y

expsy. (4.8)

Throughout this work, we conveniently eschew the evaluation of Z in order to enable efficient

training and inference.

Class posterior. The standard discriminative predictions (4.5) can still be consistently recov-

ered according to Bayes rule [17]:

P(y|x) = p(y,x)
p(x)

=
p(y,x)

∑y′ p(y′,x)
=

1
Z p̂(y,x)

∑y′
1
Z p̂(y′,x)

=
expsy

∑y′ expsy′
= softmax(sy). (4.9)

The normalization constant Z appears both in the numerator and denominator and hence cancels

out. Reinterpretation of logits (4.7) enables convenient unnormalized per-pixel likelihood esti-

mation atop pre-trained dense classifiers. Note that adding a constant value to the logits does not

affect the standard classification but affects our formulation of data likelihood. We exploit the
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Hybrid open-set segmentation of images

extra degree of freedom to formulate the generative anomaly score sG(x) ∝− ln p̂(x). The same

extra degree of freedom has been used to model a discriminator network in semi-supervised

learning [111].

Inlier posterior. We define the inlier posterior P(din|x) as a non-linear transformation gγ of

pre-logits z [10]:

P(din|x) = 1−P(dout|x) := σ(gγ(z)). (4.10)

Here, function gγ is an additional projection parameterized with γ . Thus the initial set of pa-

rameters θ is extended with γ . The discriminative anomaly score sD(x) ∝ lnP(dout|x).
Hybrid anomaly score. Finally, we materialize our hybrid anomaly score as a likelihood ratio

that can also be interpreted as ensemble sH(x) = sD(x)+ sG(x):

sH(x) := ln
P(dout|x)

p(x)
∼= lnP(dout|x)− ln p̂(x). (4.11)

We refer to this hybrid anomaly score as DenseHybrid. Our generative component can neglect

Z since the ranking performance [24] is invariant to monotonic transformation such as taking a

logarithm or adding a constant. The detailed derivation and connection with the ensemble of the

two components is in the Appendix. This particular formulation equalizes the influence of the

two components. Still, other definitions may also be effective, which is an interesting direction

for future work. Note that DenseHybrid is remarkably well suited for dense prediction due to

minimal overhead and translational equivariance.

4.2.2 Dense open-set inference

The proposed hybrid anomaly detector can be combined with the closed-set output to recover

open-set predictions as shown in Figure 4.3. The input image is fed to a dense feature extractor

which produces pre-logits z and logits s. We recover the closed-set posterior P(y|x) with soft-

max, and the unnormalized data log-likelihood ln p̂(x) with log-sum-exp (designated in green).

A distinct head g transforms pre-logits z into the inlier posterior P(din|x) (designated in yellow).

The anomaly score s(x) is a log ratio between dataset-posterior and density (4.11). The result-

ing anomaly map is thresholded and fused with the discriminative output into the final dense

open-set output. The anomaly threshold is usually selected on a validation set that consists of

inliers and outliers. The desired behaviour of the dense hybrid open-set model is attained by

fine-tuning a pre-trained classifier, as we describe next.
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Figure 4.3: Our open-set segmentation approach complements any semantic segmentation model which
recovers dense logits with our hybrid anomaly detection. Our dense anomaly score is a log-ratio of inlier
posterior and data likelihood. We implement open-set segmentation by overriding the closed-set output
with thresholded anomaly score.

4.3 Open-set training with real negative data

Our open-set approach complements an arbitrary closed-set segmentation model with the Dense-

Hybrid anomaly detector. Our hybrid open-set model requires joint fine-tuning of three dense

prediction heads: closed-set class posterior P(y|x), unnormalized data likelihood p̂(x) [17], and

inlier posterior P(din|x) [10]. We propose a novel training setup that eschews the intractable

normalization constant by introducing negative data to the generative learning objective. The

same negative data is used to train the inlier posterior. The corresponding training objectives

are presented in the following paragraphs.

Class posterior. The closed-set class-posterior head can be trained according to the standard

discriminative cross-entropy loss over the inlier dataset Din:

Lcls(θ) = Ex,y∈Din [− lnP(y|x)]

= Ex,y∈Din [−sy]+Ex,y∈Din[LSE
y′

(sy′)]. (4.12)

As before, s are logits computed by fθ , while LSE stands for log-sum-exp where the sum

iterates over classes.

Data likelihood. Training unnormalized likelihood can be a daunting task since backpropaga-

tion through p(x) involves intractable integration over all possible images [87, 112]. Previous

MCMC-based solutions [17] are not feasible in our setup due to high-resolution inputs and

dense prediction. We eschew the normalization constant by optimizing the likelihood both in

inlier and outlier pixels:

Lx(θ) = Ex∈Din[− ln p(x)]−Ex∈Dout [− ln p(x)]

= Ex∈Din[− ln p̂(x)]−Ex∈Dout [− ln p̂(x)] (4.13)

Note that the normalization constant Z cancels out due to training with outliers, as detailed in
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the Appendix 8.4. In practice, we use a simplified loss that is an upper bound of the above

expression (LUB
x ≥ Lx):

LUB
x (θ) = Ex,y∈Din [−sy]+ Ex∈Dout [LSE

y′
(sy′)]. (4.14)

We observe that Lcls and LUB
x have a shared loss term. Recall that training data likelihood only

on inliers [17, 87] would require MCMC sampling, which is infeasible in our context. Unnor-

malized likelihood could also be trained through score matching [112]. However, this would

preclude hybrid modelling due to having to train on noisy inputs. Consequently, it appears that

the proposed training approach is a method of choice in our context. Comparison of the discrim-

inative loss (4.12) and the generative upper bound (4.14) reveals that the standard classification

loss is well aligned with the upper bound in inlier pixels. The proof of inequality LUB
x ≥ Lx is

in the Appendix 8.4.

Inlier posterior. The dataset-posterior head P(din|x) requires a discriminative loss that distin-

guishes the inliers x ∈ Din from the outliers x ∈ Dout [10]:

Ld(θ ,γ) =−Ex∈Din[lnP(din|x)]

−Ex∈Dout[ln(1−P(din|x))]. (4.15)

Compound loss. Our final compound loss aggregates Lcls, LUB
x and Ld:

L(θ ,γ) =−Ex,y∈Din [lnP(y|x)+ lnP(din|x)]

−Ex∈Dout[ln(1−P(din|x))− ln p̂(x)]. (4.16)

In practice, we use a modulation hyperparameter for every loss component. More on the hyper-

parameters, together with the complete derivation, can be found in the Appendix 8.5.

Figure 4.4 illustrates the training of our open-set segmentation models. The figure shows

that we prepare mixed-content training images x′ by pasting negative patches x− ∈ Dout into

regular training images x+ ∈ Din:

x′ = (1−m) ·x++pad(x−,m). (4.17)

The binary mask m identifies negative pixels within the mixed-content image x′. Semantic

labels of negative pixels are set to void. The resulting mixed-content image x′ is fed to the

segmentation model that produces pre-logits z and logits s. We recover the class posterior,

unnormalized likelihood, and inlier posterior as explained in Sec. 4.2.1, and perform the training

with respect to the loss (4.16).
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Figure 4.4: Fine-tuning procedure for the proposed open-set model with the DenseHybrid anomaly
detector. Mixed-content images are constructed by pasting negatives sourced from an auxiliary real
dataset into inlier images according to (4.17). Mixed-content images are then fed to the open-set model
that produces three dense outputs: the closed-set class posterior, unnormalized data likelihood, and inlier
posterior. The model is optimized according to the compound loss (4.16).

4.4 Open-set training with synthetic negative data

Training anomaly detectors on real negative training data may result in over-optimistic per-

formance estimates due to a non-empty intersection between the training negatives and test

anomalies. An exciting approach to relieve the dependency on real negative data is to replace

them with samples from a suitably trained generative model [55, 71, 72, 73]. In such a case, the

generative model is trained to generate synthetic samples that encompass the inlier distribution

[71]. The required learning signal can be derived from discriminative predictions [55, 71, 73]

or provided by an adversarial module [76]. Anyway, replacing real negative data with synthetic

counterparts requires joint training of the generative model. We choose a normalizing flow

[19] due to fast training, good distributional coverage, and fast generation at varying spatial

dimensions [74]. Normalizing flows are elaborated in the previous chapter.

We train the normalizing flow pζ according to the data term and boundary-attraction term.

The data term Lmle corresponds to image-wide negative log-likelihood of random crops from

inlier images x+:

Lmle(ζ ) =−Ex+∈Din
[ln pζ (crop(x+,m))]. (4.18)

The crop notation mirrors the pad notation from (4.17). Random crops vary in spatial reso-

lution. This term aligns the generative distribution with the distribution of the training data.

It encourages coverage of the inlier distribution assuming sufficient capacity of the generative

model.

The boundary-attraction term Ljsd [74] corresponds to negative Jensen-Shannon divergence

between the class-posterior and the uniform distribution across all generated pixels:

Ljsd(ζ ;θ) = Ez∼N (0,I)[JSD[U ||pθ (y|h−1
ζ
(z))]]. (4.19)
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This term pushes the generative distribution towards the periphery of the inlier distribution

where the class posterior should have a high entropy. Note that gradients of this term must

propagate through the entire segmentation model in order to reach the normalizing flow. Hence,

the flow is penalized when the generated sample yields high softmax confidence. This signal

pushes the generative distribution away from high-density regions of the input space [71]. The

total normalizing flow loss modulates the contribution of the boundary term with hyperparam-

eter λ :

L(ζ ;θ) = Lmle(ζ )+λ ·Ljsd(ζ ;θ) (4.20)

Optimization of (4.20) enforces the generative distribution to encompass the inlier distribution.

Note that our normalizing flow can never match the diversity of images from a real dataset

such as ADE20k. It would be unreasonable to expect a generation of a sofa after training on

traffic scenes. Still, if the flow succeeds to learn the boundary of the inlier distribution, then

DenseHybrid will be inclined to associate all off-distribution datapoints with low sH .

Joint training of synthetic negatives and hybrid open-set model follows an alternating opti-

mization procedure. In the first step, the open-set classifier is updated using synthetic negatives

generated by the current parameters of the generative model ζ . In the second step, the genera-

tive model is refined based on the open-set model θ from the previous step. These two steps are

repeated alternately for a predetermined number of iterations.

Figure 4.5 details the training procedure with synthetic negatives. We sample the normal-

izing flow by i) selecting a random spatial resolution (Ho,Wo) from a predefined interval, ii)

sampling a random latent representation zo ∼N (0, IHoWo), and iii) feeding zo to the flow so

that x− = h−1
ζ
(zo). We again craft a mixed-content image x′ by pasting the synthesized negative

patch x−∼ pζ into the regular training image x+ ∈Din according to (4.17), perform the forward

pass, determine Lcls, Ld, Lx, and Ljsd, and recover the training gradients by backpropagation. We

now take the deleted inlier patch x+s , perform inference with the normalizing flow (zo = hζ (x+s ))

and accumulate gradients of Lmle before performing a model-wide parameter update.

We can also source the negative content from a mixture of real and synthetic samples, as

detailed on Figure 4.6. Then, the amount of data from each source is modulated by hyperpa-

rameter b ∈ [0,1]. The probability of sampling a real negative equals b, while the probability of

sampling a synthetic negative equals 1−b. Hence, the distribution of mixed negatives pneg is:

pneg(x−) = b · pout(x−)+(1−b) · pζ (x−), b ∈ [0,1] (4.21)

Sampling pneg proceeds by first choosing the source, which corresponds to sampling a Bernoulli

distribution B(b). Then, the negative is generated by sampling the selected source. Note that

we only require a set of data points (Dout) collected from pout without a closed-form definition

of pout. While training on mixed negative data is possible, the experimental evaluation did not
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Figure 4.5: Fine-tuning procedure for the proposed open-set model with the DenseHybrid anomaly
detector. Mixed-content images are constructed by pasting negatives sampled from a normalizing flow
into inlier images. The mixed-content images are then fed to the open-set model that produces three
dense outputs: the closed-set class posterior, unnormalized data likelihood, and inlier posterior. The
normalizing flow maximizes the likelihood of inlier crops while aiming to generate patches that yield
high entropy predictions. The dense classifier and normalizing flow are then jointly learned by optimizing
(4.16) and (4.20) respectively.

reveal performance gains over exclusive training on real negative data. We next evaluate the pro-

posed DenseHybrid in semantic anomaly detection and subsequently in open-set segmentation.
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Figure 4.6: Fine-tuning procedure for the proposed DenseHybrid model. We construct mixed-content
images by pasting negatives into inlier images according to (4.17). The negative training data can be
sourced from an auxiliary real dataset, from a jointly trained normalizing flow, or from both sources
according to b from (4.21). Mixed-content images are fed to the open-set model that produces three
dense outputs: the closed-set class posterior, unnormalized data likelihood, and inlier posterior. The
model is optimized according to the compound loss (4.16). In the case of synthetic negatives (S = 0), the
normalizing flow optimizes the loss (4.20).

4.4.1 Coverage-oriented generation of synthetic negatives

Prior works [71, 72] rely on GANs for generating synthetic negatives. We argue that normal-

izing flows offer better coverage of inlier distribution [48] and thus yield more diverse negative

samples. Our argument proceeds by analyzing the gradient of the loss (4.20) with respect to

the generator of synthetic negatives for both approaches. For brevity, we omit loss modulation

hyperparameters nad consider simpler image-wide case.
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Adversarial outlier-aware learning [71] jointly optimizes the zero-sum game between the

generator Gψ and the discriminator Dφ , closed-set classification Pθ , and the confidence objec-

tive that enforces uncertain classification in the negative data points [71]:

Ladv(φ ,ψ;θ) =
∫

pD(x) lnDφ (x)dx+
∫

pGψ
(x) ln(1−Dφ (x))dx

−
∫

∑
y

pD(y,x) lnPθ (y|x)dx+
∫

pGψ
(x)F (Pθ ,U)dx. (4.22)

Here, pD denotes the true data distribution, y is the class, φ ,ψ and θ are learnable parameters,

while F corresponds to the chosen f-divergence. The gradient of the joint loss (4.22) w.r.t. the

generator parameters ψ vanishes in the first and the third term. The remaining terms enforce

that the generated samples fool the discriminator and yield high-entropy closed-set predictions:

∂Ladv(φ ,ψ;θ)

∂ψ
=

∂

∂ψ

∫
pGψ

(x) ln(1−Dφ (x))dx+
∂

∂ψ

∫
pGψ

(x)F (Pθ ,U)dx. (4.23)

However, fooling the discriminator does not imply distributional coverage. In fact, the adver-

sarial objective may cause mode collapse [113] which is detrimental to sample variability.

Our joint learning objective (4.20) optimizes the likelihood of inlier samples, the closed-set

classification loss, and low confidence in synthetic negatives:

L(ζ ;θ) =−
∫

pD(x) ln pζ (x)dx−
∫

∑
y

pD(y,x) lnPθ (y|x)dx+
∫

pζ (x)F (Pθ ,U)dx. (4.24)

Here, pζ is our normalizing flow. The gradient of the loss (4.24) w.r.t. the normalizing flow

parameters ζ vanishes in the second term. The remaining terms enforce that the generated

samples cover all modes of pD and, as before, yield high-entropy discriminative predictions:

∂L(ζ ;θ)

∂ζ
=− ∂

∂ζ

∫
pD(x) ln pζ (x)dx+

∂

∂ζ

∫
pζ (x)F (Pθ ,U)dx. (4.25)

The resulting gradient entices the generative model to produce samples along the border of

the inlier distribution. Hence, we say that our synthetic negatives are coverage-oriented. The

presented analysis holds for any generative model that optimizes the density of the training data

with the same set of parameters such as autoregressive models. Still, sampling with autoregres-

sive models is slow, as discussed in previous chapters. Empirical confirmation of the described

argument is in the experimental section of this thesis.
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Chapter 5

Methodology

Experimental setups for generative modeling, dense anomaly detection and open-set segmenta-

tion require specialized datasets and benchmarks, that are described in Section 5.1. Quantitative

performance evaluation on these datasets necessitates performance metrics elaborated in Sec-

tion 5.2. The main implementation details relevant to the reproducibility of the reported results

are described in Section 5.3.

5.1 Datasets and benchmarks

Our experimental evaluation is based on widely used datasets collected and annotated by third

parties. Such datasets either include general crowdsourced images or collect application-specific

ones. The former enables us to test the developed methods on general use cases with a variety of

semantic objects, while the latter offers test protocols from specific real-world applications such

as autonomous driving. We next describe particular setups used in the experimental evaluation

of open-set segmentation.

5.1.1 Small image datasets

The CIFAR-10 dataset [114] consists of 50k training images of resolution 32× 32 pixels and

10k test images of the same resolution. The ImageNet32 dataset [6] consists of over 1M train-

ing and 50k validation images divided across 1k classes. All images are resized to the resolution

32× 32. Similarly, ImageNet64 contains the same images resized to the resolution 64× 64.

The CelebA [115] dataset consists of 200k images associated with 10k identities. The dataset

aggregates en face images of celebrities resized to the resolution 64×64. Figure 5.1 shows ex-

amples of low-resolution images from CIFAR-10. These datasets with small-resolution images

are commonly used for benchmarking generative models.
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Figure 5.1: Example of small 32×32 images from the CIFAR10 dataset [114].

5.1.2 Crowdsourced datasets

The Common Objects in Context dataset [116] (COCO) collects and annotates 123k crowd-

sourced photos. The available annotations [117] contains 171 classes that are divided into 80

thing classes and 91 stuff classes. Thing classes often correspond to countable nouns (e.g. per-

son or bike) while stuff classes correspond to uncountable nouns (e.g. sea or sky). The dataset

contains 118k training and 5k validation images. We adapt this dataset for open-set segmen-

tation by considering the 20 Pascal VOC [118] classes as known objects and the remaining 60

thing classes as unknowns. The stuff classes remain ignored. Our training set contains images

without unknown classes and with at least one known class. Our test set contains all images

with known and unknown thing classes. We refer to this setup as COCO20/80.

The Pascal VOC dataset [119] contains 13k images annotated with 20 semantic classes. We

use this dataset for training and set all background training pixels to the mean pixel to prevent

leakage of anomalous semantic content to the inlier representations. We use the 5k COCO

validation images [116] with 133 classes for testing purposes. The unknown classes include 60

thing and 53 stuff classes. We refer to this setup as Pascal-COCO. Figure 5.2 visualizes three

examples from COCO dataset.

Figure 5.2: Examples of images from the COCO dataset [116].

35



Methodology

5.1.3 Traffic datasets

There are three main datasets that include traffic scenes: Cityscapes, Mapillary Vistas and Wild-

Dash. The Cityscapes dataset [4] contains 2.9k training images of traffic scenes collected in

urban environments and annotated into 19 semantic classes. The Mapillary Vistas dataset

[120] contains 19k training images collected across the world and annotations which can be

related to the Cityscapes taxonomy. The WildDash dataset [65] contains 4.2k training im-

ages with adverse driving conditions. These datasets, visualized in Figure 5.3, are commonly

used for training closed-set models. The trained models are then validated on well-established

benchmarks we describe next.

Cityscapes WildDash2Mapillary Vistas

Figure 5.3: Examples of images from Cityscapes [4], Mapillary Vistas [120], and WildDash2 [65]
.

The Fishyscapes benchmark [9] consists of two datasets: FS LostAndFound and FS Static.

FS LostAndFound is a subset of original LostAndFound [121] that contains small objects on

the roadway (e.g. toys, boxes or car parts that could fall off). FS Static contains Cityscapes

validation images overlaid with Pascal VOC objects. The objects are positioned according to

the camera perspective and further post-processed to obtain natural mixed-content images. Both

datasets contain binary ground-truth labels with accurately segmented anomalies.

The SegmentMeIfYouCan benchmark (SMIYC) [66] consists of three datasets: Anoma-

lyTrack, ObstacleTrack and LostAndFound-noKnown. AnomalyTrack and ObstacleTrack are

created by curating real-world images and grouping them according to the anomaly sizes (large

anomalies in AnomalyTrack and small anomalies on the road surface in ObstacleTrack). The

LostAndFound-noKnown (LAF-noKnown) includes a selection of images from LostAndFound

[121] where the anomalous objects do not correspond to the Cityscapes taxonomy. The Seg-

mentMeIfYouCan benchmark supplies only binary ground-truth labels with accurately seg-

mented anomalies. Additionally, we validate performance on the Cityscapes validation set by

reinterpreting a subset of ignore classes as the unknown class, as proposed by [72]. More pre-

cisely, we consider all void Cityscapes classes except "unlabeled", "ego vehicle", "rectification

border", "out of roi" and "license plate" as unknowns during validation.

The open-set performance can also be tested in simulated environments, as we showcase

with the StreetHazards dataset. The StreetHazards dataset [15] is a synthetic dataset collected
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with the CARLA game engine which simulates real-world environments. The simulated en-

vironments enable smooth anomaly injection and low-cost label extraction. Consequently, the

dataset contains semantic per-pixel annotations of inlier content together with the unknowns.

5.2 Performance metrics

The success of a generative model in approximating the data distribution can be evaluated by

measuring the average likelihood of the held-out test set. A high likelihood of the test dataset

indicates a better approximation of the data distribution. Average likelihood of the test set is

commonly reported in bits per dimension (BPD):

BPD =
−Ex log2 pθ (x)

C ·H ·W
. (5.1)

Here, W and H correspond to image width and height, while C is the number of channels. In

the case of RGB images number of channels is 3.

The quality of samples produced by a generative model can be evaluated using Frechet

Inception Distance (FID). Given a test dataset of size N, a generative model is sampled N times

to produce a set of artificial samples. All examples are then encoded in the feature space of

the InceptionV3 [122] network pretrained on ImageNet. Finally, multivariate Gaussian is fitted

on each of the two populations. The Frechet distance between the two Gaussians indicates the

similarity between the two populations. Lower Frechet distance indicates a high quality of the

generated samples.

Existing works [9, 66, 121] evaluate open-set segmentation through anomaly detection and

closed-set segmentation metrics. The standard anomaly detection metrics are average precision,

area under the ROC curve, and false-positive rate at true-positive rate of 95%. All three metrics

assume anomalies are labeled as the positive class while regular examples are the negative class.

The average precision (AP) score summarizes the precision-recall curve as the weighted

mean of precision achieved at every threshold:

AP = ∑
n
(Rn−Rn−1)Pn, (5.2)

where Rn and Pn are recall and precision at the n-th threshold. A higher value of AP indicates

better separation between the two considered populations. Similarly, the area under the ROC

curve (AUROC) summarizes the ROC curve into a scalar that describes the performance of a

model for multiple thresholds. The false-positive rate at the true-positive rate of 95% (FPR95)

first selects the threshold which yields the true-positive rate of 95% and then measures the per-

centage of false positives among all negative samples. The lower FPR95 score indicates better
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performance. In our case, this metric can be interpreted as the probability of false anomaly

detection for a threshold which correctly detects 95% of all anomalies.

Closed-set segmentation performance is measured by per-class intersection over union (IoU)

score:

IoUk =
TPk

TPk +FPk +FNk
. (5.3)

Here, TPk, FPk and FNk correspond to the number of true positives, false positives and false

negatives for k-th class respectively. The per-class performances are then macro-averaged to

obtain the scalar mIoU.

The existing performance metrics either ignore unknown classes, as in the case of closed-set

mIoU, or collapse known classes into a single inlier class, as in the case of anomaly detection.

However, none of these metrics clearly characterizes the impact of anomalies on segmentation

performance in the open-set setup. Consequently, we propose a novel evaluation procedure for

open-set segmentation which takes into account false positive semantic predictions at anomalies

as well as false negative semantic predictions due to false anomaly detections. Our performance

metric starts by thresholding the anomaly score so that it yields 95% TPR anomaly detection on

held-out data. Then, we override the classification in pixels which score higher than the obtained

threshold. This yields a recognition map with K + 1 labels. We assess open-set segmentation

performance according to a novel metric that we term open-mIoU. We compute open-IoU for

the k-th class as follows:

open-IoUk =
TPk

TPk +FPos
k +FNos

k
, where (5.4)

FPos
k =

K+1

∑
i=1,i̸=k

FPi
k, FNos

k =
K+1

∑
i=1,i ̸=k

FNi
k. (5.5)

Different than the standard IoU formulation, open-IoU takes into account false predictions due

to imperfect anomaly detection. In particular, a prediction of class k at an outlier pixel (false

negative anomaly detection) counts as a false positive for class k. Furthermore, a prediction

of class K+1 at a pixel labelled as inlier class k (false positive anomaly detection) counts as a

false negative for class k. Note that we still average open-IoU over K inlier classes. Thus, a

recognition model with perfect anomaly detection gets assigned the same performance as in the

closed world. This property would not be preserved if we averaged open-IoU over K+1 classes.

Hence, a comparison between mIoU and open-mIoU quantifies the gap between the closed-set

and open-set performance, unlike the related metrics [67, 72]. Also, open-IoU enables us to

analyze false positive responses for specific classes, which is not possible by FPR at 95% TPR.

Figure 5.4 compares the considered closed-set (top left, IoUk) and open-set (right, open-IoUk)

metrics. Imperfect anomaly detection impacts recognition performance through increased false

positive and false negative semantics (designated in yellow and red, respectively). Differ-
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ence between closed-set mIoU and open-mIoU reveals the performance gap due to inaccurate

anomaly detection.
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Figure 5.4: We extend the standard closed-set metric (top-left) with a novel open-set metric (right).
Open-IoU takes into account false positive semantics at undetected anomalies as well as false negative
semantics due to false positive anomalies. The proposed open-mIoU metric quantifies dense recognition
performance in the presence of anomalies.

5.3 Implementation details

DenseFlow. We use the same DenseFlow-74-10 model in all experiments except ablations in

order to illustrate the general applicability of our concepts. The first block of DenseFlow-74-

10 uses 6 units with 5 glow-like modules in each DenseFlow unit, the second block uses 4

units with 6 modules, while the third block uses a single unit with 20 modules. We use the

growth rate of 10 in all units. Each intra-module coupling starts with a projection to 48 chan-

nels. Subsequently, it includes a dense block with 7 densely connected layers, and the Nyström

self-attention module with a single head. Since the natural images are discretized, we apply

variational dequantization [100] to obtain continuous data which is suitable for normalizing

flows. We train the proposed DenseFlow-74-10 architecture on ImageNet32 for 20 epoch using

Adamax optimizer with learning rate set to 10−3 and batch size 64. We augment the training

data by applying random horizontal flip with the probability of 0.5. We apply linear warm-up of

the learning rate in the first 5000 iterations. During training, the learning rate is exponentially

decayed by a factor of 0.95 after every epoch. The model is fine-tuned using a learning rate of

2 · 10−5 for 2 epochs. Similarly, the model is trained for 10 epoch on ImageNet64, 50 epochs

on CelebA and 580 epochs on CIFAR-10. In the case of CIFAR-10, we decay the learning rate

by a factor of 0.9975. The model is fine-tuned for 1 epoch on ImageNet64, 5 epochs on CelebA

and 70 epochs on CIFAR-10. We use batch size of 64 for CIFAR-10 and 32 for CelebA and

ImageNet64. Other hyperparameters are the same as in ImageNet32 training.
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DenseHybrid. We construct our open-set models by starting from any closed-set semantic seg-

mentation model that trains with pixel-level cross-entropy loss. We implement the inlier poste-

rior branch gγ as a trainable BN-ReLU-Conv1x1 module. We obtain unnormalized likelihood as

the sum of exponentiated logits. We fine-tune the resulting open-set models on mixed-content

images with pasted negative ADE20k instances or synthetic negative patches. In the case of

SMIYC, we train LDN-121 [123] for 50 epochs in closed-set setup on images from Cityscapes

[4], Vistas [120] and Wilddash2 [65] and fine tune for 10 epochs. In the case of Fishyscapes, we

use DeepLabV3+ with WideResNet38 pretrained on Cityscapes [124]. We fine-tune the model

for 10 epochs on Cityscapes. In the case of StreetHazards, we train LDN-121 for 120 epochs

in the closed-world setting and then fine-tune the open-set model on mixed-content images. In

the case of Pascal-COCO setup we train Segmenter with ViT-B/16 for 100 epochs on inlier data

and then fine-tune the model for 10 epochs on real negatives. In the case of COCO20/80 we

train Segmenter with ViT-B/16 for 80 epochs on inlier data and then fine-tune the model for

9 epochs on real negatives. In the case of synthetic negative data, we reduce the number of

fine-tuning epochs to 5 to prevent overfitting. We optimize the loss (4.16) with the following

hyperparameters: β1 always equals 1. For traffic experiments with LDN-121 β2 = β3 = 0.3 and

β4 = 0.03. For DeepLabV3+ on traffic scenes β2 = β3 = 0.1 and β4 = 0.01 except for Tbl. 6.4

where β2 = β3 = 1.5 and β4 = 0.15. In the case of Pascal-COCO setup, β1 = 1, β2 = β3 = 1.5,

and β4 = 0.15. Hyperparameter λ from (4.20) always equals 0.03. Configurations that do

not rely on real negative data leverage synthetic data of varying resolutions as generated by

DenseFlow-45-6 [19]. All such experiments pre-train DenseFlow with the standard MLE loss

on 64× 64 crops from road-driving images (except for Pascal-COCO where we pre-train the

flow on Pascal images) prior to joint learning. Our joint fine-tuning experiments last less than

24 hours on a single RTX A6000 GPU.
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Results

This chapter analyzes the performance of DenseFlow in generative modeling in Section 6.1.

The performance of DenseHybrid in dense anomaly detection is in Section 6.2 while open-

set segmentation results are in Section 6.3. In both cases, the reported results include models

trained with and without real negative data. Contributions of stochastic skip connections are

ablated in Section 6.4, while the benefits of hybrid anomaly score are validated in Section 6.5.

Further experimental analysis considers computational requirements in Section 6.6 and practical

aspects in Section 6.7. Qualitative results are visualized in Section 6.8.

6.1 Generative modeling

Table 6.1 compares the generative modeling performance of DenseFlow against contemporary

normalizing flow architectures on four image datasets. DenseFlow attains more than 0.3 BPD

better results on the two versions of the ImageNet dataset over the best baseline. In the case

of the CIFAR10 dataset, DenseFlow equalizes the performance of VFlow in terms of BPD and

attains second-best results in terms of FID. In the case of the CelebA dataset, DenseFlow attains

over 1 BPD better results than the RealNVP baseline. These results indicate that equipping

normalizing flow architecture with skip connections improves the model capacity and therefore

generative modeling performance. Comparison of DenseFlow performance against alternative

generative models such as autoregressive models, VAEs, GANs, diffusion models, and hybrid

models are in the Appendix 8.6.

6.2 Pixel-level semantic anomaly detection

Table 6.2 presents dense anomaly detection performance of different methods on the Fishyscapes

benchmark [13]. The top section considers models trained without real-world negative datasets

while the bottom section collects the methods that require training on auxiliary negative datasets
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Table 6.1: Generative modeling performance of DenseFlow on four image datasets.

Method
CIFAR10 ImageNet32 CelebA ImageNet64

BPD FID BPD BPD BPD

Real NVP [98] 3.49 - 4.28 3.02 3.98

GLOW [99] 3.35 46.90 4.09 - 3.81

Wavelet Flow [125] - - 4.08 - 3.78

Residual Flow [102] 3.28 46.37 4.01 - 3.78

i-DenseNet [126] 3.25 - 3.98 - -

Flow++ [100] 3.08 - 3.86 - 3.69

ANF [108] 3.05 30.60 3.92 - 3.66

VFlow [107] 2.98 - 3.83 - 3.66

DenseFlow (ours) 2.98 34.90 3.63 1.99 3.35

such as ImageNet or ADE20k. We also denote methods which rely on image resynthesis

since such approaches require considerable computational requirements that preclude efficient

inference. Following [11, 66], we use DeepLabV3+ [124] segmentation model trained on

Cityscapes. DenseHybrid trained with synthetic negative data (SynDenseHybrid) achieves 20%

and 10% absolute performance improvements in terms of AP and FPR95 over the best previous

result on the FS LostAndFound dataset. In the case of the FS Static dataset, SynDenseHy-

bird achieves 13% improvement in terms of FPR95 over the best baseline while attaining the

second-best average precision score.

Among methods that train on real negative datasets, DenseHybrid outperforms the best pre-

vious result on the FS LostAndFound dataset by 9% in terms of FPR95 while achieving marginal

improvements in terms of average precision score. In the case of FS Static, DenseHybrid im-

proves the best previous result by 14% in terms of FPR95 while achieving the second-best

average precision score. Furthermore, DenseHybrid consistently outperforms all baselines that

do not rely on image-resynthesis. We also note that all methods based on DeepLabV3+ attain

comparable closed-set classification performance, as shown in the rightmost table column.

Next, we analyze dense anomaly detection performance on the SegmentMeIfYouCan bench-

mark [66]. Table 6.3 presents anomaly detection performance on the tree datasets of Segment-

MeIfYouCan. SynDenseHybrid consistently outperforms all baselines that avoid training on

real negative data and image resynthesis. Most notably, SynDenseHybrid improves the best

results by 12% and 5% in terms of FPR95 score on ObstacleTrack and LAF-noKnown respec-

tively. Compared to resynthesis-based approaches, SynDenseHybrid yields lower false positive

rates on ObstacleTrack and LAF-noKnown while attaining only slightly lower average preci-

sion scores. Note that SynDenseHybrid attains these results while avoiding image resynthesis

during the inference, enabling real-time inference.
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Table 6.2: Dense anomaly detection on the Fishyscapes benchmark [13].

Method
Auxiliary Image FS LAF FS Static Cityscapes val

data resynthesis AP FPR95 AP FPR95 mIoU

Image Resynthesis [50] ✗ ✓ 5.7 48.1 29.6 27.1 81.4

Max softmax [24] ✗ ✗ 1.8 44.9 12.9 39.8 80.3

SML [46] ✗ ✗ 31.7 21.9 52.1 20.5 -

Embedding Density [9] ✗ ✗ 4.3 47.2 62.1 17.4 80.3

SynDenseHybrid (ours) ✗ ✗ 51.8 11.5 54.7 15.5 79.9

SynBoost [52] ✓ ✓ 43.2 15.8 72.6 18.8 81.4

Prior Entropy [47] ✓ ✗ 34.3 47.4 31.3 84.6 70.5

Void Classifier [9] ✓ ✗ 10.3 22.1 45.0 19.4 70.4

Dirichlet prior [47] ✓ ✗ 34.3 47.4 84.6 30.0 70.5

DenseHybrid (ours) ✓ ✗ 43.9 6.2 72.3 5.5 81.0

Amongst the methods that require real negative data during the training, DenseHybrid out-

performs all baselines by a wide margin. For example, DenseHybrid attains 20% and 16% im-

provement over the best baseline in terms of AP on AnomalyTrack and ObstacleTrack datasets.

A single exception is SynBoost which attains marginally better results in terms of AP on the

LAF-noKnown dataset by relying on computationally heavy image resynthesis. Still, Dense-

Hybrid consistently outperforms all baselines in terms of false-positive rate.

Table 6.3: Dense anomaly detection on the SegmentMeIfYouCan benchmark [66].

Method
Auxiliary Image AnomalyTrack ObstacleTrack LAF-noKnown

data resynthesis AP FPR95 AP FPR95 AP FPR95

Image Resynthesis [50] ✗ ✓ 52.3 25.9 37.7 4.7 57.1 8.8

Road Inpaint. [127] ✗ ✓ - - 54.1 47.1 82.9 35.8

JSRNet [53] ✗ ✓ 33.6 43.9 28.1 28.9 74.2 6.6

Max softmax [24] ✗ ✗ 28.0 72.1 15.7 16.6 30.1 33.2

MC Dropout [26] ✗ ✗ 28.9 69.5 4.9 50.3 36.8 35.6

ODIN [25] ✗ ✗ 33.1 71.7 22.1 15.3 52.9 30.0

Mahalanobis [128] ✗ ✗ 20.0 87.0 20.9 13.1 55.0 12.9

Embedding Density [9] ✗ ✗ 37.5 70.8 0.8 46.4 61.7 10.4

SynDenseHybrid (ours) ✗ ✗ 51.5 33.2 64.0 0.6 78.8 1.1

SynBoost [52] ✓ ✓ 56.4 61.9 71.3 3.2 81.7 4.6

Void Classifier [9] ✓ ✗ 36.6 63.5 10.4 41.5 4.8 47.0

DenseHybrid (ours) ✓ ✗ 78.0 9.8 87.1 0.2 78.7 2.1

We next validate our method by considering a subset of Cityscapes void classes as the un-
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known class. Table 6.4 compares performance according to the AUROC metric denoted AUC

column. SynDenseHybrid attains absolute improvement of four percentage points over the pre-

vious best approach OpenGAN [72]. We do not report results when training on real negative

data since previous works refrain from such training setup.

Table 6.4: Anomaly detection on Cityscapes val with a subset of ignore classes considered as unknowns.

Method AUC Method AUC Method AUC

MSP [24] 72.1 GDM [128] 74.3 Entropy [129] 69.7

GMM 76.5 OpenMax [58] 75.1 K+1 classifier 75.5

C2AE [130] 72.7 OpenGAN-O [72] 70.9 ODIN [25] 75.5

OpenGAN [72] 88.5 MC dropout [26] 76.7 SynDenseHybrid (ours) 92.9

6.3 Open-set segmentation

We recover open-set segmentation by fusing a closed-set segmentation with thresholded dense

anomaly detection, as described in Chapter 4. We measure open-set performance according to

mean F1 (F1) score and the proposed open-mIoU (oIoU) metric. Table 6.5 presents performance

evaluation on the StreetHazards dataset. The left part of the table considers semantic anomaly

detection while the right part considers closed-set and open-set segmentation. Our method

outperforms contemporary approaches in anomaly detection. For example, SynDenseHybrid

outperforms the best baseline DML [59] by 5% in terms of average precisions while DenseHy-

brid outperforms the best baseline Outlier head [12] by 10%. Furthermore, our method achieves

the best open-set performance (columns oIoU and F1) despite a moderate capacity of LDN-121

(IoU column). The last column quantifies the performance gap between closed-set and open-set

performance as the difference between IoU and oIoU. Our method achieves the least perfor-

mance gap of around 18%. Nevertheless, an ideal model would deliver equal open-set and

closed-set metrics. Hence, we conclude that the current state of the art is incapable of deliv-

ering closed-set performance in open-set setups. Note that Table 6.5 does not list ObsNet [76]

since they aim to detect classification errors instead of anomalies.

Table 6.6 presents open-set segmentation performance on crowdsourced photos from the

COCO dataset. In the case of the Pascal-COCO setup, SynDenseHybrid consistently outper-

forms previous approaches [15, 25, 62] both in anomaly detection and open-set segmentation.

Most notably, SynDenseHybrid attains 20% absolute improvement over the best baseline in

terms of open-IoU. In the case of anomaly detection on the COCO20/80 setup, SynDenseHybrid

outperforms baselines in terms of AUROC and false-positive rate while achieving the second-

best average precision. In the case of open-set segmentation, SynDenseHybrid consistently
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Table 6.5: Performance evaluation on StreetHazards [15]. We evaluate anomaly detection (Anomaly),
closed-set (Clo.) and open-set segmentation (Open-set), as well as the open-set performance gap (Gap).

Method
Anomaly Closed-set Open-set

Gap
AP FPR95 AUROC IoU F1 oIoU

SynthCP [51] 9.3 28.4 88.5 - - - -

Dropout [26] 7.5 79.4 69.9 - - - -

TRADI [131] 7.2 25.3 89.2 - - - -

SO+H [73] 12.7 25.2 91.7 59.7 - - -

DML [59] 14.7 17.3 93.7 - - - -

MSP [24] 7.5 27.9 90.1 65.0 46.4 35.1 29.9

ODIN [25] 7.0 28.7 90.0 65.0 41.6 28.8 36.2

ReAct [37] 10.9 21.2 92.3 62.7 46.4 34.0 28.7

SynDenseHybrid (ours) 19.7 17.4 93.9 61.3 50.6 37.3 24.0

Energy [32] 12.9 18.2 93.0 63.3 50.4 42.7 29.9

OE [31] 14.6 17.7 94.0 61.7 56.1 43.8 17.9

OH [12] 19.7 56.2 88.8 66.6 - 33.9 32.7

OH*MSP [10] 18.8 30.9 89.7 66.6 - 43.6 23.0

DenseHybrid (ours) 30.2 13.0 95.6 63.0 59.7 45.8 17.2

outperforms baselines on the two considered metrics. Most notably, performance improvement

is 8% in terms of macro F1 score over the best baseline ODIN [25].

We compare DenseHybrid performance trained with real negative samples from ADE20k

with previous approaches [31, 32] trained in the same setup. In the case of the Pascal-COCO

setup, DenseHybrid consistently outperforms previous approaches in anomaly detection and

open-set segmentation. For instance, absolute performance improvement over the best baseline

is 7% in terms of open-IoU and 3% in terms of false-positive rate. In the case of the COCO20/80

setup, DenseHybid outperforms alternative approaches in open-set segmentation and two out of

three metrics in anomaly detection. Most notably, DenseHybrid attains 5% improvement in

terms of open-IoU and 4% in terms of false-positive rate.

Closed-set models reach more than 90% mIoU in the case of Pascal-COCO and over 75%

in the case of COCO20/80, but open-IoU peaks at 41% and 16%. Analysis of false positives

reveals that the task is hard due to large intra-class variation (e.g. different species of potted

plants). Moreover, some unknown classes have a similar appearance to known classes (eg.

unknown zebra and known horse). Finally, the benchmark has high openness [56]: there are

more than 3× unknown than known classes. Interestingly, synthetic negatives prevail in the

case of COCO20/80. This indicates that ADE20k negatives may not be an adequate negative

dataset for this setup. Finally, we noticed that many mistakes of DenseHybrid coincide with
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labelling errors, as we will show in the qualitative results.

Table 6.6: Open-set segmentation on crowdsourced photos from COCO val.

Method
Pascal - COCO COCO 20/80

AP AUC FPR95 F1 oIoU AP AUC FPR95 F1 oIoU

ML [15, 62] 93.7 82.2 56.5 22.0 13.2 63.7 75.4 63.5 15.6 9.8

ODIN [25] 90.3 75.0 66.1 13.3 6.5 54.6 70.6 61.4 15.8 10.5

SynDenseHybrid 95.1 86.0 46.8 48.4 33.9 62.4 77.1 59.7 24.2 16.3

Energy [32] 94.2 83.5 54.6 19.3 11.4 63.7 74.7 65.7 14.7 8.9

OE [31] 95.9 88.0 46.0 49.1 34.1 64.7 75.4 68.7 13.5 7.7

DenseHybrid 96.5 89.2 43.0 55.3 41.0 59.4 75.6 61.7 22.8 14.7

6.4 Ablating components of DenseFlow

Table 6.7 explores the contributions of incremental augmentation of latent variables with ran-

dom noise, stochastic skip connections, and dense connectivity in the internal networks of cou-

pling layers. The latter compares intra-module coupling network based on the fusion of fast

self-attention and a densely connected convolutional block with the original Glow coupling

[99].

The bottom row of the table corresponds to a DenseFlow-45-6 model. The first DenseFlow

block has 5 DenseFlow units with 3 invertible modules per unit. The second DenseFlow block

has 3 units with 5 modules, while the final block has 15 modules in a single unit. We use

the growth rate of 6. The top row of the table corresponds to the standard normalized flow

[98, 99] with three blocks and 15 modules per block. Consequently, all models have the same

number of invertible glow-like modules. All models are trained on CIFAR10 for 300 epochs and

then fine-tuned for 10 epochs. We use the same training hyperparameters for all models. The

proposed cross-unit coupling improves the density estimation from 3.42 bpd to 3.37 bpd (row

3) starting from a model with the standard glow modules (row 1). When a model is equipped

with our intra-module coupling, cross-unit coupling leads to improvement from 3.14 bpd (row

4) to 3.07 bpd (row 6). Hence, the proposed cross-unit coupling improves the density estimation

in all experiments. Similarly, models with stochastic skip connections outperform models with

simple random noise (row 2 vs row 3, and row 5 vs row 6).
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Table 6.7: Validation of DenseFlow components on the CIFAR10 dataset.

#
Latent variable

augmentation

Stochastic skip

connections

Dense connectivity

within coupling layers
BPD

1 ✗ ✗ ✗ 3.42

2 ✓ ✗ ✗ 3.40

3 ✓ ✓ ✗ 3.37

4 ✗ ✗ ✓ 3.14

5 ✓ ✗ ✓ 3.08

6 ✓ ✓ ✓ 3.07

6.5 Ablating components of DenseHybrid

Table 6.8 validates components of our hybrid approach on Fishyscapes val. The top two sec-

tions validate the two DenseHybrid components, p̂(x) and P(din|x), when training on real and

synthetic negative data, respectively. We observe that the hybrid score outperforms unnormal-

ized density which outperforms inlier posterior. We observe the same quantitative behaviour

when training on real and synthetic negative data. The bottom section replaces our unnormal-

ized likelihood with pre-logit likelihood estimates by a normalizing flow. The flow is applied

point-wise in order to obtain dense likelihood [9]. This can also be viewed as a generalization

of a previous image-wide open-set approach [45] to dense prediction. We still train on nega-

tive data in an end-to-end fashion in order to make the two generative components comparable.

The resulting model delivers good performance on FS Static and poor performance on FS Lo-

stAndFound. We attribute better performance of our unnormalized density (4.7) with respect

to the point-wise flow due to 4× subsampling of the pre-logits to which the flow was fitted.

Moreover, our unnormalized density ensures much faster inference due to lower computational

complexity.

Table 6.9 shows open-set segmentation performance depending on the choice of the anomaly

detector on crowdsourced photos. Generative and discriminative components of our approach

yield comparable open-set performance, while their ensemble achieves substantial further im-

provement. A detailed analysis shows that generative and discriminative detectors are only

moderately correlated. In the case of Pascal-COCO we have ρ = 0.59, α = 1.22, e = 1.09, C1 =

0.42, C2 = 0.18, while in the case of COCO20/80 we have ρ = 0.56, α = 1.44, e = 1.22, C1 =

0.7, C2 = 0.04. Hence, the condition (4.4) is satisfied. Note that it makes no sense to ensemble

two arbitrary anomaly detectors since they are often well-correlated (e.g. max-logit [15] and

free-energy [32] have ρ=0.98), which again supports our approach.

Next, we ablate the loss used for training generative model for synthetic negatives and note

that arbitrary loss may not be sufficient. In particular, requiring synthetic negatives to stand out

from the inliers may be easier to overfit than requiring them to produce a uniform prediction
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Table 6.8: Validation of dense hybrid anomaly detection on Fishyscapes val. Our method outperforms
its generative and discriminative components.

Anomaly detector
Neg. FS LAF FS Static

data AP FPR95 AP FPR95

Discriminative (1−P(din|x)) 46.5 38.3 53.5 30.9

Generative p̂(x) = LSE(s) Real 58.2 7.3 58.0 5.3

Hybrid (1−P(din|x))/p̂(x) 60.5 6.0 63.1 4.2

Discriminative (1−P(din|x)) 30.1 35.0 48.8 39.8

Generative p̂(x) = LSE(s) Synthetic 58.1 9.0 44.6 9.5

Hybrid (1−P(din|x))/p̂(x) 60.2 7.9 52.1 7.7

Gen. flow p(z)
Real

5.7 58.9 61.7 7.6

Hybrid (1−P(din|x))/p(z) 6.5 46.1 65.1 6.5

Table 6.9: Validation of DenseHybrid components on COCO val.

Anomaly Pascal-COCO COCO20/80

detector oIoU F1 oIoU F1

Generative p̂(x) = LSE(s) 38.1 51.3 16.7 22.9

Discriminative (1−P(din|x)) 38.6 52.8 14.4 21.8

Hybrid (1−P(din|x))/p̂(x) 42.0 55.3 17.8 24.2

over 19 classes. According to our intuition, the latter should provide a better learning signal

than the former. Table 6.10 experimentally validates our intuition and shows clear performance

gains of requiring uniform classification.

Table 6.10: Validation of the learning objective for normalizing flow that generates synthetic negatives.

Loss type
FS LAF FS Static

AP FPR95 AP FPR95

Lmle +Ld +LUB
x 46.1 12.4 41.8 12.1

Lmle +LJSD 60.2 7.9 52.1 7.7

Table 6.11 validates different sources of negative data. We compare the synthetic negatives

from Figure 6.8 with patches of uniform noise, local adversarial attacks [76], inlier crops [53]

as well as samples from a jointly trained GAN [71]. We include the average AP over four

datasets (last column) as a metric of overall anomaly detection performance. The top section of

the table indicates that our synthetic negatives outperform all alternative approaches and come

close to real negative data. In particular, we observe significant performance improvement over

GAN negatives, as hypothesised in Section 4.4.1. The bottom section of the table compares real
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negatives from ADE20k [10] with 10.8k samples from a pre-trained conditional diffusion model

[132]. We have used prompts of the form "A photograph of cls" where cls stands for a random

class description from ADE20k. Note that diffusion negatives cannot be directly compared

with other synthetic approaches due to training on the huge LAION2B dataset. Furthermore,

the design of textual prompts for generating synthetic negative data is still an open problem,

which requires further work that is out of the scope of our work.

Table 6.11: DenseHybrid performance with different kinds of negative data.

Source of FS-val SMIYC-val
Average

negatives LAF Stat. Anom. Obs.

Uniform noise 56.9 37.4 70.5 3.5 42.1

Inlier crops [53] 64.3 36.2 77.2 62.8 60.1

Loc. Adv. Attacks [76] 44.5 36.8 78.9 62.2 55.6

GAN [71] 60.9 38.8 72.8 44.9 54.4

Jointly trained NF 60.2 46.0 77.7 86.2 67.5

ADE20k-instances [10] 63.7 68.4 76.2 86.0 73.6

ADE20k-crops 62.1 47.7 76.6 74.2 65.2

ADE20k-mix 63.5 61.9 76.6 87.0 72.3

Stable-diffusion [132] 70.4 57.9 76.8 49.3 63.6

Figure 6.1 shows anomaly detection performance when mixing real negatives from ADE20k

and synthetic negatives generated by our normalizing flow. The negative data is mixed accord-

ing to the hyperparameter b as described in Sec. 4.4. We observe varying performance for

different values of b. Still, the best performance is achieved when we train solely on real nega-

tives (b=1). Investigating more advanced procedures for mixing real and synthetic negative data

is an interesting direction for future work.

Figure 6.1: Performance of our hybrid anomaly detector when training on mixtures of real and synthetic
negatives for b ∈ [0,1].
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6.6 Computational overhead

Real-time inference is an absolute necessity for many real-world applications. Thus, we an-

alyze the computational overhead of DenseHybrid over the standard closed-set model. Table

6.12 compares computational overheads of DenseHybrid with prominent anomaly detectors on

two-megapixel images. All measurements are averaged over 200 runs on RTX3090. DenseHy-

brid involves a negligible computational overhead of 0.1 GFLOPs and 2.8 miliseconds. These

experiments indicate that DenseHybrid establishes as a new strong baseline for outlier-aware

real-time inference. In addition, we observe that the image resynthesis is not applicable for

real-time inference on present hardware.

Table 6.12: Computational overhead of prominent anomaly detectors over the baseline semantic seg-
mentation model when inferring on two-megapixel images. DenseHybrid introduces only minimal com-
putational overhead over the closed-set model. The inference time is in milliseconds.

Method Resynthesis Inference time (ms) FPS GFLOPs

SynBoost [52] ✓ 1055.5 <1 -

SynthCP [51] ✓ 146.9 <1 4551.1

LDN-121 [123] ✗ 60.9 16.4 202.3

LDN-121 + SML [46] ✗ 75.4 13.3 202.6

LDN-121 + DH (ours) ✗ 63.7 15.7 202.4

6.7 Anomaly detection depending on the distance

Road driving scenes typically involve a wide range of depth. Hence, we explore the anomaly

detection performance at different ranges from the camera in order to gain a better performance

insight. We perform these experiments on the LostAndFound test set [121] since it provides

information about the depth in each ground pixel. Due to errors in the provided disparity maps,

we perform our analysis up to 50 meters from the camera. Table 6.13 compares DenseHy-

brid against previous works [15, 24, 52]. DenseHybrid outperforms all baselines and achieves

strong results even at large distances from the camera. A single exception is SynBoost [52]

which attains slightly better performance than DenseHybrid at the shortest range. However,

the computational complexity of SynBoost caused by image resynthesis precludes real-time

deployment on present hardware.

6.8 Qualitative results

Figure 6.2 shows generated images using DenseFlow-74-10 trained on CelebA.
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Table 6.13: Anomaly detection performance at different distances from the camera.

Range (m)
MSP [24] ML [15] SynBoost [52] DH (ours)

AP FPR95 AP FPR95 AP FPR95 AP FPR95

5-10 28.7 16.4 76.1 5.4 93.7 0.2 90.7 0.3

10-15 28.8 29.7 73.9 16.2 78.7 17.7 89.8 1.1

15-20 26.0 28.8 78.2 5.9 76.9 25.0 92.9 0.6

20-25 25.1 44.2 69.6 12.8 70.0 23.3 89.1 1.4

25-30 29.0 41.3 72.6 9.5 65.6 18.8 89.5 1.4

30-35 26.2 47.8 70.2 10.0 58.5 27.4 87.7 2.5

35-40 29.6 44.7 71.0 9.8 59.8 25.4 85.0 3.7

40-45 31.7 43.2 74.0 9.8 60.0 25.8 85.6 4.7

45-50 33.7 45.3 73.9 11.0 53.3 29.9 82.1 6.3

Figure 6.2: Samples from DenseFlow-74-10 trained on CelebA.

Figure 6.3 shows the semantic anomaly detection performance of DenseHybrid on five traf-

fic datasets that we consider. The top row shows the input RGB images. The bottom row shows

anomaly maps produced by DenseHybrid. The detected anomalous pixels are designated in yel-

low. Accurate dense anomaly detection performance enables us to deliver competitive open-set

segmentation.

SMIYC-ObstacleTrack LostAndFoundFishyscapes Static StreetHazards Road Anomaly

Figure 6.3: Qualitative performance of the proposed DenseHybrid approach on standard datasets. Top:
input images. Bottom: dense maps of the proposed anomaly score. Unknown pixels are assigned with
higher anomaly scores as designated in yellow.

Figure 6.4 visualizes qualitative open-set segmentation performance on the StreetHazards

test set. The first row shows input RGB images. The second row shows anomaly maps produced

by DenseHybrid. The third row includes open-set segmentation output produced by combining

dense anomaly detection (second row) with closed-set segmentation. For reference, the fourth
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row shows open-set segmentation with an alternative energy-based approach [32] that yields

more false positives at TPR=95%, as designated with red rectangles. The last row includes

ground truth opne-set segmentation maps.
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Figure 6.4: Qualitative open-set segmentation performance on StreetHazards. DenseHybrid delivers a
more accurate open-set performance with respect to the energy-based approach [32], as denoted with red
rectangles.

Figure 6.5 shows qualitative open-set segmentation performance, based on different anomaly

detectors. Since we set the anomaly threshold to 95% of the true-positive rate, performance im-

provements are indicated by a lower count of false positives. The leftmost column shows input

RGB images. The next two columns show open-set segmentation performance for discrimina-

tive and generative component of DenseHybrid. The fourth column shows open-set segmen-

tation built on our hybrid anomaly detector. Poorly segmented regions are denoted with red

rectangles while green rectangles denote more accurate segmentation. We observe the fusing

potential of the hybrid anomaly detector. Ground truth labels are in the rightmost column.

Figure 6.6 shows open-set segmentation with DenseHybrid on the COCO20/80 dataset. The

left column shows the input RGB image. The center column shows open-set segmentation with

DenseHybrid. For visualization purposes, we override predictions in ignore pixels and colour

them dark. The right column shows ground-truth labels. We observe that DenseHybrid can
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Input Discriminative Generative Hybrid (ours) Ground truth

Figure 6.5: Open-set segmentation on Pascal-COCO with discriminative, generative and hybrid anomaly
detector. Red and green boxes indicate the abundance and absence of false positive anomalies.

detect both large and small unknowns.

Figure 6.7 shows open-set segmentation performance depending on the choice of anomaly

detector on Fishyscapes LostAndFound. The leftmost column shows the RGB input image.

The second column shows open-set segmentation with our dense hybrid anomaly detector.

Compared with its generative and discriminative components visualized in the two rightmost

columns, the hybrid anomaly detector yields the lowest false-positive count for TPR = 95%.

Figure 6.8 shows synthetic negatives produced by joint training of dense classifier and nor-

malizing flow, as described in Section 4.4. The generated samples vary in spatial resolution and

lack meaningful visual concepts. Interestingly, training our open-set model on such samples

yields only slightly worse performance than the model trained on real negative data from the

ADE20k dataset.

Figure 6.9 shows synthetic negatives produced by local adversarial attacks [76], jointly

trained GAN [71], and the proposed normalizing flow. We observe that adversarial attacks

appear as blurred patches of inlier scenes. This may make them an inadequate proxy for test-

time anomalies due to requiring a lot of capacity to discriminate them from the inliers [133].

Similarly, it is well known that GAN samples struggle to achieve visual variety [48]. Contrary,

our normalizing flow produces negatives which differ from the inlier scenes and are visually

diverse. Different from our jointly trained normalizing flow, the text-to-image models cannot

produce dataset-specific samples and require textual descriptions. Consequently, they are not

in the same ballpark as our method. Furthermore, the design of textual prompts for generating

synthetic negative data is still an open problem, which requires further work that is out of the

scope of our work. Note that the quantitative comparison of the three approaches can be found

in Table 6.11.
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Input Image
DenseHybrid 

Open-set Prediction Ground Truth

Figure 6.6: Qualitative examples of open-set segmentation on COCO20/80. Semantic anomalies are
denoted in cyan. For visualization purposes, we override predictions in void pixels (dark).
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Input DiscriminativeGenerativeHybrid (ours)

Figure 6.7: Open-set segmentation on FS LostAndFound with discriminative, generative and hybrid
anomaly detection. Hybrid anomaly detection yields the lowest FPR95 metric. Red and green boxes
indicate the abundance and absence of false positive anomalies, respectively.

Synthetic negatives for road-driving scenes 

Synthetic negatives for crowdsourced photos 

Figure 6.8: Dataset-specific synthetic negatives sampled from our normalizing flows (cf. Section 4.4).
During the training, we sample the normalizing flow at different resolutions to mimic anomalies of
different sizes.
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Adversarial attacks Normalizing FlowGAN

Figure 6.9: Comparison of synthetic negatives produced by local adversarial attacks, jointly trained
GAN, and the proposed jointly trained normalizing flow. Our method produces synthetic negatives that
diverge from the inliers while being more visually diverse than the other two approaches.
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Chapter 7

Conclusion and outlook

7.1 Conclusion

This thesis proposed a novel approach for open-set inference that complements standard se-

mantic segmentation models with dense semantic anomaly detector. The proposed approach,

named DenseHybrid, strives for synergy between generative and discriminative anomaly de-

tection. The generative anomaly detector is implemented atop the dense classifier by reinter-

preting exponentiated logits as an unnormalized joint distribution of input and label. In this

framework, data likelihood can be recovered by marginalization. The discriminative anomaly

detector corresponds to the inlier posterior implemented by an additional binary classification

head appended to the classifier.

A dense classifier equipped with DenseHybrid necessitates fine-tuning to attain adequate

open-set competence. The proposed fine-tuning procedure eschews the evaluation of the in-

tractable normalization constant introduced with unnormalized likelihood by leveraging nega-

tive training data. The negative data can be sourced from a general-purpose dataset, generated

by a jointly trained normalizing flow, or sampled as a mixture of both sources. To produce high-

quality synthetic negatives, we resort to densely connected normalizing flow with stochastic

skip connections named DenseFlow. The introduction of stochastic skip connections improves

the generative modeling performance of normalizing flows on standard low-resolution image

datasets.

The proposed DenseHybrid is evaluated on dense semantic anomaly detection and open-

set segmentation. Evaluation protocols use the standard benchmarks and datasets that involve

general-purpose scenes and application-specific road driving scenarios. The obtained perfor-

mance is quantified with the standard evaluation metrics. Furthermore, open-set segmentation

performance is measured with a novel metric that enables quantification of the performance gap

between closed-set and open-set setups.

Experimental evaluation of DenseHybrid reveals consistent performance gains over alter-
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native methods across multiple test scenarios. These performance gains come with neglectable

computational overhead and minimal elongation of inference time. The strong performance

of DenseHybrid is due to moderate correlation between generative and discriminative anomaly

detectors. Thus, ensembling the two components forms a competetive hybrid anomaly detector.

7.2 Outlook

The conducted performance evaluation reveals a large gap between open and closed set segmen-

tation performance. Closing this gap requires immediate attention to ensure safer deployments

of deep models in the real world. Furthermore, interesting directions for future work could ex-

tend DenseHybrid towards other dense prediction tasks such as open-set panoptic segmentation.

Recent advances in generative models drastically improved the quality of generated images

through large-scale training. Careful adaptations of these models may offer alternative sources

for synthetic negative samples.

Finally, applying DenseHybrid for contemporary semantic segmentation approaches based

on mask-level recognition may further close the gap between open and closed set performance.
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Chapter 8

Appendix

8.1 DenseFlow data likelihood lower bound

Let zi denote the input, which we consider to be distributed according to p(zi). Let ei be noise

independent of zi with a known distribution p(ei). Let p(hi) be a Gaussian distribution and f a

function representing a normalizing flow: hi = f (zi,ei). The normalizing flow distribution

p(zi,ei) = p(hi)

∣∣∣∣det
∂hi

∂ (zi,ei)

∣∣∣∣ . (8.1)

We do not have a guarantee that p(zi) = p(zi,ei)/p(ei).

To get the density p(zi), we have to marginalize p(zi,ei):

p(zi) =
∫

p(zi,ei)dei . (8.2)

We can efficiently estimate the integral using importance sampling:

p(zi) =
∫ p(zi,ei)

p(ei)
p(ei)dei = Eei∼p(ei)

[
p(zi,ei)

p(ei)

]
. (8.3)

Log-likelihood can be computed as:

ln p(zi) = lnEei∼p(ei)

[
p(zi,ei)

p(ei)

]
. (8.4)

By applying Jensen’s inequality, we obtain a lower bound on the log-likelihood,

ln p(zi)≥ Eei∼p(ei) [ln p(zi,ei)− ln p(ei)] , (8.5)

which corresponds to Equation (3.16).
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8.2 Toy example dataset

Here we explain the data generation process and model architecture used in 2D toy example

from Section 4.2. Inlier datapoints are generated by sampling the Gaussian mixture:

pin(x) = 0.5 ·N (µ1,Σ1)+0.5 ·N (µ2,Σ2) , (8.6)

where µ1 = µ2 = 0 while Σ1 =

0.9 0

0 0.1

 and Σ2 =

 0.071 0.071

−0.639 0.639

. The majority of

negative training data is located in the first and fourth quadrants of the considered space in

order to imitate a finite negative dataset. Outlier test data encompass the inlier distribution.

The discriminative anomaly detector is a binary classifier which consists of 4 MLP layers

and ReLU activations. The generative anomaly detector is an energy-based model with a similar

architecture as the binary classifier. The hybrid anomaly score combines the generative and

the discriminative scores as proposed in our method. We visualize all three anomaly scores

on the same scale. This can be done since the induced rankings are invariant to monotonic

transformations. To ensure reproducibility, all samples are generated with the random seed set

to 7. Different seeds also yield similar results.

8.3 On effectiveness of hybrid anomaly detector

Let us consider anomaly scoring function s : X →R which assigns higher values to anomalies

and lower values to normal data. Without loss of generality, we can assume that the assigned

scores are standardized (they have zero mean and unit variance) since ranking functions are

invariant to scaling with positive values and shifting, which are required for standardization.

Let f : X → {−1,+1} be a labeling function which outputs +1 if a given input is an anomaly

and -1 otherwise. We can decompose the anomaly scoring function s into a correct labeling f

and an error function ε:

s(x) = f (x)+ ε(x). (8.7)

We can compute the expected squared error of a scoring function s as:

E (s) = Ex[(s(x)− f (x))2] = Ex[(ε(x))2]. (8.8)

Note that E (s) = 0 implies perfect separation between inliers and outliers, and therefore leads

to perfect score in terms of AP, AUROC and FPR at TPR95.

Our goal is now to show conditions under which the expected square error of hybrid anomaly
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detector is lower than of the expected error of the best component:

E (sH)< inf{E (sG),E (sD)}. (8.9)

The anomaly score sG is a function of data likelihood and therefore generative anomaly detec-

tor. The anomaly score sD is a function of the inlier posterior, that is discriminative anomaly

detector. We can define a hybrid anomaly score sH as an average of the two components:

sH(x) :=
1
2

sD(x)+
1
2

sG(x). (8.10)

Then, the expected squared error of the hybrid anomaly score sH equals:

E (sH) = Ex[(sH(x)− f (x))2]

= Ex

[(
1
2

εD(x)+
1
2

εG(x)+ f (x)− f (x)
)2

]

= Ex

[(
1
2

εD(x)+
1
2

εG(x)
)2

]
=

1
4
Ex

[
(εD(x))2 +(εG(x))2

]
+

1
2
Ex [εD(x)εG(x)]

=
1
4
E (sD)+

1
4
E (sG)+

1
2

cov(εD,εG)

+
1
2
Ex [εD(x)] ·Ex [εG(x)]

=
1
4
E (sD)+

1
4
E (sG)+C1ρ(εD,εG)+C2 (8.11)

Note that ρ represents Pearson’s correlation coefficient, while C2 =
1
2 ·Ex[εD(x)] ·Ex[εG(x)] and

C1 =
1
2 · std(εD) · std(εG). Therefore, by joining (8.11) and (8.9) our goal becomes equivalent to

the following inequality:

1
4
E (sD)+

1
4
E (sG)+C1ρ(εD,εG)+C2 < min{E (sD),E (sG)}. (8.12)

Without loss of generality, we can assume E (sG) < E (sD). Then, we denote E (sG) = e and

E (sD) = α · e,α > 1. We can now rewrite (8.12) as:

α−3
4

e+C1ρ(εD,εG)+C2 < 0 . (8.13)

We can see that the effectiveness of our hybrid anomaly detector depends on the ratio between

the errors of the two components α = max{E (sG),E (sD)}
min{E (sG),E (sD)} , their correlation ρ , the level of error e =

min{E (sG),E (sD)}, and constants C1,C2. Consequently, equation (8.13) provides a sufficient

condition that the hybrid anomaly detector must satisfy to be effective. Our hybrid anomaly
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detector indeed satisfies these conditions in a practical setting (cf. Sec. 6.5).

Finally, we have to show that our hybrid anomaly detector can be viewed as an ensemble

over sG and sD:

sH(x) =
1
2

sD(x)+
1
2

sG(x) (8.14)

=
1
2

s′D(x)−µD

σD
+

1
2

s′G(x)−µG

σG
(8.15)

=
1

2σD
s′D(x)+

1
2σG

s′G(x)−
(

µD

2σD
+

µG

2σG

)
(8.16)

=
1

2σ
(s′D(x)+ s′G(x))−

(
µD

2σD
+

µG

2σG

)
(8.17)

= A · ((lnP(dout|x))︸ ︷︷ ︸
s′D(x)

+(− ln p(x))︸ ︷︷ ︸
s′G(x)

)+C (8.18)

= A · ((lnP(dout|x))︸ ︷︷ ︸
s′D(x)

+(− ln p̂(x))+ lnZ︸ ︷︷ ︸
s′G(x)

)+C (8.19)

∼= lnP(dout|x)− ln p̂(x). (8.20)

Note that we have assumed σ = σD = σG.

8.4 DenseHybrid data likelihood objective

We present a step-by-step derivation of Equation (4.13) as follows. Note that normalization

constant Z cancels out, while LSE denotes log-sum-exp.

Lx(θ) = Ex∈Din [− ln pθ (x)]−Ex∈Dout[− ln pθ (x)]

= Ex∈Din [− ln p̂θ (x)+ lnZ(θ)]−Ex∈Dout [− ln p̂θ (x)+ lnZ(θ)]

= Ex∈Din [− ln p̂θ (x)]+����lnZ(θ)−Ex∈Dout [− ln p̂θ (x)]−����lnZ(θ)

= Ex∈Din [− ln p̂θ (x)]−Ex∈Dout[− ln p̂θ (x)]

=−EDin [LSE
i
(si)]+ EDout [LSE

i
(si)] s = fθ (x)

≤−Ex,y∈Din [(sy)]+ EDout [LSE
i
(si)] = LUB

x (θ) (8.21)

The last inequality holds since the log-sum-exp operator over a set of elements is always greater

than the individual elements.
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We can connect the gradient of Lx w.r.t parameters with the gradient of negative log-likelihood:

∇θEx∼pD [− ln pθ (x)] =−Ex∼pD[∇θ ln p̂θ (x)]+Ex∼pθ
[∇θ ln p̂θ (x)]

=−Ex∼pD[∇θ ln p̂θ (x)]+Ex∼q

[
pθ (x)
q(x)

∇θ ln p̂θ (x)
]

=−Ex∼pD[∇θ ln p̂θ (x)]+Ex∼q [∇θ ln p̂θ (x)]+b(x)

≈−Ex∼pD[∇θ ln p̂θ (x)]+Ex∼q [∇θ ln p̂θ (x)]

≈−Ex∈Din [∇θ ln p̂θ (x)]+Ex∈Dout [∇θ ln p̂θ (x)] = ∇θ Lx(θ) (8.22)

Here, we replace slow sampling of pθ with proposal distribution q that has a similar support set

and can be efficiently sampled. Consequently, the expression (8.22) can be quickly evaluated but

results in a biased gradient since b(x) =Ex∼q

[
( pθ (x)

q(x) −1)∇θ ln p̂θ (x)
]
. In practice, our negative

dataset (e.g. ADE20k) consists of both known and unknown classes which is sufficiently good

approximation of q.

8.5 Compound DenseHybrid objective

We present a step-by-step derivation of Equation (4.16) as follows. Recall that the standard

cross entropy Lcls equals to:

Lcls(θ) = Ex,y∈Din [− ln p(y|x)] =−Ex,y∈Din [sy]+Ex,y∈Din [LSE
y′

(sy′)] (8.23)

The upper bound to data likelihood LUB
cls equals to:

LUB
x (θ) =−Ex,y∈Din [sy]+Ex∈Dout[LSE

i
(si)]. (8.24)

These two losses have a term in common. Consequently, we can omit one of them in the joint

loss:

Lcls(θ)+LUB
x (θ) =−2Ex,y∈Din [sy]+Ex,y∈Din [LSE

y′
(sy′)]+Ex∈Dout [LSE

i
(si)]. (8.25)

By omitting the multiplicative constant, the above expression becomes:

Lcls(θ)+LUB
x (θ) =−Ex,y∈Din [lnP(y|x)]−Ex∈Dout [ln p̂(x)] (8.26)

By further adding the data posterior loss and grouping terms according to the expectations
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we obtain:

L(θ ,γ) = Lcls(θ)+LUB
x (θ)+Ld(θ ,γ)

=−Ex,y∈Din [lnP(y|x)+ lnP(din|x)]−Ex∈Dout [ln(1−P(din|x))− ln p̂(x)].

In practice, we introduce loss modulation hyperparameters which control the impact of each

loss term.

8.6 Extended DenseFlow results

Table 8.1 compares DenseFlow results in density estimation with other families of generative

models.

Table 8.2 compares DenseFow results in image generation quality with other families of gener-

ative models.
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Table 8.1: Likelihood evaluation (in bits/dim) on standard datasets.

Model type Method
CIFAR-10 ImageNet CelebA ImageNet

32x32 32x32 64x64 64x64

Variational

Autoencoders

Conv Draw [134] 3.58 4.40 - 4.10

DVAE++ [135] 3.38 - - -

IAF-VAE [136] 3.11 - - -

BIVA [137] 3.08 3.96 2.48 -

CR-NVAE [138] 2.51 - 1.86 -

Diffusion

models

DDPM [139] 3.70 - - -

UDM (RVE) + ST [140] 3.04 - 1.93 -

Imp. DDPM [141] 2.94 - - 3.53

VDM [142] 2.65 3.72 - 3.40

Autoregressive

Models

Gated PixelCNN [89] 3.03 3.83 - 3.57

PixelRNN [143] 3.00 3.86 - 3.63

PixelCNN++ [144] 2.92 - - -

Image Transformer [145] 2.90 3.77 2.61 -

PixelSNAIL [146] 2.85 3.80 - -

SPN [147] - 3.85 - 3.53

Routing transformer [148] 2.95 - - 3.43

Normalizing

Flows

Real NVP [98] 3.49 4.28 3.02 3.98

GLOW [99] 3.35 4.09 - 3.81

Wavelet Flow [125] - 4.08 - 3.78

Residual Flow [102] 3.28 4.01 - 3.78

i-DenseNet [126] 3.25 3.98 - -

Flow++ [100] 3.08 3.86 - 3.69

ANF [108] 3.05 3.92 - 3.66

VFlow [107] 2.98 3.83 - 3.66

Hybrid

Architectures

mAR-SCF [149] 3.22 3.99 - 3.80

MaCow [150] 3.16 - - 3.69

SurVAE Flow [151] 3.08 4.00 - 3.70

NVAE [152] 2.91 3.92 2.03 -

PixelVAE++ [153] 2.90 - - -

δ -VAE [154] 2.83 3.77 - -

DenseFlow-74-10 (ours) 2.98 3.63 1.99 3.35
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Table 8.2: Evaluation of FID score on CIFAR-10.

Model type Model FID ↓

Autoregressive

Models

PixelCNN [143, 155] 65.93

PixelIQN [155] 49.46

Normalizing

Flows

i-ResNet [103] 65.01

Glow [99] 46.90

Residual flow [102] 46.37

ANF [108] 30.60

GANs

DCGAN [155, 156] 37.11

WGAN-GP [155, 157] 36.40

DA-StyleGAN V2 [158] 5.79

Diffusion models

VDM [142] 4.00

DDPM [139] 3.17

UDM (RVE) + ST [140] 2.33

Hybrid

Architectures

SurVAE-flow [151] 49.03

mAR-SCF [149] 33.06

VAEBM [159] 12.19

DenseFlow-74-10 (ours) 34.90
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Češka. Recenzent je na vrhunskim konferencijama i znanstvenim časopisima te je bio dio pro-
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