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ABSTRACT

Weaddresstheproblemof findinganintermediate-
level representationof structuredobjectsbasedon
the output of an edgedetector. The adoptedap-
proach for grouping edge elementsis basedon
threeprinciplesof perceptualorganization: prox-
imity, continuationandclosure. We areinterested
in a specialsubsetof all closedcontoursin the
imagewhich is called canonicalsince it exhibits
thedesiredpropertiesof completeness,uniqueness,
and minimality. Unfortunately, the elementsof
edgemapsareoften discontinuouswherea single
contouris perceivedandviceversa,which imposes
theneedfor devisingarobustextractingprocedure.
Unlike theknown approaches,theproposedproce-
dure is formulatedas the state-spacesearchprob-
lem, which allows complex schemesfor calculat-
ing compoundsaliency (themeasureof perceptual
importance)from thesalienciesof individual junc-
tions. Theshortcomingof suchanapproachis the
exponentialworst-casecomplexity whichwe try to
alleviateby severalstrategiesfor pruningthesearch
tree. The procedurewastestedon many synthetic
imagesand a representative set of processingre-
sultsis provided.

1. INTRODUCTION

The aim of techniquesfor perceptualgrouping
is to identify imagepartswhich likely correspond
to distinctstructuresof theworld. Insteadof using
any specificknowledgeaboutthe analysedscene,
thesetechniquesperformgroupingwith respectto
principleswhicharebelievedto beexploitedby the
humanvisualsystem[1]. TheseGestaltprinciples

includesimilarity, proximity, continuation,closure
and symmetry, and are namedafter the German
schoolof psychologywhosemembersperformed
early researchon perception. Unfortunately, im-
plementationsof thesetechniquesarecomputation-
ally very complex, which partly explainswhy they
received relatively poor attentionfrom the vision
communityuntil recently. In particular, consider-
able interesthasbeenaddressedto applyingprin-
ciples of proximity, continuationand closurefor
extracting intermediatefeaturesin both intensity
[1, 2, 3, 4, 5] andrangeimages[6, 7]. Theclosure
principlehasbeenappliedfor enhancingbothedge
andareasegmentations,i.e. for disambiguationof
themissingfragmentsof edgechainsdueto noise
effects,aswell asfor finding regionsin the image
correspondingto distinctobjectsin thescene.

Oneof thefirst applicationsof theclosureprin-
ciple to object recognitionwascontributed by Ja-
cobs [2] who investigatedthe problem of index-
ing of partially occludedconvex objectsin real im-
ages. The proposedapproachrelieson the list of
cornerpointsobtainedasintersectionsof extracted
straight line segments. Elder and Zucker [1] de-
scribeda genericprocedurefor extractingarbitrary
closedcontoursfrom real images. The procedure
representscurvesassequencesof disjoint line seg-
ments(theseare also called super-segments[8])
andbuilds incidency matrix which for eachsuper-
segmentpairprovidesthesaliency of theirconcate-
nation. Thus,the imageis representedasa graph,
while theprocessof findingaclosedcontouris for-
mulatedand solved as the shortest-pathproblem.
Williams andThornber[4] provide a review of ex-
istingproceduresfor expressingsaliency of anedge
elementin termsof its affinities to its neighbours
which arebasedon principlesof continuationand



proximity. They also proposea novel procedure
which takes advantageof the principle of closure
and,accordingto their experiments,performsbet-
ter thantheothers.An applicationof theirmeasure
to finding multiple simpleobjectsin clutteredreal
imagesby segmentingout closedcontoursis pro-
posedby Mahamudet al. [5].

Thetwo latterapproaches[4, 5] proposea com-
plex model to enforcecontinuationandclosureof
the extractedcontours,however, little attentionis
addressedtowardsdealingwith situationsin which
multiple feasibleclosedcontourspassthroughthe
sameedge. Comparedto [1], our approachtrade-
offs the computationalsimplicity in return for the
enhancedcapability of modelling the compound
saliency of a closed contour. Additionally, we
proposea strategy for extractinga specialcanoni-
cal configurationof multiplepossiblyneighbouring
closedcontourswhich is complete,minimal and
unique. This issueis particularly importantif the
resultsof perceptualorganizationareemployedfor
solving a higher level perceptualtask suchas es-
tablishingcorrespondencesbetweenneighbouring
framesin a sequence.Our approachis similar to
[3], in which theproblemis alsosolved by the in-
formedsearch;however, theprocedureproposedin
[3] comesshortof exploiting capabilitiesofferedby
the searchapproach,andis unableto extract arbi-
traryclosedcontours.

Thedetaileddescriptionof theproblemis given
in Section2, while Section3 describesthe proce-
dure for extractingcanonicalsubsetof the closed
contours,basedon the output of the Canny edge
detector. Finally, experimentalresultsareprovided
in Section4.

2. PROBLEM DESCRIPTION

Most methodswhich have been proposedfor
overcomingthedifficultiestiedwith imperfectedge
maps by perceptualorganizationuse only local
principlesof proximity andcontinuation[4]. This
is surprisingsincetheselocal cuesmay be clearly
incorrectin global context, while the closureasa
global principle may disambiguatemany of such
situations. Consider for example the image in
Fig.1a,anditsenlargedcentralpartin Fig.1b. With-
out global context, there is no way of knowing
whetherwe have two black or two white touching
objectsin the image. Thecorrectinterpretationof

the imagecan be obtainedby formulating global
context asa rule that theclosedcontoursaremore
salientthantheopenones.
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Figure1: A synthetictestimage(a), theenlarged
centralportion of the imagesmoothedwith ����

(b), the edgemapprovidedby the Canny edge
detector(c), and the extractedcanonicalsetof 2
closedcontours(d) labeledwith “0” and“1”.

The methodof groupingedgechainsaccording
to theclosureprinciplemayhave difficultieswhen
dealingwith structuredobjects,which give rise to
multiple feasibleclosedcontours. For instance,
considerthe image in Fig.2a, featuring threead-
jacenthomogeneousregionsand7 feasibleclosed
contours. Which of thesecontoursshouldbe re-
portedto a higher level perceptualprocedure?A
badapproachwould be to allow assigningof each
edgeto exactlyonecontoursinceit would resultin
only one(which?) featureextractedfrom imagein
Fig.2a.Theothernon-viableapproachwouldbeto
extract all feasiblecontourswhich, for our exam-
ple, would result in 7 contours.The only solution
left is to establisha criterion for choosinga repre-
sentative subsetof all feasibleclosedcontoursin
the image,and consequentlydevise an algorithm
whichwill enforceit.

Let � be the setof all feasibleclosedcontours
in theimage.We defineits canonicalsubset��� as
the setof all elementary[3] contours�
	��
� for
which the following holds: for each������������� 	�� ,
either �
	 doesnotencompass� � , or �
	 and � � donot
sharea part of boundary. It can easilybe shown
thateachimageedgecanbeassignedeitherto 0, 1
or 2 elementarycontours.Weproposerepresenting



� with ��� , sinceit exhibits thefollowing favorable
properties:

� completeness: each����������� � canbe ob-
tainedas a combinationof two elementsof
��� ;

� uniqueness: thereis only onecanonicalsub-
setfor each� ;

� minimality : thesetobtainedby removing any
elementof ��� is not complete.

The listed propertiesmake thecanonicalsubset
particularlysuitablefor intermediaterepresentation
of structuredobjectssincethelackof redundantin-
formationmakes the tasksof correspondenceand
indexing lesscomplex. The algorithmfor extract-
ing the canonicalset of closedcontoursfrom the
input imageis proposedin Section3, while theex-
perimentalresultsareprovidedin Section4.
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Figure2: A synthetictestimage(a), theedgemap
provided by the Canny edgedetector(b), 6 edge
chainsbroken by the criteria of endpointprox-
imity and high curvature (c), and the extracted
canonicalsetof 3 closedcontours(d,e,f).

3. THE PROPOSEDPROCEDURE

In general,aprocedurefor extractingthecanon-
ical subsetof closedcontours��� from agivenedge
mapconsistsof thefollowing tasks:(1) obtaininga
setof edgechainssuitablefor grouping,(2) deter-
mining which pairsof thosechainscanbe linked
into a commoncontour, and (3), extracting only
thoseclosedcontourswhich are membersof � � .
Theformertwo tasksrely onlocalprinciples(prox-
imity, continuation),while the third oneorganizes
theobtainedresultswith respectto theclosurecri-
terion.

3.1. Obtaining suitableedgechains

Thetaskof this stageis to performapartitionof
elementsof theedgemapinto asetof edgechains,
with respectto thefollowing criteria:

� saliency: chainsshouldbein accordancewith
local perceptualprinciples(proximity, contin-
uation);

� correctness: chains should not span be-
tweenmorethantwo entities(objectsor back-
ground);

� minimality : thereshouldbeasfew chainsas
possible,when not in conflict with previous
criteria, in order to avoid over-segmentation
and lower the complexity of further process-
ing.

While muchwork hasbeendoneregardingthe
first criterion [9, 10], it is not clearhow to enforce
the secondone. A popularstrategy is to make all
chainsshort [8], which certainly solves the prob-
lem at hand,but badly affects the third criterion.
We adopta differentapproach,in which smoothly
connectedchainsarebroken only at locationsfor
which there is a perceptualindication of a junc-
tion or the end of an object. Thus, intermediate
edgechainsareextractedfollowing certainconsid-
erationsfrom [10]. Consequently, chainsarebro-
kenat pointswhereradiusof curvatureis lessthan
5 pixels. Finally, for eachchainendpoint,we con-
siderthebreakingof all otherchainswhosenearest
point is closerthan !#" , where" is theparameterof
theGaussiansmoothingusedby edgedetector.



3.2. Building the incidency lists

Eachedgechainprovided by the previous pro-
cessingstepis first assignedthe referentialdirec-
tion (see[4] for adiscussiononthesubject).Conse-
quently, individual chainsarechecked for closure:
this is possibleif thenoiseis low andthecontours
producedby the linking procedureare not frag-
mented. On positive result, the closedcontouris
registeredwhile thecorrespondingchainis not fur-
therconsidered.For eachof theremainingchains,
two incidency lists arecreated,onefor eachdirec-
tion. Eachof thecreatedlists is filled with neigh-
boursof the correspondingchainanddirectionby
a simple thresholdingover the saliency measure
which is definedwith respectto the principle of
proximity. Besidesthe index anddirectionwhich
identify the neighbouringchain,a single list node
alsocontainsthe computedsaliency measure,and
theangle $ betweenthetangentat thelastpoint of
the chain correspondingto list and the tangentat
thefirst point of the neighbouringchain. This an-
gle is usedin the latter phase,in which we reduce
thecountof neighboursin orderto ensurecompu-
tationalfeasibility of thenext stage.Thenodesare
sortedwith respectto $ ; then, eachnodehaving
a lower saliency thansomeothernodediffering in
$ for lessthan !#%'& is suppressed;finally, only the
strongestfour neighboursaccordingto saliency are
left in thelist.

3.3.Finding ��� by thebest-firstsearchalgorithm

Unlike the previous methods,we formulatethe
problemas the searchproblemover the spaceof
all feasibleunconnectedcontours. Each state ( 	
of thesearchspacecorrespondsto a concatenation
of nodes)*� obtainedfrom incidency lists, together
with several additionaltraits of the corresponding
contour. Two states(,+.-/�0)2143�)5+0376767603�)98 � and
(;:<- �0) 1 3�) + 376767603�) 8 3�)9=4>@? � are connectediff
)9=#>A? can be found in the incidency list for node
) 8 , and )9=#>@?
B-C)*�#3ADE-GF#3IHJ3767676;3�K . Thesearch
spacethereforehastheform of a tree,with branch-
ing factor boundedby the limit imposedon the
count of nodesin incidency lists. The depth of
the tree is determinedby the longestsalientcon-
catenationof chains,whetheropenor closed.The
first nodeis constructedwith thechainandthecor-
respondingdirectionfor which a closedcontouris

sought,andassignedthesaliency of 1. Goalstates
(�LM-N�0) 1 3�) + 376767603�) 8 3�) 1;� areeasilyidentified,by
checkingthat the rotationindex [1] of thecontour
is equalto oneandtestingthefirst andthelastnode
for equality.

A nice propertyof suchstatetreeis that closed
contourswhich belongto ��� aregeneratedby the
space-efficient best-firstsearch[11], in which the
orderof openingof new nodesis imposedby the
orderof nodesin incidency lists. Sincethe nodes
in incidency lists areorderedwith respectto $N�OQPSR 3 RUT , the searchalgorithmwill alwaysfirst ex-
plore the leftmost continuationof eachchain and
ensurethatthefirst opengoal-statewill correspond
to an elementaryleft-orientedcontour. All such
contourscanbeobtainedby performingthesearch
from eachnode, in both possibledirections. For
example,considerFig.2c. Let the referentialdi-
rectionof an edgechainbe definedasgoing from
theendpointnearthechainlabel,towardstheother
endpoint. Then, the searchfrom the horizontal
edgechainlabeledwith #1 would find thecontour
��F#3 ! 3V% � for thereferentialdirectionof theedge#1,
andthecontour � F,3IWJ3 H � for thereverse.

At first, the describedformulationof the prob-
lem doesnot seemattractive, sincethe worst-case
time complexity of depth-first searchis X�Y[Z]\4^ ,
where Z is the branchingfactor and _ the depth
of the searchtree. Elder and Zucker [1] formu-
latedthe sameproblemasthe shortest-pathgraph
search,for which thereare known solutionswith
polynomial complexity X�Y`) :�a`b;c Y`)d^�^ . However,
theirformulationhasanimportantqualitativeshort-
coming which considerablyrestrictsthe freedom
in modelling the perceptualprocesses. Namely,
the shortest-pathsearchis able to modelonly the
quitetrivial schemeof inferringcompoundsaliency
of the contour from individual saliencesof chain
junctions,which is to make thecompoundsaliency
equal to the sum (or the product) of individual
saliencies.Consequently, it can’t make dynamical
decisionsduringthesearch,basedon propertiesof
the patternof the individual saliencies.Onecon-
sequenceof suchapproachis the inability to fil-
ter out “double figure eights” from the extracted
setof contours.Dynamicdecisionsarealsouseful
in modelling at leasttwo patternsof perceptually
salientnon-smoothchain concatenations,namely,
apicesand interruptions(seeFig.4 and Fig.3 for
examples). The influenceof theseeffects to the



compoundsaliency can’t bemodelledfaithfully by
the sum model, sinceoneor two interruptionsor
apicesmaybesalientdueto occlusions,but fiveor
tenarecertainlynot. For instance,thesummodel
cannot assignsaliency of 0.9 to thefirst apex, 0.8
to thesecondoneetc,sinceit mustassignthesame
saliency to eachchain junction, regardlessof the
patternof other salienciesin the contour. These
problemsareeasilysolvedin thestate-spacesearch
formulation, since eachstatemay be augmented
with the following data about the corresponding
contour:thecompoundsaliency sofar; therotation
index; theangulardistancewith respectto thefirst
pointof thefirst chain;countsof long interruptions
andapices.

Nevertheless,the exponential complexity (al-
thoughworst-case)doesposeasignificantproblem
which we try to alleviate by several strategies for
pruningthesearchtree:

� for eachchain,only onecontourperdirection
is possible:a datastructureis thereforekept
with chainsanddirectionswhichalreadyhave
beenassignedto a closedcontour, and their
appearancein an anothercontouris not per-
mitted;

� contourswith partial rotation indices larger
than1 andsmallerthan-1 arepruned;

� we limit the depthof the searchto 20 nodes,
or 10 if theangulardistanceof thecontouris
lessthan0;

� for eachchainonly two apicesand two long
interruptionsarepermitted.

4. EXPERIMENT AL RESULTS

We have testedthe proposedprocedureon nu-
meroussyntheticimagesof increasingcomplexity.
The processingresultsareshown in figuresFig.1,
Fig.2 andFig.3. The obtainedcanonicalset for a
complex imagein Fig.3contains6 closedcontours,
only oneof which is not perceptuallysalient. The
contourlabeled#2correspondsto analmostclosed
partof thebackgroundbetweenobjectswhosecon-
toursarelabeledwith #0,#3and#5. While it could
be deducedthat the region in questionshouldbe
attributed to background,the proposedprocedure
doesnot try to performsuchreasoning.
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Figure3: A complex synthetictest image(a), its
edge map (b), the points of high curvature at
which the chainsarebrokensuperimposedto the
gradientimageusedby the edgedetector(c), the
final setof 30 edgechains(d), andfinally, theob-
tainedcanonicalsetof 6 closedcontours(e) and
(f). In both contours#0 and#3, one large inter-
ruptionis tolerated.

The obtainedresults confirm that the devised
procedurecandealwith problematicconfigurations
suchasapicesandinterruptions.Theseconfigura-
tionsarequite frequentin real images,which is il-
lustratedby the imagein Fig.4: due to noiseand
smoothingeffects, the endsof both wings arenot
representedasedgesatall. Suchsituationin which
the contour“opens” whenthe objectbecomestoo
narrow occursbothin imagesof carsandairplanes.

5. CONCLUSION

We have presenteda procedurefor extracting
canonical set of closed contours from an edge
map. Providing sucha representationis particu-
larly important in the caseof structuredobjects,
sincestraightforward approachesmayprovide dif-
ferent(althoughcorrect)outputsfor verysimilarin-
put images.The proposedprocedureallows more
complex modellingof theperceptualgroupingpro-
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Figure 4: A simple real image(a), its edgemap
(b), thefinal setof 8 edgechains(c), andtheob-
tainedcanonicalsetof 2 closedcontours(d). In
bothcontours,oneapex is tolerated.

cessthan someof the known approaches,at the
costof increasedcomputationalcomplexity. Sev-
eralstrategiesfor pruningthesearchtreehavebeen
devisedin orderto simplify thecomputations,how-
ever we still can not provide conclusive evidence
about their efficacy. The obtainedprocessingre-
sultson many syntheticimagesconfirmtheviabil-
ity of the procedurein the context of ambiguous
configurationssuchasapicesandinterruptions.
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