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Abstract

A technique for multimodal image registration based on
a hypothesize-and-test approach is presented. The tech-
nique is based on aligning edge elements from the two input
images, since they often originate from physical disconti-
nuities which are likely to be detected by both sensors. The
design has been specifically adapted for robust operation on
images of regular objects with few distinct structural axes,
in the context of automated inspection. The hypotheses are
formed by speculating a correspondence between the pairs
of parallelograms from the two input images, and evaluated
according to the quality of the match of a transformed edge
image. The best hypothesis is finally refined by a nonlinear
optimization algorithm. The technique has been tested on
42 pairs of 14 infrared and 3 RGB images of an unevenly
heated metal prism, and the obtained results are reported.

1. Introduction

The problem of registration is related to finding an align-
ment between the two images of the common scene [15].
The registration is mostly concerned with approximately
planar scenes, for which the deviations from the planarity
are small compared to the distance from the camera. In
such conditions, the alignment between the images can be
expressed as a planar projective transform [3], or one of its
more special instances such as the affine [2] or the similarity
transform [12]. The choice of the alignment model is the ba-
sic step towards the solving of the registration problem: less
general models have less degrees of freedom and therefore
require less elaborated hypotheses. On the other hand, more
general models can compensate for larger deformations due
to different viewpoints, which may show advantageous in a
concrete application. The properties of the three most fre-
quently used models are summarised in the table 1. The 4

∗This work has been supported by the Croatian Ministry of Science
and Technology, as a part of the TEST (technological R&D) programme,
administrative number #4046 (2004). I would particularly like to thank
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degrees of freedom (DOF) similarity transform can account
for rotation, translation and isotropic scaling, and is use-
ful whenever the viewpoints of the two cameras are rather
close. The affine transform introduces additional 2 DOF
(anisotropic scaling, skew), which enables matching images
from distant viewpoints, provided that the imaged plane is
far from both cameras. Finally, the full projective transfor-
mation, homography, can capture all deformations of planar
shapes, including the projective ones. Note that all previous
considerations hold only for (approximately) planar scenes.
A more general approach would involve solving for 3D po-
sitions of both cameras and all feature points for which the
unambiguous correspondence has been established. There
is a procedure for finding a solution to that problem when
only 5 correspondences are available [9]. However, in such
a general setup, the established set of correspondences can
not easily be extrapolated to other points, which is usually
one of the registration goals.

model DOF points condition

similarity 4 2 ^(z1,n) ≈ ^(z2,n)
affinity 6 3 ‖zik − zil‖ ¿ ‖zik‖

homography 8 4 —

n – the normal of the imaged plane;
zi – the optical axis of the i-th camera;
zik – distance from the k-th point to the camera along zi.

Table 1. Alignment models for planar scenes.

The presented work is concerned with registering mul-
timodal images, for which a complex relationship between
the brightness values of the corresponding pixels should be
expected [4]. Pixels of the same colour in the visible spec-
trum can correspond to pixels with differing brightnesses in
the infrared image, especially if the considered object has
been artificially heated in order to make the deformations
visble. Many of the previous multimodal registration tech-
niques therefore focussed the processing on the edges ob-
tained from the two input images. Some of these approaches
rely on further groupings of edge elements into line seg-
ments [12, 2, 6], or more general contours [7], while others
work directly on variations of the image gradient [4, 5], or



the image Laplacian [14]. The matching is consequently
expressed as a minimization of the objective function pro-
viding a numerical estimate of the candidate transform qual-
ity. There are two main approaches to finding the transform
which minimizes the objective function: non-linear gradi-
ent descent local optimization procedures [4, 6, 13, 5], and
the comprehensive evaluation of hypotheses determined fol-
lowing a certain set of assumptions [8, 2, 14]. The principal
shortcoming of the former approach is the possibility of be-
ing attracted by a local optimum, which can be alleviated
by a multiresolution refinement [5]. The latter approach has
no such problems, but it may become computationally in-
tractable if too many features are found in the input images.
Further, the feature extraction step usually introduces addi-
tional errors, which makes the matching criterions depend-
ing on basic image features potentially more accurate.

The rest of the paper is organized as follows. The spe-
cific assumptions are described in Section 2, while Section
3 summarizes the performed preprocessing operations. Sec-
tion 4 outlines the proposed solution, while the obtained
experimental results are described in the Section 5. The
properties of the proposed technique are summarised in the
Section 6, together with the directions for the future work.

2. Assumptions

A multimodal image registration is considered, in the
context of regular polygonal scenes. The two images are
acquired with different sensor technologies: a conventional
digital camera, and an industrial standard infrared camera.
Obtaining accurate registrations is an important capability,
since it would allow a superior performance in inferring the
qualities of the tested object, by combining its visual and
thermal properties. Certain defects of plastic or metal in-
dustrial products could be identified in a very robust fash-
ion by fusing the information from the two complementary
sources. Consequently, pairs of input images are acquired,
while the object is artificially heated and then relinquished
to become cool again.

It is assumed that the object contains large planar sub-
sets and that the cameras are placed at a safe distance from
the object in order to avoid perspective deformations so that
(i) parallel lines in the scene map to parallel lines in the
image, and (ii), the two images can be related through an
affine transform. Additionally, it is assumed that the object
has a regular polygonal structure with few (possibly only
two) distinctive structural axes. Finally, it is presumed that
there is a good mutual correspondence between the edges
extracted from the two input images, although exceptions
due to reflections and visible texture should be tolerated.

There is usually a sheer disproportion in the resolutions
of the two input images, since the infrared technology is
more sophisticated and expensive than the usual sensors for
detecting visible radiation. Consumer grade digital cam-
eras provide resolutions over 106 pixels, while industrial in-
frared cameras offer a modest half VGA resolution of only
320×240. Thus, the design of a registration procedure must

consider variations of the input images in the both realms of
modality and resolution.

3. Preprocessing

As stated above, all the processing is based on edge el-
ements which are extracted from the two input images. A
manually tuned Canny edge detector has been employed in
all experiments, but similar performance is expected from
other algorithms that produce thin edges. Straight line seg-
ments are extracted from the input images using a previ-
ously developed procedure based on Hough transform [11].
Further processing relies both on the extracted line seg-
ments and the raw edges provided by the edge detector. An
example of a visible-infrared (RGB-IR) image pair with the
corresponding extracted edges and line segments is shown
in fig.1. It can be seen that most (although not all) extracted
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Figure 1. RGB (a) and IR (b) input images with
the extracted line segments, and the corre-
sponding edges (c,d). For better presenta-
tion, the RGB images have been scaled down.

segments correspond to object boundaries which are vis-
ible in both images. However, many parts of the visible
boundaries have not been correctly identified, leading to
cracks and shortened line segments. Additionally, several
segments are only visible in one of the input images (e.g,
IR:71, IR:11, IR:12, RGB:3, RGB:6, RGB:7, RGB:8, fig.1).
This property is intrinsic in multimodal image registration:
the same physical properties of the scene are often detected
in different ways by different sensors. Consequently, the
data obtained by preprocessing should be further refined in
order to obtain robust features suitable for achieving stable
results.

1IR:m refers to the line segment labeled m in the IR image of the refer-
enced figure (the same notation is used for segments in RGB images).



4. The proposed technique

The proposed technique for multimodal registration tries
to intertwine good features of the previous methods and
apply them to the specific problem at hand. Specifically,
it tries to avoid the uncertainties tied with being stuck on
suboptimal alignments, while still achieving the superior
accuracy of performing the registration at the pixel level.
A mixed hypothesize-and test approach is therefore de-
vised, in which the hypotheses are generated from spec-
ulated high-level feature correspondences (as in [2]), but
evaluated by an objective function operating on raw edges
directly (as in [5]).

The proposed technique can be subdivided into five pro-
cessing stages. In the first stage, the line segments obtained
by preprocessing are regularized in order to increase sta-
bility and minimality of the resulting set. The refined seg-
ments are used in the stage 2 to generate an exhaustive set of
candidate transform hypotheses. Candidate transforms are
evaluated as high-level features mappings (stage 3), and raw
edges mappings (stage 4). The best candidate transform is
finally further refined in stage 5, by a general purpose gra-
dient optimization algorithm. Implementation details of the
individual stages are described in the following subsections.

4.1. Regularizing the set of line segments

Due to the regularities in the observed scenes, straight
line crossings can be employed as robust point features
in the alignment procedure. A good property of such a
feature is that it is quite well defined even in cases in
which the segments have not been extracted over the entire
boundary. However, multiple segments on the same line
caused by cracks (e.g. IR:2, IR:8, fig.1) and occluded edges
(e.g. IR:10, IR:11, fig.1) are problematic since they might
give rise to multiple point features due to the same cause.
In order to obtain the minimal but complete set of point fea-
tures in images of the assumed environment, the set of input
segments is regularized by the following procedure.

1. Merging: pairs of line segments nicely extending from
each other’s ends are iteratively merged (e.g, IR:8,
IR:2, IR:9, and IR:10, IR:11, fig.1).

2. Clustering: the motivation for this step is to cluster
segments originating from parallel 3D boundaries. If
the projective deformations are expected in the image,
line segments intersecting a hypothesized vanishing
point could be clustered as well. Line segments are
clustered according to their slope using a Hough-like
approach with 36 accumulators covering the interval
[0, π). The clusters are formed by merging the most
populated neighbouring accumulator pairs.

3. Sorting: line segments sci from each cluster c are
sorted with respect to the line lc being orthogonal to
the cluster direction and passing through the image
center IC ; the sorting parameter d(sci) is calculated as

distance along lc between the IC and the intersection
of lc with the line lsci on which sci is situated.

At this moment, point features can be formed by combin-
ing all pairs of line segments from different clusters. This
is illustrated in fig.2, in which the regularized line segments
and the extracted point features are shown for the same in-
put images as in fig.1.
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Figure 2. Regularized line segments and the
corresponding point features in the RGB (a)
and the IR (b) image.

4.2. Generating hypotheses

The task of this processing stage is to build a compre-
hensive set of transform hypotheses which should contain
the goal transform with high confidence. However, from
the other perspective, the constructed set should be as small
as possible, in order to be able to test all hypotheses in a
reasonable time. The proposed procedure tries to stay on
the tractable side by reducing the computational complex-
ity whenever possible.

First, the two dominant directions of the scene struc-
ture in both images are detected as segment clusters having
longest total length of the member segments. Then, the mu-
tual correspondence between these directions is established
by minimizing the total angular deviation. This is possible
since rotations larger than 45◦ are not expected to occur.
The last assumption could be avoided by hypothesizing all
possible correspondences between the cluster directions, at
the expense of somewhat increased execution times.

High-level features are extracted from both images as
quadrangles (nearly parallelograms) formed by lines de-
fined by combinations of line segment pairs from differ-
ent clusters. Let ci be the i-th cluster of line segments,
let d(sij) be the sorting parameter introduced in the pre-
vious subsection, and let dmin be the quadrangle dimension
threshold. Then each combination of the four line segments
(s00, s01, s10, s11) must satisfy the following:

si0, si1 ∈ ci, i = 0, 1

d(si0)− d(si1) > dmin, i = 0, 1 (1)

The dimension threshold has been introduced in order to re-
duce the computation complexity, by suppressing hypothe-
ses involving small quadrangles having large positional un-



certainties. In all experiments, dmin has been set to H/5,
where H represents the smaller image dimension, in pixels.

Hypotheses are finally formed by speculating correspon-
dences between all quadrangles from the two images sat-
isfying (1). Each hypothesized correspondence induces a
distinct projective transformation between the two images,
which will be tested for support in the subsequent pro-
cessing. The number of hypotheses is very high in the-
ory, O(n8), but in practice this problem is alleviated by the
precedent organization of the line segments into clusters.
Note that choosing triangles as in [2] is not an option since
the assumed environment has only two structural directions.

4.3. Evaluating hypotheses on feature alignment

At this point it is possible for each hypothesis to apply
the induced transform to all point features from one image
and check the alignment with the point features in the sec-
ond one. This is a very attractive evaluation approach, since
it remains in the computationally inexpensive symbolic do-
main (there are 12 point features, but more than 1000 edge
elements in the image shown in fig.1). However the ap-
proach has several theoretical and practical shortcomings
which severely limit its usefulness. Consider the problem
of registering the two sketches in 3 which roughly corre-
spond to images from fig.1, with the addition of one spuri-
ous line segment. It is clear that (A,B) is most probably in
correspondence with (C,D), but chances are that, under the
point feature evaluation approach, the hypothesis aligning
(A,B) with (E,F) and (X,Y) with (C,D) would obtain a better
score (in the sense of the sum of squared feature distances)
than the correct hypothesis. Note that the point feature eval-
uation could not prefer the correct alignment even in the
absence of the spurious segment, since the two hypotheses
(A,B)→(C,D) and (A,B)→(E,F) would obtain nearly iden-
tical scores. The approach described in the next subsection
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Figure 3. Evaluating hypotheses based on
point features promotes a false correspon-
dence (X,Y,A,B)→(C,D,E,F) (see text).

is more robust with respect to such problems, but is com-
putationally more complex. It therefore might prove useful
to use symbolic checking only as a gate for rejecting obvi-
ous blunders, such as hypotheses which does not succeed
to map any additional point features, besides the four ones
used for their construction.

4.4. Evaluating hypotheses on raw edges alignment

Following the discussion in the previous subsection, the
final decision on the most accurate hypothesis describing
the relationship between the two images is performed in the
domain of raw edges. This approach has been also used in
[5], where the transformation T for aligning images I2 and
I1 is found by optimizing the following functional, in which
g(I2) represents the set of high gradient pixels in I2:

∑

pi∈g(I2)

|∇I1(T (pi))|2, (2)

The proposed procedure for evaluating hypotheses fol-
lows the same basic idea: edges from one image should
be aligned with edges in the another. However, experiments
have shown that several modifications are needed in order to
obtain best results from the idea in the context of evaluating
hypotheses. Summing gradients at the transformed points
as in (2) may cause high gradient regions which are present
only in image I1 to falsely attract parts of the boundary
in I2 which can be better aligned elsewhere (see fig.4). A

(I1) (I2)

Figure 4. Evaluating hypotheses by summing
gradient contributions promotes a false cor-
respondence (A,B)→(X,Y) (see text).

different evaluation procedure is therefore proposed, which
counts high gradient pixels from I2, pi ∈ g(I2), landing on
high gradient pixels in I1, T (pi) ∈ h(I1):

∑

pi∈g(I2)

δI1(T (pi)), (3)

where

δI(p) =

{
1, p ∈ h(I),

0, otherwise.
(4)

Different variations of the above criterion may be con-
structed by different choices for g and h. The thinned output
of an edge detector is a good candidate for g, since it de-
creases the number of pixels for which the candidate trans-
form needs to be applied, without loosing important infor-
mation. On the other hand, edges in hmust be thick in order
to tolerate small deviations due to shadows, reflections and
other kinds of noise which are differently expressed in the
images obtained by the two sensors. After experimenting



with thresholded gradient magnitude and the smoothed out-
put of the edge detector, it turned out that the latter provided
somewhat better results for the utilized set of input images.

Note that the criterion (3) is similar to the partial Hauss-
dorf distance Hq(T (pi), rj), pi ∈ g(I2), rj ∈ g(I1). Al-
though the latter approach is conceptually clearer, both al-
ternatives suffer from ad-hoc thresholds: the width of the
smoothing kernel and the quantile value q, respectively. In
the end, the partial Haussdorf distance was not considered
since it would incur high computational cost [13] to the hy-
pothesized transformation evaluation, which is a part of the
critical loop in the proposed procedure.

4.5. Refining the best hypothesis

After a quadrangle correspondence is found which maps
most edge elements from I2 onto smoothed edge elements
of I1, the induced transform can be further refined by non-
linear optimization. It is assumed that the rough align-
ment has already been achieved at this point, so that tak-
ing actual values into account does not raise risks described
in the previous subsection and illustrated in fig.4. The
gently sloped ridge of the smoothed edge map h(I1) usu-
ally makes it possible for an optimization procedure to
achieve considerable improvements over the first approxi-
mation. Because of its availability, an implementation of
the Levenberg-Marquardt’s [10] optimization algorithm has
been employed, which is a part of the Cephes library acces-
sible from http://www.netlib.org. The optimiza-
tion usually improves on the first approximation by map-
ping 5%–10% more edges from g(I2) onto h(I1).

Note that, alternatively, the distance transform of g(I1)
[13, 1] could be used both for evaluating mappings from
g(I2) and performing the optimization of the best hypoth-
esis. This would allow for avoiding the ad-hoc smoothing
parameter, as well as for decoupling the procedure from the
edge detector implementation details. Unfortunately, these
considerations have not been tested yet.

5. Experimental results

The experiment was performed on images of an artifi-
cially heated metal object with 5 holes. 16 infrared images
of the object were taken, at different moments in time, in
order to test the program’s behaviour for different object
temperatures. A registration procedure has been performed
by combining each of the 16 IR images with 3 RGB im-
ages obtained for different rotations of the camera. In all
experiments the RGB image resolution was 640× 480 pix-
els, while the infrared image was 326 × 244. Before the
preprocessing, the infrared image was normalized in order
to make a better use of the 16 bit dynamic range. The evalu-
ated transforms operated on edges from the smaller infrared
image. Due to the simplicity of the considered scenes, the
count of hypotheses generated in the processing stage 2
ranged between 50 and 100. Because of that, the theoret-
ically most dangerous stage of hypotheses evaluation, re-

quired less processing time than nonlinear optimization and
edge detection (100 ms vs 200 ms vs 150 ms, respectively).
This would likely change for more involved scenarios, but
such experiments have not been performed yet. Typical re-
sults, before and after applying the non-linear optimization
are shown in figs. 5-6. It can be seen that even with op-

(a) (b)

Figure 5. The results obtained for two input
pairs (a,b) without the optimization stage. For
each pair, the transformed edges from the IR
image are overlayed over the RGB image.

timization switched on, the procedure does not manage to
find a perfect alignment for vertical edges. This is mainly
caused by the imperfect IR imaging conditions: the wooden
frame supporting the metal object reflects the infrared radi-
ation from the metal making the object appear wider in the
infrared spectrum, as seen in fig.1.

(a) (b)

Figure 6. The processing results on the same
input as in fig.5, with optimization included.

Finally it is interesting to see how the procedure per-
forms in more problematic conditions, when the two images
are taken from distant viewpoints, while the object is only
lightly heated, producing noisy thermal images. The pro-
cessing results are shown in fig.7. The registration proce-
dure has succeeded to ignore the impossibility of matching
the first and the third vertical edge from the right in the IR
image, and perform the alignment based on other edges for
which a planar correspondence can be found. The rightmost
vertical IR edge is outside the field of view in the RGB im-
age (not visible at all), while the third vertical IR edge from
the right can not be related to the corresponding RGB edge
by a planar transformation, due to the motion parallax. This
is not a problem for other edges which lie in the common
plane, or are parallel with the displacement vector between
the two cameras.



(a) (b)

Figure 7. The processing results for the image pair obtained from distant viewpoints: edges extracted
from the original IR image (a), and their transformation onto the smoothed edges from the RGB image,
used as the target during the transform evaluation (b).

6. Conclusions

A technique for multimodal image registration has been
presented, which is particularly suitable for aligning images
of regular man-made objects in the context of automatic
quality assessment. Although the technique assumes planar
transformation between the two images, experiments have
shown that good results can be obtained even for a non-
planar scene, for moderate changes in the viewing direction.
The obtained results suggest that a related procedure might
be applicable in more involved scenarios as well. The prin-
cipal problem in that direction would be to design a general
interest operator which could be used to accurately locate
and relate corresponding points in multimodal images. The
future work will therefore be concentrated on more general
ways to pose a tractable but complete set of hypothesized
correspondences from which candidate mappings could be
constructed and consequently evaluated.
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