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Abstract

Road accidents cause over 1.35 million fatalities annually, emphasizing the need for efficient

road infrastructure safety assessment. Traditional assessments based on historical accident data

are reactive and often limited by incomplete records, especially in regions lacking comprehen-

sive records of accident incidence. In contrast, proactive approaches emphasize regular and sys-

tematic evaluations of road infrastructure to identify potential hazards before accidents occur.

The International Road Assessment Programme (iRAP) exemplifies this proactive strategy with

its Star Rating system, which evaluates road infrastructure safety through a detailed analysis

of 52 attributes. However, manual assessment of these attributes is labor-intensive and time-

consuming. This thesis proposes a two-stage deep learning approach to automate the recog-

nition of road-safety attributes in monocular video data. Attribute recognition is formulated

as a two-stage multi-task multi-class classification problem, where each attribute represents a

separate task. The first stage involves local recognition that we formulate as a convolutional

neural network with a shared encoder and attribute-specific classification branches. The en-

coder is initialized by pre-training on semantic segmentation of street scenes. Our problem

involves extreme class imbalance due to rarity and variety of road hazards. Under these condi-

tions, straight-forward learning algorithms are bound to suffer from false negatives. While static

inverse frequency weighting can alleviate this issue, it has been shown to increase the false posi-

tive rate. Furthermore, class weighting with many imbalanced tasks can lead to task interference

due to high variance in individual losses. We address these issues by multi-task formulation of

dynamic loss weighting, which avoids excessive false positives while maintaining stable mag-

nitudes of individual losses. The second stage enhances local predictions by observing a larger

temporal context via per-attribute recurrent models, which capture temporal dependencies. Ex-

periments are conducted on the newly introduced iRAP-BH dataset, comprising over 226,000

labeled images along 2,300 kilometers of roads in Bosnia and Herzegovina. The results con-

firm the impact of each of our contributions, effectively addressing challenges such as class

imbalance, non-orthogonal attribute design, fine-grained classes, and temporal dependencies.

Additional evaluations on publicly available datasets demonstrate the model’s generalizability

and robustness of the proposed machine learning approach, achieving state-of-the-art results on

Honda Scenes and performing competitively on FM3m and BDD100k.

Keywords: image classification, road safety, iRAP attributes, deep learning, multi-task

learning



Prošireni sažetak

Uvod

Prometne nesreće predstavljaju značajan globalni izazov, uzrokujući preko 1,35 milijuna smrti

godišnje. Svjetska zdravstvena organizacija zbog toga ih ubraja med̄u najkritičnije javnoz-

dravstvene probleme na svjetskoj razini. Ovaj zabrinjavajući podatak ukazuje na hitnu potrebu

za učinkovitim mjerama za poboljšanje cestovne sigurnosti i smanjenje smrtnosti i ozljeda

povezanih s prometom. Problem prometne sigurnosti prepoznala je i organizacija Ujedinjenih

naroda inicijativom "Decade of Action for Road Safety".

Tradicionalni pristupi za procjenu cestovne sigurnosti oslanjaju se na reaktivne metode

pronalaska visokorizičnih lokacija analizom povijesnih podataka o nesrećama. Iako takvi pris-

tupi mogu otkriti složene čimbenike rizika, oni ovise o prijašnjim incidentima i točnosti dos-

tupnih podataka, te su osobito ograničeni u područjima s nepotpunom evidencijom nesreća.

S druge strane, proaktivni pristupi naglašavaju redovite procjene sigurnosti cestovne infras-

trukture kako bi se identificirale potencijalne opasnosti prije nego što dod̄e do nesreća. Takve

metode procjenjuju fizičke značajke cestovne infrastrukture - poput izvedbe razdvajanja promet-

nih traka, opasnosti uz cestu, te objekata namijenjenih ranjivim sudionicima u prometu - kako

bi se omogućile ciljane intervencije za umanjivanje rizika.

Udruga International Road Assessment Programme (iRAP) pruža primjer takve proaktivne

strategije. Njihov sustav iRAP Star Rating standardizirana je metodologija za procjenu sig-

urnosti cestovnih dionica na temelju fizičkih karakteristika cestovne infrastrukture. Procjena

se provodi analizom 52 obilježja definiranih standardom iRAP. Pri tome se se razina sigurnosti

cestovnih dionica zasebno procjenjuje za četiri skupine sudionika u prometu - putnike u vozil-

ima, motocikliste, pješake i bicikliste.

Unatoč svojoj učinkovitosti, ručna procjena iRAP obilježja zahtijeva mnogo vremena i prik-

ladno obučenog osoblja. Ovo istraživanje nastoji automatizirati procjenu tih obilježja u georef-

erenciranim videozapisima iz perspektive vozača primjenom dubokog učenja i tehnika raču-

nalnog vida. Predloženi postupak strojnog učenja teži pružiti učinkovito i skalabilno rješenje

za poboljšanje procjene sigurnosti cesta analizom prostorno-vremenskog konteksta cestovnih

segmenata.

Sigurnost cestovne infrastukture

Za učinkovitu automatizaciju procjene sigurnosti cesta pomoću dubokog učenja i računalnog

vida, ključno je razumjeti strukturu i specifične izazove iRAP obilježja. Obilježja su podijeljeni

u sedam skupina: Road and Context (metapodaci te broj kolničkih traka prometnice), Observed

Flow (broj korisnika cestovne dionice u danom trenutku), Speed Limit (ograničenja brzine i

mjere smirivanja prometa), Mid-block (intrinsične značajke ceste poput broja traka, radijusa za-



krivljenosti i kvalitete oznaka), Roadside (rizik koji predstavljaju objekti pored ceste, s vozačeve

i suvozačeve strane), Intersection (tipovi raskrižja po konfiguraciji i signalizaciji), te Vulnerable

Road-User Facilities (infrastruktura za pješake i bicikliste te karakteristike okolnog područja).

Svako obilježje predstavlja specifičnu značajku cestovnog okruženja i za svaku dionicu poprima

vrijednost iz specifične taksonomije, pri čemu se broj mogućih razreda razlikuje od obilježja do

obilježja.

Analiza obilježja otkriva nekoliko izazova koji utječu na uspješnost modela strojnog učenja

za njihovo prepoznavanje. Jedan od glavnih problema je neuravnoteženost razreda, gdje su

odred̄eni razredi izrazito zastupljeni, a preostali jako rijetki. Takav disbalans može dovesti do

zanemarivanja ključnih, ali rijetkih sigurnosnih značajki, čime se mogu previdjeti situacije vi-

sokog rizika. Rješenje ovog problema zahtijeva funkcije gubitka koje daju veću važnost manje

zastupljenim razredima i korištenje mjere makro-F1 kao primarne metrike za evaluaciju modela.

Dodatni je izazov neortogonalnost odred̄enih obilježja, gdje se više ortogonalnih značajki kom-

binira u jedinstvenu taksonomiju. Time se povećava broj razreda i povećava neuravnoteženost

taksonomije jer se primjeri dijele na više razreda. Takod̄er, kapacitet klasifikacijskog modela

suvišno se troši na prepoznavanje istih značajki u različitim kombinacijama. Primjerice, obil-

ježje Skid Resistance objedinjuje razinu prijanjanja kolnika i tip kolničkog zastora, što rezultira

složenom taksonomijom. Pojednostavljivanje takvih složenih taksonomija moglo bi poboljšati

učinkovitost modela. Izrazito detaljni i vizualno slični razredi takod̄er predstavljaju značajan

izazov za raspoznavanje. Obilježja s vrlo specifičnim razredima, poput različitih tipova za-

štitnih ograda u obilježju Roadside severity, teško je razlikovati zbog suptilnih vizualnih raz-

lika. Takva razina granularnosti u praksi dovodi do pogrešnih klasifikacija i smanjuje učinkovi-

tost modela. Vremenska dinamika obilježja duž slijeda cestovnih segmenata takod̄er utječe na

učinkovitost modela. Točkasta obilježja bilježe prebrojive pojave infrastrukturnih elemenata

koje treba detektirati samo u segmentu koji je najbliži njihovoj lokaciji. Med̄utim, vizualne

značajke koje omogućuju prepoznavanje tih elemenata često se protežu kroz više segmenata,

što modelima otežava odred̄ivanje točnog segmenta koji treba označiti. S druge strane, inter-

valna (smooth) obilježja rijetko mijenjaju razred duž uzastopnih cestovnih segmenata jer obično

opisuju veća područja ili duge kontinuirane infrastrukturne elemente. Lokalni modeli za pre-

poznavanje mogu imati poteškoća s ovim obrascima zbog ograničenog konteksta, što im otežava

internaliziranje inherentne inercije odred̄enih obilježja ili pak pronalazak točnog trenutka po-

jave obilježja. Razumijevanje ovih vremenskih obrazaca ključno je za razvoj učinkovitih strate-

gija prepoznavanja. Navedeni izazovi potiču slijedno poboljšavanje predikcija lokalnog mod-

ela primjenom zasebnih povratnih modela za svako obilježje. To omogućuje učenje vremen-

skih obrazaca u širem prostorno-vremenskom kontekstu bez značajnog povećanja računalne

složenosti.

Ova analiza daje kontekst za razvoj modela koji adresiraju opisane izazove te tako
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povećavaju učinkovitost tehnika dubokog učenja za automatsku procjenu sigurnosti cesta u

videozapisima uličnih scena.

Klasifikacija slika dubokim učenjem

Duboko učenje donijelo je veliki napredak u području računalnog vida, izmed̄u ostalog

omogućavajući i razvoj algoritama za automatsko raspoznavanje obilježja cestovne infrastruk-

ture iz slika. Dok se tradicionalne metode strojnog učenja oslanjaju na ručno definirane znača-

jke, duboki modeli samostalno uče hijerarhiju značajki izravno iz ulaznih slika. Takvi modeli

sastoje se od više slojeva obrade koji koriste ustaljene matematičke operacije poput konvolucije

za izdvajanje prostornih značajki, aktivacijskih funkcija za modeliranje nelinearnosti, funkcija

sažimanja za smanjenje dimenzionalnosti, te normalizacije za stabilnije učenje i bolju konver-

genciju. Zbog sposobnosti prepoznavanja složenih uzoraka ti su modeli pogodni za zadatke

koji zahtijevaju detaljnu analizu vizualnih scena, poput prepoznavanja specifičnih obilježja sig-

urnosti cestovne infrastrukture.

Nagli razvoj dubokog učenja u području klasifikacije slika možemo pripisati nekolicini

presudnih čimbenika. Med̄u njima se posebno ističu: pojava velikih označenih skupova po-

dataka, sve veća dostupnost snažnih računalnih resursa, te značajan napredak u metodama

učenja dubokih modela. Revolucionarne arhitekture kao što su AlexNet, VGG, ResNet i

DenseNet, redom su pomicale granice performansi u ovom području. Posebno je značajan

doprinos ResNeta koji uvod̄enjem rezidualnih veza uspješno rješava problem degradacije u vrlo

dubokim mrežama. Time omogućava treniranje znatno dubljih modela nego ranije. DenseNet

ide korak dalje uvodeći gustu povezanost slojeva, što je rezultira učinkovitijim protokom infor-

macija kroz mrežu. Moderna konvolucijska arhitektura ConvNeXt integrira spoznaje iz modela

temeljenih na pažnji. Značaj navedenih konvolucijskih arhitektura nadilazi njihove rezultate

na akademskim skupovima podataka. One su postale temeljni grad̄evni blokovi za složenije

primjene računalnog vida, uključujući i procjenu sigurnosti cestovne infrastrukture.

Nadovezujući se na ova dostignuća, prijenos znanja (transfer learning) postao je ključna

strategija u primjeni prethodno naučenih modela dubokog učenja za specifične primjene s

ograničenim brojem podataka. Predtreniranjem na velikim skupovima podataka možemo

naučiti apstraktne reprezentacije koje dobro generaliziraju na nova područja primjene. Ovo

je posebno korisno u područjima poput procjene cestovne sigurnosti, gdje je prikupljanje ve-

likih količina označenih podataka zahtjevno. Suvremeni modeli kao što su CLIP i DINOv2

dodatno su unaprijedili mogućnosti prijenosa znanja kroz učenje na još većim skupovima po-

dataka, omogućujući modelima da obuhvate širok spektar vizualnih koncepata relevantnih za

prometnu infrastrukturu.

Višezadaćno učenje (multi-task learning) proširuje primjenu dubokog učenja omogućava-

jući jednom modelu istovremeno obavljanje više povezanih zadataka, pri čemu se reprezentacije
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dijele med̄u zadacima kako bi se poboljšala generalizacija i učinkovitost. Med̄utim, za uspješnu

primjenu u prisustvu neuravnoteženih razreda potrebno je osigurati da se prilikom otežavanja

rijetkih razreda zadrže stabilne magnitude pojedinih zadataka, kako bi se ublažila inteferencija

med̄u njima.

Rješavanje problema neuravnoteženosti razreda ključno je pri treniranju modela na stvarnim

skupovima podataka gdje su odred̄eni razredi često podzastupljeni, ali izrazito važni. Oteža-

vanje gubitka prilagod̄ava funkciju gubitka tako što rijetkim razredima pridaje veću važnost,

osiguravajući da model ne zanemaruje kritične sigurnosne značajke. Ovo je posebno važno u

primjenama kao što je procjena sigurnosti cestovne infrastrukture, gdje propust u prepoznavanju

rijetkih, ali opasnih uvjeta može imati ozbiljne posljedice.

U području analize prometnih scena, modeli dubokog učenja uspješno se primjenjuju za

detekciju različitih elemenata prometne infrastrukture izravno iz slika ili videozapisa. Neki

od ključnih zadataka uključuju detekciju prometne signalizacije, semantičku segmentaciju, kao

i sveobuhvatnu procjenu sigurnosti prometnica. Pristupi koji koriste učenje s kraja na kraj

(end-to-end) pojednostavljuju proces učenja uklanjanjem potrebe za med̄ukoracima koji mogu

unijeti pogreške i iziskuju velik trud za označavanje podataka. Učenjem izravno na zadatku

prepoznavanja obilježja model može razviti specijalizirane značajke koje su učinkovitije za tu

namjenu, posebice kada je riječ o vizualno sličnim razredima koje zahtijevaju finu granulaciju.

Povratne neuronske mreže, posebice Long Short-Term Memory (LSTM) i Gated Reccurrent

Units (GRU) mreže, omogućuju prepoznavanje vremenskih ovisnosti u slijednim podacima

poput videzapisa. Uključivanjem vremenskog konteksta, ovi modeli poboljšavaju prepozna-

vanje obilježja koji pokazuju specifične vremenske obrasce, rješavajući opisane izazove vezane

uz vremensku dinamiku iRAP obilježja. Napredne arhitekture poput LSTM-a riješavaju prob-

leme nestajućeg ili eksplodirajućeg gradijenta, omogućavajući modeliranje dugoročnih ovis-

nosti.

Opisana dostignuća i pristupi dubokog učenja pružaju sveobuhvatan okvir za rješavanje

složenih izazova u automatizaciji prepoznavanja sigurnosnih obilježja prometnica.

Pristup za automatsko raspoznavanje obilježja

Predlažemo model dubokog učenja za procjenu obilježja sigurnosti cestovne infrastrukture na

temelju cestovnih videozapisa u dvije faze. Pristup koristi prostorne i vremenske informacije za

prepoznavanje obilježja definiranih iRAP standardom, pritom rješavajući izazove višezadaćnog

učenja i neuravnoteženosti razreda.

U prvoj fazi provodi se lokalno prepoznavanje konvolucijskim modelom koji obrad̄uje poje-

dinačne slike ili kratke nizove slika kako bi izvukao vizualne značajke neposrednog konteksta.

Konvolucijska arhitektura sadrži dijeljeni koder i po jednu klasifikacijsku granu za svako obil-

ježje. Zajednički koder koristi okosnicu ResNet-18 nadograd̄enu modulom prostornog pirami-
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dalnog sažimanja, koji objedinjuje kontekstualne informacije na više mjerila kako bi proizveo

dijeljenu reprezentaciju fiksne dimenzionalnosti. Koder inicijaliziramo pred-treniranjem na za-

datku semantičke segmentacije uličnih scena na skupu podataka Vistas u sklopu segmentaci-

jske arhitekture SwiftNet. Takvo pred-treniranje omogućuje izlučivanje detaljnih prostornih

značajki koje doprinose prepoznavanju obilježja sigurnosti cestovne infrastrukture. Klasifikaci-

jska grana svakog obilježja provodi sažimanje pažnjom vod̄eno vektorom upita (query vector)

koji se uči. To omogućuje modelu da se usredotoči na dijelove mape značajki koji su na-

jrelevantniji za odred̄eno obilježje. Tako dobivene sažete vektorske reprezentacije zatim se

konkateniraju s dijeljenom reprezentacijom dobivenom prostornim piramidalnim sažimanjem.

Model se može proširiti tako da radi s više slikovnih okvira. Svaki okvir obrad̄uje se zasebno,

a njihove se reprezentacije potom konkateniraju. Konkrento, obrad̄uju se slikovni okviri koji

odgovaraju segmentima T, T-1 i T-4, čime se hvata širi vremenski kontekst, uz zadržavanje raču-

nalne učinkovitosti. Takav je pristup prikladan za prepoznavanje obilježja koji u pojedinačnim

slikama mogu biti samo djelomično vidljivi ili zaklonjeni.

Kako bi se riješio problem izrazite neuravnoteženosti razreda u kontekstu višezadaćnog

učenja, uvodimo višezadaćno dinamičko otežavanje funkcije gubitka. Težinski faktori razreda

tijekom učenja dinamički se prilagod̄avaju njihovom odzivu. Pritom se obrnute relativne

frekvencije razreda moduliraju stopom lažno negativnih predikcija koja se izračunava nakon

svake epohe. Time se povećava utjecaj rijetkih razreda koje model još nije naučio, a istovre-

meno sprječava prekomjerno otežavanje koje bi moglo dovesti do povećanog broja lažnih pozi-

tiva. Na razini zadatka, gubitak se normalizira s obzirom na zbroj težina primjera tog zadatka,

umjesto s obzirom na sam broj primjera. Time se osigurava stabilan iznos gubitka različitih za-

dataka i sprječava naizmjenična dominacija pojedinih zadatka u ukupnom gubitku kroz iteracije

učenja.

Druga faza uključuje slijedno poboljšanje lokalnih predikcija naučenim agregiranjem

vremenskih informacija iz dužih slikovnih nizova. Ulaz je oblikovan kao niz lokalnih

reprezentacija 21 uzastopnih segmenata koji su centrirani oko trenutnog segmenta, čime se

obuhvaća kontekst iz prethodnih i nadolazećih segmenata. Lokalne reprezentacije segmenata

su vektori logita i naučenih ugrad̄ivanja predvid̄enih razreda koje na izlazu daje lokalni konvolu-

cijski model. Četveroslojni dvosmjerni LSTM modeli koriste se za učenje vremenskih obrazaca

ponašanja specifičnih za pojedina obilježja. Konačni vektori značajki stvaraju se konkatenaci-

jom završnih skrivenih stanja oba smjera svih povratnih slojeva i skrivenog stanja središnjeg

segmenta posljednjeg sloja.

Opisani pristup pruža skalabilno i učinkovito rješenje za automatsko raspoznavanje obilježja

cestovne infrastrukture. Gusto semantičko pred-treniranje pospješuje prepoznavanje elemenata

infrastrukture, višezadaćno dinamičko otežavanje gubitka adresira disbalans razreda prisutan

u mnogim zadacima, dok faza slijednog poboljšanja usklad̄uje lokalne predikcije s naučenom
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vremenskom dinamikom pojedinih obilježja.

Eksperimenti

Učinkovitost predloženog sustava za prepoznavanje obilježja sigurnosti cestovne infrastrukture

evaluirali smo na četiri skupa podataka: našem novom skupu iRAP-BH, te tri javno dostupna

skupa – Honda Scenes, FM3m i BDD100k. Skup podataka iRAP-BH, razvijen je za ovo is-

traživanje i sadrži više od 226.000 označenih slika snimljenih duž 2.300 kilometara prometnica

u Bosni i Hercegovini. Svaki segment ceste duljine 10 metara ručno je označen vrijednostima

svih iRAP obilježja, što čini ovaj skup podataka prikladnim za učenje i vrednovanje modela za

raspoznavanje obilježja cestovne sigurnosti.

Mjere vrednovanja modela pažljivo su odabrane kako bi odgovarale prirodi problema koji

uključuje više zadataka i više razreda, te kako bi se uspješno nosile s neuravnoteženim tak-

sonomijama. Višerazredne klasifikacijske zadatke na skupovima podataka iRAP-BH i Honda

Scenes podataka vrednujemo makro-uprosječenom F1 mjerom, kojom postižemo da svi razredi

jednako doprinose ishodu vrednovanja neovisno o njihovoj učestalosti u podacima. Za skup po-

dataka FM3m koji uključuje više zadataka binarne klasifikacije korištena je srednja prosječna

preciznost (mAP), dok je za skup BDD100k kao mjera uspješnosti korištena točnost (accuracy),

kako bi rezultati bili usporedivi s postojećom literaturom.

Eksperimenti na skupu podataka iRAP-BH pokazuju doprinose komponenti predloženog

sustava u adresiranju identificiranih izazova. Pred-treniranje semantičkom segmentacijom

poboljšalo je performanse za 1,2 postotna boda u odnosu na klasifikacijsko pred-treniranje na

ImageNetu. Time je potvrd̄ena važnost kvalitete lokalnih značajki pri prepoznavanju sigurnos-

nih obilježja. Višezadaćno dinamičko otežavanje gubitka dodatno poboljšava rezultate, posebno

kod prepoznavanja izrazito neuravnoteženih obilježja, za koje su relativna poboljšanja iznosila

od 19% do 26,5%. Slijedno poboljšavanje predikcija lokalnog modela povratnim modelima

donosi povećanje od 5,1 postotni bod. Rezultati po individualnim obilježjima pokazuju da i

točkasta i intervalna obilježja značajno profitiraju od slijednog poboljšavanja.

Usporedne evaluacije na skupovima podataka Honda Scenes, FM3m i BDD100k potvrd̄uju

široku primjenjivost predloženog pristupa. Na skupu podataka Honda Scenes, naš pristup

postiže bolje performanse od postojećih pristupa na sva četiri klasifikacijska problema: Road

Place, Road Environment, Road Surface, Weather. To ukazuje na sposobnost adresiranja

raznovrsnih izazova u razumijevanju dinamičkih prometnih scena i generalizaciju na skupove

podataka koji nisu specifično dizajnirani za prepoznavanje obilježja sigurnosti cestovne in-

frastrukture. Na skupu podataka FM3m, naš pristup postiže kompetitivne rezultate, pri

čemu višezadaćno dinamičko otežavanje gubitka i pred-treniranje na zadatku semantičke seg-

mentacije donose značajna poboljšanja u odnosu na osnovne modele. Na skupu podataka

BDD100k, naš pristup konzistentno nadmašuje postojeće pristupe, kako u standardnoj formu-
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laciji tako i kod pomaka domene, što demonstrira robusnost metode.

Kvalitativna analiza pruža intuitivan uvid u način na koji model koristi prostorne i vre-

menske informacije za predikcije kroz nizove uzastopnih slika. Primjeri ilustriraju učinkovitost

slijednog poboljšavanja u ispravljanju pogrešnih lokalnih predikcija za različita obilježja. Mape

relevantnih područja slike pokazuju da se lokalni konvolucijski model fokusira na dijelove slike

relevantne za odred̄eno obilježje.

Eksperimentalni rezultati potvrd̄uju učinkovitost opisanog pristupa za raspoznavanje

širokog spektra obilježja sigurnosti cestovne infrastrukture. Svaka od opisanih komponenti

znanstvenog doprinosa konzistentno donosi porast performansi na različitim skupovima po-

dataka.

Zaključak

Predloženi okvir predstavlja značajan napredak u automatiziranoj procjeni sigurnosti cestovne

infrastrukture. Budući koraci uključuju istraživanje primjene velikih transformerskih arhitek-

tura koje su samonadzirano naučene na izrazito velikim skupovima podataka, kao i modela

za raspoznavanje u otvorenom svijetu. Kontinuiranim usavršavanjem mogućnosti automatske

procjene sigurnosti cestovne infrastrukture, ovo istraživanje može doprinijeti razvoju sigurni-

jih prometnica, usmjeravati poboljšanja infrastrukture, te u konačnici, smanjiti broj prometnih

nesreća i izgubljenih života.
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Chapter 1

Introduction

Road accidents represent a critical global issue, causing over 1.35 million fatalities each year

[1]. Therefore they are recognized as one of the most pressing public health challenges world-

wide. This alarming statistic underscores the urgent need for effective measures to improve road

safety and reduce traffic-related deaths and injuries. The United Nations’ Global Plan for the

Decade of Action for Road Safety [2] has established key priorities for reducing traffic fatalities

worldwide. In alignment with this plan, enhancing road infrastructure safety emerges as a cru-

cial area of focus. The Safe System Approach represents a holistic strategy for eliminating fatal

and serious injuries in road traffic [3, 4]. One of the five fundamental pillars of this approach is

road infrastructure safety [5, 6].

Traditionally, road infrastructure safety assessments have relied on the analysis of historical

accident statistics. This reactive approach involves examining detailed records of past crashes,

including information about the time, location, severity, and type of accidents [7]. The data is

then used to pinpoint high-risk locations, commonly known as "black spots" [8, 9], which can

be targeted for safety improvements. While this approach can uncover complex risk factors

and subtle patterns in accident occurrence [10], it has several inherent limitations. It requires

accidents to occur before a road section is identified as dangerous [11], potentially allowing

hazardous conditions to persist undetected [6]. Additionally, the effectiveness of this approach

depends on the accuracy and completeness of historical accident data, which can vary signifi-

cantly, especially in regions where data collection is less comprehensive [12].

In contrast, proactive approaches to road infrastructure safety emphasize regular and sys-

tematic evaluations of the built environment to identify potential hazards before accidents occur.

This perspective enables a preventative approach, aiming to mitigate risks inherent in the road

infrastructure rather than waiting for adverse events to highlight them. Instead of relying on past

events, these approaches leverage a deeper understanding of how specific road infrastructure

features can contribute to accidents. This allows for targeted interventions and improvements

based on an objective assessment of the inherent safety level of road sections. For example,
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assessing the presence and quality of road markings, the adequacy of street lighting, the design

of intersections, or the provision of safety features for vulnerable road users like pedestrians and

cyclists [13] can reveal deficiencies that, if addressed, may prevent accidents from occurring.

A prominent example of a proactive road infrastructure safety approach is the International

Road Assessment Programme (iRAP) Star Rating system [14]. This internationally recognized

program provides a standardized method for evaluating and enhancing the safety of roads. The

effectiveness of this approach is supported by studies demonstrating significant reductions in

traffic fatalities and serious injuries following its implementation across various countries [15,

16].

Central to the iRAP methodology is a comprehensive assessment of road segments based

on 52 attributes related to road design, roadside hazards, and provisions for vulnerable road

users [13]. These attributes collectively evaluate the inherent safety level of road segments,

quantifying the protection offered to different road users, including vehicle occupants, motor-

cyclists, pedestrians, and cyclists [13]. Each attribute represents a specific feature of the road

environment and assumes a value from an attribute-specific taxonomy, with the number of pos-

sible values varying across attributes. This granular analysis enables targeted infrastructure

enhancements that consider the unique risks faced by each group of road users.

The current iRAP coding manual [13] recommends manual collection of iRAP attributes.

However, manual assessment is labor-intensive, time-consuming, and therefore not easily scal-

able [16, 17]. This thesis proposes a deep learning approach for automatic assessment of road-

safety attributes from monocular road-driving video. We formulate attribure recognition as a

multi-task multi-class classification problem [18]. Each attribute is treated as a separate task,

with the classes corresponding to the possible values of that particular attribute. This approach

is designed to enhance the efficiency and scalability of road safety evaluations while maintain-

ing alignment with the iRAP methodology.

The iRAP attribute set presents several challenges for automatic recognition through deep

learning. Class imbalance is prevalent throughout the dataset and across attributes, with certain

classes appearing far less frequently than others. This imbalance can lead to machine learn-

ing models overlooking critical but infrequent safety features, which may lead to undetected

high-risk situations. Addressing this challenge requires careful consideration during training

and evaluation of learning models. Another challenge arises from the non-orthogonal design

of some attributes, where multiple orthogonal features are combined into a single taxonomy.

This increases the number of classes and exacerbates class imbalance by distributing examples

across more categories. Many attributes exhibit fine-grained distinctions between visually sim-

ilar classes, making accurate classification particularly challenging. Finally, temporal patterns

in attribute behavior across consecutive road segments introduce additional complexity. Models

with a limited temporal context may struggle with these patterns, failing to capture the inherent

2



Introduction

inertia or the required temporal precision of certain attributes.

We address these challenges by introducing a two-stage visual recognition approach that ad-

dresses these complexities by complementing local recognition with attribute-specific sequen-

tial enhancement. Local recognition involves a shared encoder and per-attribute classification

heads. This design enables efficient feature extraction while maintaining attribute-specific spe-

cialization. The encoder is a convolutional neural network that we pre-train for semantic seg-

mentation of street scenes on the Vistas dataset [19]. This pre-training captures detailed spatial

features that are relevant to road safety attributes, and thus addresses the challenge of visually

similar classes. Per-attribute classification heads are responsible for predicting the classes of

their respective attributes based on the shared features [20].

To address the challenge of class imbalance, we propose a multi-task dynamic loss weight-

ing scheme that adjusts class weights during training according to per-class recall [21]. This

technique gives higher weights to difficult underrepresented classes, while avoiding excessive

false positives. The multi-task formulation ensures stable per-attribute losses, allowing for ef-

fective joint learning despite significant class imbalances.

Our detailed analysis has revealed that road safety attributes exhibit distinct temporal pat-

terns. We therefore propose to sequentially enhance initial local predictions by incorporating

a broader temporal context. More precisely, we capture and leverage the inherent temporal

dependencies [22] with per-attribute recurrent models that we implement with lightweight bidi-

rectional Long Short-Term Memory (Bi-LSTM) cells [23]. These models operate on sequences

of local predictions and can thus correct errors that arise from limited spatial context and im-

prove alignment with the annotation conventions of the iRAP standard.

We validate the effectiveness of our approach through experiments on a novel dataset iRAP-

BH, which consists of fully labeled video footage along 2,300 kilometers of public roads in

Bosnia and Herzegovina. We confirm the impact of each component of our contribution through

ablation studies. Moreover, we apply our approach to public road scene classification datasets

for the sake of comparison with the related work. Comparative experiments on Honda Scenes

[24] show that our model outperforms all concurrent approaches, while competitive perfor-

mance on FM3m [25] and BDD100k [26] further highlights the generalizability of the proposed

approach.

The scientific contributions of this thesis are the following:

1. A technique for improving the generalization performance of visual recognition of road

safety attributes by pre-training for semantic segmentation of road-driving images.

2. A technique for dynamic weighting of a multi-task supervised loss based on recall analy-

sis across individual classes of an imbalanced taxonomy.

3. A method for sequential enhancement of local categorical predictions with efficient re-

current models.
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This thesis is structured as follows. Chapter 2 provides an overview of road infrastructure

safety, detailing the iRAP attribute set and analyzing the inherent challenges in automating

attribute recognition. Chapter 3 discusses deep learning techniques relevant to this research,

including transfer learning, multi-task learning, methods for addressing class imbalance, and

approaches for temporal modeling. Chapter 4 presents the proposed two-stage framework in

detail, providing a technical description and the rationale for each component. Chapter 5 de-

scribes the experimental setup, datasets, evaluation metrics and results, including ablation stud-

ies of each component and illustrative qualitative examples. Finally, Chapter 6 concludes the

thesis with a summary of key findings and potential directions for future research.
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Chapter 2

Road infrastructure safety

Road infrastructure safety remains a paramount concern in transportation systems globally. The

assessment of road infrastructure safety has traditionally relied on historical accident statistics.

Detailed data encompassing the time, location, severity, type, and other specifics of past crashes

[7] are used to identify hazardous locations known as black spots [8], develop crash-risk maps

[27], and construct models to predict future accidents [28]. Such methods are adept at uncover-

ing complex and subtle risk factors that might elude history-agnostic approaches [10].

However, this reactive nature presents a significant drawback: road sections are only deemed

unsafe after accidents have occurred [6]. This reliance on prior incidents means that latent

dangers may persist unmitigated until sufficient accidents bring them to attention. Additionally,

because severe accidents are relatively infrequent events, the historical data available can be

sparse. This leads to high-variance predictions, undermining the reliability of risk assessments

based solely on past accidents [12].

In contrast, proactive approaches to road infrastructure safety focus on regular inspections

of static road-infrastructure features. A prominent example of such an approach is the Interna-

tional Road Assessment Programme (iRAP) Star Rating [14]. Recognized internationally, the

iRAP Star Rating provides a standardized framework for evaluating and enhancing the safety

of road infrastructure. By focusing on the physical characteristics of the road environment, the

iRAP Star Rating enables the identification of potential hazards without the prerequisite of prior

accidents. The efficacy of this method is also supported by empirical evidence. Studies show

that its implementation can lead to significant reductions in traffic fatalities and serious injuries

by identifying high-risk roads and facilitating targeted improvements across various countries

[15, 16].

The iRAP methodology assesses the inherent infrastructure safety of road segments by eval-

uating 52 specific attributes [13]. These attributes cover a wide range of factors, including road

design elements, roadside hazards, and the provision of facilities for vulnerable road users like

pedestrians and cyclists. We proceed with a detailed description of the iRAP attribute set.
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2.1 Road-safety attributes

The iRAP Star Rating system provides a comprehensive quantification of the protection offered

by road infrastructure to the four most common types of road users: vehicle occupants, motor-

cyclists, pedestrians, and bicyclists [13]. The assessment methodology focuses on categorical

values of a carefully selected set of 52 attributes related to road-infrastructure elements and

roadside objects within each corresponding road segment.

Each attribute represents a specific feature of the road environment and assumes a class

from its attribute-specific taxonomy. The number of possible classes varies across different

attributes. The attributes with the most numerous classes are those encoding the speed limit

(21 classes), roadside severity (17 classes), and intersection type (16 classes). Conversely, the

dataset also includes 11 binary attributes. Given this variability, we formulate the problem of

attribute recognition as a set of distinct multi-class classification tasks, one for each attribute.

During our study, we found it necessary to exclude certain attributes from our analysis. We

discarded four attributes that assume only a single class throughout our entire dataset: Shoulder

rumble strips, Centre line rumble strips, Motorcycle facility, and Pedestrian fencing. In addi-

tion, we excluded five attributes that are not suitable for visual recognition. These include the

four speed limit attributes and the Intersecting road volume attribute. The speed limit attributes

pose a unique challenge as they require knowledge of speed regulations beyond what’s visually

apparent in a local context. The difficulty lies not in recognizing speed limit signs, but rather in

having the knowledge of speed limit signs that may have been placed well outside the immediate

visual context captured by our system. Similarly, the Intersecting road volume attribute, which

captures the average daily traffic from intersecting roads, is more appropriately estimated using

data from traffic studies, road counters or aerial analysis rather than from road-driving imagery.

Consequently, our experiments focus on the remaining 43 iRAP attributes that are suitable for

visual recognition from road-driving imagery. We proceed with a detailed description of these

attributes and their respective groups in the following subsections.

2.1.1 iRAP Attribute Groups

The International Road Assessment Programme (iRAP) has established a comprehensive set

of attributes to assess road safety [13]. The iRAP standard organized the attributes into seven

distinct groups, each focusing on different aspects of road infrastructure and its surroundings.

This subsection provides an overview of these attribute groups and highlights their key charac-

teristics.

Road and context attributes (1 attribute) include the attribute Carriageway label along with

twelve metadata attributes related to data acquisition and annotation processes, such as coder

name, coding date, and road name.
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Observed flow attributes (5 attributes) quantify the presence of various road users in a given

segment. These attributes are determined by counting the occurrences of motorcycles, bicycles,

and pedestrians in the recorded segments.

Speed limit attributes (5 attributes) capture the speed limits (four attributes) and the presence

of speed-reducing infrastructure such as speed bumps. Although speed limit recognition poses

challenges for visual recognition due to the need for broader context, speed-reducing features

like speed bumps can often be identified from road-driving imagery.

Mid-block attributes (16 attributes) focus on the intrinsic features of the road rather than its

surroundings. These attributes cover various aspects such as road condition and delineation,

curvature and sight distance, skid resistance, the presence street lighting, vehicle parking, and

the width and number of lanes. The attribute Median type stands out as particularly challenging,

as it requires distinguishing among fifteen kinds of physical separators or median markings.

Roadside attributes (7 attributes) assess the risk associated with roadside features on both

the passenger and driver sides. A notable attribute in this group is Roadside Severity, which

identifies the most hazardous roadside object based on its type and proximity to the road. The

ground truths for this attribute are assigned according to the priority table defined within the

iRAP standard [13], which ranks combinations of object types and distances according to risk

level. These attributes present significant challenges for classifiers due to two main factors.

First, the front dashboard camera captures only a fraction of each roadside, necessitating the

use of imagery from previous and subsequent segments. Second, the simultaneous presence of

various objects (such as houses, fences, and trees) on the roadside complicates the estimation

of severity levels for road users.

Intersection attributes (5 attributes) capture various characteristics of intersections. Most

notably, the attribute Intersection type has sixteen classes that cover different combinations of

intersecting roads, signalization, and special features like roundabouts and railway crossings.

Vulnerable road-user facilities and land use attributes (13 attributes) detail the presence of

amenities for pedestrians, cyclists, and motorcyclists, while also capturing characteristics of the

surrounding area, such as area type, land use, and the presence of school zones.

2.2 Analysis of road-safety attributes

In this section, we conduct a comprehensive conceptual and empirical analysis of the iRAP

attributes present in our dataset. Our objective is to identify inherent challenges associated with

these attributes that can significantly impact the performance of machine learning models in

road safety assessment.
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2.2.1 Class Imbalance

A significant challenge in our dataset is the prevalence of class imbalance among many at-

tributes. Class imbalance occurs when there is a substantial disproportion in the number of

examples belonging to different classes within an attribute. For example, certain classes may

be overwhelmingly represented while others are rare. This imbalance can have detrimental

effects on the performance of classifiers that prioritize overall accuracy, often resulting in the

underrepresentation or complete disregard of minority classes [29].

The issue of class imbalance is particularly problematic in the context of road safety as-

sessment, where rare but critical safety features might be overlooked due to their infrequent

occurrence in the dataset. Ignoring these features could lead to models that fail to detect high-

risk situations, undermining the effectiveness of safety interventions.

To mitigate this challenge, the method described in this work incorporates improved loss

functions that assign higher weights to minority classes, encouraging the model to focus more

on underrepresented attributes during training. Additionally, macro-F1 is employed as the main

evaluation metric, since it accounts for both precision and recall across all classes equally,

providing a more balanced assessment of model performance.

2.2.2 Non-orthogonal design

Building upon the issue of class imbalance, another contributing factor is the structure of certain

iRAP attributes. Some attributes incorporate multiple, seemingly orthogonal features within a

single taxonomy, resulting in classes that are effectively Cartesian products of these features.

This design choice not only increases the total number of classes but also exacerbates imbalance

by distributing the already rare examples across more categories.

Consider the attribute Skid resistance, which is intended to capture both the skidding re-

sistance level and the type of road surface sealing. Specifically, it spans two dimensions: the

level of surface grip — categorized as low ("poor"), medium, or adequate — and the type of

road surface — either sealed (with a protective layer like asphalt) or unsealed (gravel or dirt

road without such a layer). This leads to five combined classes: Unsealed - poor, Unsealed -

adequate, Sealed - poor, Sealed - medium, and Sealed - adequate. While comprehensive, this

structure introduces additional complexity that could potentially be simplified.

An alternative, more orthogonal formulation could have separated these concepts into two

distinct attributes: Sealed road, a binary attribute indicating whether the road is sealed, and

Surface grip, classifying the grip level as poor, medium, or adequate. Such a decomposition

might offer several advantages. Firstly, it would provide a clearer, more intuitive representation

of the road characteristics. Secondly, and perhaps more significantly in the context of machine

learning, it would reduce the number of classes and increase the sample size per class, thereby
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alleviating issues of class imbalance.

2.2.3 Fine-grained and visually similar classes

Some attributes within the iRAP framework are defined with a high degree of specificity, leading

to numerous classes that differ only subtly in appearance. Such a nuanced classification scheme,

while comprehensive, can lead to difficulties in accurate recognition and exacerbate existing

class imbalance issues.

A prominent example is the Roadside severity attribute, which encompasses a diverse array

of safety barrier types including metal, concrete, wire, and motorcycle-friendly variants. Fur-

thermore, it includes a distinct class for semi-rigid structures such as various fences. These

classes are meticulously defined to capture specific safety features, but their visual similarities

and the multitude of options can lead to misclassifications in practice.

In light of these challenges, it may be advantageous to reconsider the level of granularity

in attribute definitions. Consolidating visually similar classes could improve the overall model

accuracy at the cost of some granularity in the output. This trade-off might be particularly

beneficial in scenarios where broad categorization is sufficient for decision-making processes

related to road safety interventions.

2.2.4 Temporal behaviour

Our dataset comprises videos covering extensive road sections, each composed of sequences of

successive 10-meter segments. Along these sequences, our analysis uncovers distinct patterns

in the temporal behavior of certain attributes.

According to the iRAP standard [13], some attributes have a default "negative" class. These

attributes typically capture countable occurrences of various infrastructure elements, such as

intersections or pedestrian crossings. The default class for these attributes is usually None, while

the "positive" classes correspond to specific instances of the attribute (e.g., 3-leg intersection).

The iRAP standard stipulates that any occurrence of a positive class should be annotated only in

the segment closest to its occurrence; with all neighboring segments annotated with the negative

class. We refer to such attributes as "single-peak" attributes.

Consider a segment containing an occurrence of a positive class (a peak) and the neighboring

segments immediately preceding it. The visual features that a model might leverage to recognize

such an attribute are likely present in these neighboring segments as well. For instance, an

intersection gradually becomes more visible in the segments leading up to the peak segment.

Therefore, a visual recognition model predicting an intersection in a neighboring segment is

not entirely incorrect. Furthermore, the model may struggle to discern which exact segment

represents the peak.
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In contrast to single-peak attributes, there exists another subset of attributes that we denote

as "smooth" attributes. These attributes rarely change classes and generally do not oscillate.

They describe larger areas, environments, zones, or infrastructure features likely to remain con-

stant across consecutive segments. Examples of smooth attributes include Area type, Road

delineation, and Carriageway label.

While many attributes can be categorized as either single-peak or smooth, some attributes

exhibit more complex patterns that don’t fit neatly into either category. The attribute Street

lighting exhibits particularly peculiar temporal behavior. It is treated as a single-peak attribute

when only a single light post appears in isolation. However, for a sequence of light posts, Street

lighting should be recognized as present in all segments from the first to the last light post.

Given that light posts in such sequences can be up to 100 meters apart, it can be difficult for a

vision-based model to distinguish between single occurrences and sequences of street lights.

Figure 5.3 illustrates examples of four iRAP attributes. It presents sequences of five frames

from consecutive 10-meter segments, along with the ground truth labels for each corresponding

attribute. In row 1, only the third segment is annotated with the positive class of the single-

peak attribute Intersection type. Conversely, the smooth attributes in rows 3 and 4 maintain

constant ground truth labels throughout the sequences. Additionally, the ground truth label of

Street lighting remains unchanged even when the discriminative visual features are not visible

in certain segments.

2.2.5 Motivation for sequential enhancement

Building upon the analysis of temporal behavior patterns presented in the previous section, we

now examine class co-occurrence along consecutive segments of the iRAP-BH dataset. This

investigation will provide insights into the limitations of our local recognition model and will

motivate the need for sequential enhancement.

For a given attribute A and a pair of consecutive segments t and (t + 1), we define a co-

occurrence as the pair of corresponding classes (cA,t,cA,t+1). For an attribute with n classes,

we can construct an n× n co-occurrence matrix where each element (i, j) represents the num-

ber of occurrences where cA,t = i and cA,t+1 = j. We construct two such matrices for each

attribute: one using the ground truth labels and another using the predictions produced by our

local recognition pipeline described in 4.1.

The expected structure of these matrices varies depending on the attribute type. For single-

peak attributes, ground truth transitions can only occur between the default class and a positive

class. Consequently, their ground truth co-occurrence matrices have non-zero elements only in

the row and column corresponding to the default class. In contrast, smooth attributes typically

maintain the same class across consecutive segments, resulting in ground truth matrices with

significantly larger diagonal elements compared to off-diagonal elements.
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Our analysis reveals consistent discrepancies between the ground truth and the local predic-

tion matrices for both groups of attributes, as shown in examples in Figure 2.1. For single-peak

attributes, the local prediction matrices exhibit numerous non-zero diagonal values outside the

default class row and column. These discrepancies arise when the model assigns the same pos-

itive class to two consecutive segments that are visually very similar (e.g., two segments within

an intersection). While this is a reasonable error from a visual recognition standpoint, it indi-

cates that the local recognition model fails to internalize the single-peak annotation convention

specified by the iRAP standard [13]. In the case of smooth attributes, we observe significantly

larger off-diagonal elements in local prediction matrices compared to ground truth matrices.

This indicates the presence of spurious class transitions in local predictions across consecutive

segments, suggesting that our local recognition model struggles to capture the inherent inertia

of smooth attributes.

These findings motivate the extension of the local recognition pipeline with per-attribute

sequential enhancement models. These models are designed to learn temporal behavior patterns

across larger context windows without requiring computationally expensive backpropagation

through hundreds of video frames. By leveraging these sequential models, we aim to refine

local predictions by accounting for temporal context, thereby aligning them more closely with

the ground truth annotations.
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Figure 2.1: Co-occurrence matrices illustrating class transitions between consecutive segments for the
smooth attribute "Number of lanes" (top row) and the single-peak attribute "Intersection type" (bottom
row). In each row, the local prediction matrix is on the left, and the ground truth matrix is on the right.
For smooth attributes, the prediction matrix shows excessive class transitions compared to the strongly
diagonal ground truth matrix. For single-peak attributes, the ground truth matrix contains transitions
only between the default class and positive classes, while the prediction matrix shows occurrences of
consecutive positive classes.
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Chapter 3

Deep learning for visual recognition

The field of computer vision encompasses a wide array of tasks and applications, where image

classification stands out as a fundamental challenge [30]. Image classification involves assign-

ing a single label to an entire image, categorizing it into one of a predefined set of classes. This

task is crucial for numerous applications, including medical imaging [31], autonomous driving

[32], and facial recognition [33], where accurate image categorization is critical.

The importance of image classification extends beyond its immediate application. It serves

as a cornerstone for more complex computer vision tasks. Deep learning models for classifica-

tion, particularly those trained on large-scale datasets, have shown remarkable ability to learn

rich and robust feature representations directly from raw image data. Thus, these models not

only achieve exceptional performance in classification tasks but also act as powerful feature

extractors [34] for other problems like semantic segmentation, object detection, and instance

segmentation.

3.1 Machine learning

Machine learning is a subfield of artificial intelligence that focuses on developing algorithms

capable of learning patterns from data to make predictions or decisions without being explicitly

programmed for specific tasks [35]. In the context of pattern recognition, the objective is to learn

a function f that maps high-dimensional, unstructured raw input data x ∈ Rn to a semantically

meaningful output y ∈Rm specific to the task domain [36]. For image classification, the input x
represents the pixel values of an image, and the output y is a label indicating the class to which

the image belongs.

Traditionally, machine learning in image classification relied on hand-crafted features [37].

Techniques such as the Bag-of-Visual-Words model [38] and Fisher Vectors [39] were com-

monly employed.

These supervised learning approaches were characterized by having the mechanisms of pat-
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tern recognition encoded implicitly through, and emerging from, several key elements:

• Feature Extraction: Manually designing algorithms to extract informative features from

raw image data.

• Data Annotation: Labeling data to provide supervised learning signals.

• Algorithm Architecture: Constructing pipelines or sequences of parameterized opera-

tions to process the extracted features.

• Parameter Selection: The procedure by which the parameters of the operations are cho-

sen.

In this paradigm, the function f is parameterized by a set of parameters θ , and the goal is

to find θ such that f (x;θ) accurately maps inputs to outputs. The knowledge implicit in the

data is encoded into the parameters through the learning process [36]. Machine learning algo-

rithms adjust these parameters by optimizing an objective function, typically using optimization

techniques like gradient descent. The loss function L (y, f (x;θ)) quantifies the discrepancy be-

tween the predicted outputs and the true labels, guiding the parameter updates.

From a high-level perspective, the learning process involves the algorithm adjusting its pa-

rameters to:

1. Identify Relevant Patterns: Detect and preserve patterns in the input data that are perti-

nent to the desired output values.

2. Achieve Invariance: Learn to abstract away variations in the input data that are irrelevant

to the output, such as noise or distortions, thereby achieving invariance to these factors.

3. Map Patterns to Outputs: Transform the identified relevant patterns into correct output

predictions. This is typically accomplished by funneling the input through a series of

parameterized affine transformations, non-linear activation functions, and other similar

operations.

Despite the effectiveness of these traditional approaches, manual feature extraction often

required extensive domain expertise and could fail to capture the complex patterns inherent in

raw data. The transition from manual feature engineering to automated feature learning marks

a significant paradigm shift in machine learning. Deep learning leverages large datasets and

computational resources to learn hierarchical feature representations directly from raw data

[40]. This approach reduces the reliance on domain-specific knowledge for feature extraction,

allowing models to automatically discover the optimal features for a given task.

3.2 Development of deep learning

Advancements in machine learning in recent years have propelled the field of computer vision.

Specifically, the advent of deep learning has led to a resurgence of neural network-based meth-

ods. The success of deep learning methods can be attributed to a confluence of several factors.
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The availability of large annotated datasets, such as ImageNet [41, 42], provided the necessary

data to train deep neural networks effectively. Advances in GPU hardware and specialized soft-

ware libraries for parallel computing [43] enabled efficient training of complex models. The

development of programming frameworks, like TensorFlow [44] and PyTorch [45], facilitated

the implementation and training of neural networks. Finally, novel neural network building

blocks and optimization techniques enhanced performance on various tasks.

The superiority of deep learning methods became increasingly apparent as neural net-

works began to dominate the state-of-the-art in numerous subfields of computer vision

[46, 47, 48, 49, 50]. This dominance led to a steep rise in the popularity of deep learning

methods, fostering even more advances in the field. Even after more than a decade, the full

potential of these advances has yet to be fully exploited and applied across different areas of

science and engineering.

Deep learning algorithms are a subset of machine learning algorithms, with some specific

characteristics [36]. Their pattern recognition function is composed of multiple processing

steps, known as layers, which operate sequentially. Each layer takes as input the output of the

preceding layer, except for the first layer, which works on raw input data. This hierarchical

composition enables the network to learn complex, high-level representations by building upon

simpler, lower-level features extracted by earlier layers.

Formally, a deep neural network can be viewed as a function fθ (x) composed of L layers:

fθ (x) = f (L)
θ L

◦ f (L−1)
θ L−1

◦ · · · ◦ f (1)
θ 1

(x), (3.1)

where x is the input data, θ =
⋃L

l=1 θ l represents the set of all learnable parameters, and f (l)
θ l

denotes the function implemented by the l-th layer with its corresponding parameters θ l .

This hierarchical structure is advantageous because high-level concepts in domains like vi-

sual perception and language understanding are often combinations of lower-level features.

Deep networks exploit this by reusing and combining features learned in earlier layers to rec-

ognize more abstract patterns in later layers.

To successfully determine a set of parameters that enables a deep learning model to recog-

nize patterns, deep learning algorithms must satisfy the following. They need to define a loss

function L (y, f (x;θ)), which quantifies the discrepancy between the network’s predictions and

the true labels y for a given input x. Furthermore, all layers, including the loss function, must

be differentiable mathematical operations [51]. This ensures that the entire model function —

mapping the input through all layers up to the loss function — is differentiable. Meeting this

conditions enables the use of gradient-based optimization methods to adjust the model parame-

ters θ [36].

To efficiently compute the gradients required for optimization, deep learning algorithms
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commonly a procedure known as backpropagation [51]. It leverages the chain rule of calculus

to propagate gradients through the network layers, with computational complexity linear in the

number of layers. Backpropagation shares many of the same operations as forward propagation,

which can be expressed as matrix multiplication. This enables deep learning algorithms to

leverage the power of efficient general matrix multiplication algorithms and GPUs that support

certain general-purpose computing operations.

Neural network parameters are iteratively updated by taking small steps in the direction op-

posite to the gradient of the loss function with respect to the parameters. This process continues

until a satisfactory level of performance - usually measured on a portion of the data not seen dur-

ing optimization - is achieved. Even with the non-convex nature of loss functions of multi-layer

networks and the use of mini-batch stochastic gradient descent - which only approximates the

gradient based on small subsets of input data - these optimization procedures have consistently

produced models that perform well on various pattern recognition tasks [36].

Initially, machine learning models, including early deep learning approaches, were inte-

grated as components within larger, hand-crafted systems. These systems combined classical

algorithms with machine-learned subtasks to achieve the final output. Examples include stereo

reconstruction [52], pedestrian tracking [53], and object detection [34]. Over time, there had

been a shift toward end-to-end deep learning models that would replace hand-crafted modules

entirely, directly mapping raw inputs to desired outputs. Some notable examples of this trend

were end-to-end stereo reconstruction [54] and object detection models like Faster R-CNN [55].

Training individual components separately may lead to suboptimal performance, as these

components are optimized for proxy sub-tasks that may not align perfectly with the final ob-

jective. In contrast, end-to-end training allows the model to learn intermediate representations

that are most beneficial for the overall task, since all parameters are optimized jointly. Fur-

thermore, it also alleviates the need to compress intermediate results into human-interpretable

forms, which can act as information bottlenecks. End-to-end training also enables the map-

ping between different data modalities (e.g., images to textual descriptions) without explicitly

defining intermediary representations. Additionally, it can reduce data annotation efforts by

requiring labels only for the final output, rather than for each subtask.

However, it is worth noting that designing systems with modular components might offer

advantages in terms of transparency and interpretability. Such systems may provide insights into

internal operations, which may be crucial for safety-critical applications where understanding

and controlling the system’s behavior is essential to prevent undesirable or dangerous decisions.

3.3 Building blocks of deep learning algorithms

Various mathematical operations are used as layers in a deep neural network.
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One fundamental type is the fully-connected layer, which performs an affine transformation

by multiplying the input vector x with a weight matrix W and adding a bias vector b:

y = Wx+b.

This layer does not exploit any knowledge about the topological relationships among the ele-

ments within the input vector.

Activation function layers are used to introduce non-linearity to the network. They apply a

specified function to each element of the input vector independently. A widely used activation

function is the Rectified Linear Unit (ReLU) [56], defined as:

ReLU(x) = max(0,x).

ReLU activation functions allow for better gradient flow during training with backpropagation

[57], mitigating the vanishing gradient problem that had been common in deep networks.

Convolutional layers extend convolutional filters - traditionally used in computer vision -

with learnable parameters, to learn feature representations from data. These layers can be seen

as fully-connected layers with weight sharing and locality constraints.

Specifically, a convolutional layer operates on small, localized regions, applying the same

filter across the entire input in a sliding-window approach. This is mathematically represented

as:

yi, j,k = ∑
c

∑
m

∑
n

wm,n,c,k · xi+m, j+n,c,

where xi, j,c is the input tensor, wm,n,c,k is the filter tensor, and yi, j,k is the output tensor. The

convolutional layer is translation equivariant, meaning that a translation in the input results in a

corresponding translation in the output.

Pooling operations progressively downsample the spatial dimensions of the feature maps,

reducing computational complexity and increasing the receptive field of subsequent layers. For

instance, max pooling selects the maximum value within a pooling window, while average

pooling computes the mean. These operations introduce a degree of translation invariance,

making the network less sensitive to small input shifts.

Batch normalization [58, 59] is a technique used to stabilize and accelerate training by

normalizing the output of a layer to have zero mean and unit variance. It then re-scales and

re-centers the normalized output using learnable parameters γ and β :

x̂ =
x−µ

σ
, y = γ x̂+β ,

where µ and σ are the mean and standard deviation computed over a mini-batch. Batch normal-

ization acts as a form of regularization and is said to address the problem of internal covariate
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shift.

Most image classification architectures consist of a series of blocks comprising convolu-

tional, activation, pooling, and normalization layers, ending in a fully-connected layer that

serves as a classifier. The layers preceding the final fully-connected layer can be viewed as

a feature extractor, transforming the input data into a high-level representation suitable for

classification.

To feed the multi-dimensional tensor produced by the feature extractor into the fully-

connected classifier, it must be transformed into a one-dimensional vector. One approach is

to flatten the tensor, but this can result in an impractically large number of parameters in the

fully-connected layer, especially for high-resolution inputs. Moreover, such architectures are

constrained to fixed input dimensions.

An alternative is to employ global pooling layers, which produce fixed-size representations

regardless of the spatial dimensions of the input. Global average pooling [36, 60] computes

the average of each feature map, yielding a vector whose length equals the number of feature

maps in the input tensor. This reduces the parameter count and allows the network to handle

variable-sized inputs.

Spatial pyramid pooling [61, 62] generalizes global pooling by applying it across multiple

scales. It partitions the input tensor into divisions of varying sizes and performs pooling within

each division. This approach captures information at different scales and preserves fine-grained

spatial details [63].

Attention mechanisms have become increasingly popular in modern deep learning archi-

tectures. They allow the network to focus on specific parts of the input data when generating

outputs, by computing a weighted sum of input features. The weights are dynamically deter-

mined affinity scores between the input features and query vectors, which represent the context.

The queries can be obtained from intermediate latent representations (e.g., the hidden state in

a recurrent network), randomly initialized learnable vectors, or from input features themselves

(self-attention). Learnable query vectors can be used to perform attention-based pooling to se-

lectively aggregate information. For instance, in a multi-task setting, a unique query vector can

be learned to emphasize task-relevant features [20].

Recurrent neural networks (RNN) cells are layers specifically designed to process sequen-

tial data. They maintain an internal hidden state that captures temporal dependencies in the

input sequence. Standard recurrent networks can suffer from issues like vanishing or exploding

gradients when dealing with long sequences. More sophisticated recurrent units such as the

Long Short-Term Memory (LSTM) [23] and Gated Recurrent Units (GRUs) [64, 65] address

these issues. They incorporate gating mechanisms to control the flow of information, allowing

them to learn long-term dependencies more effectively.

An LSTM cell maintains a cell state ct and hidden state ht , controlled by three gates. The
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operation of an LSTM cell at each time step t is defined by:

it = σ(Wi[ht−1,xt ]+bi) (3.2)

ft = σ(Wf [ht−1,xt ]+b f ) (3.3)

ot = σ(Wo[ht−1,xt ]+bo) (3.4)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wc[ht−1,xt ]+bc) (3.5)

ht = ot ⊙ tanh(ct) (3.6)

where σ is the sigmoid function, Wi,Wf ,Wo,Wc are learnable weight matrices, bi,b f ,bo,bc are

bias terms, and ⊙ denotes element-wise multiplication. Recurrent layers using LSTM cells are

widely used in tasks involving temporal dependencies, such as video recognition and natural

language processing.

3.4 Popular convolutional architectures

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [42] has played a pivotal

role in advancing the field of computer vision and deep learning. By providing a large-scale

benchmark dataset comprising millions of labeled images across thousands of categories, it

enabled researchers to develop and evaluate increasingly sophisticated models. Achieving top

results on the ILSVRC became a benchmark for success, and surpassing human-level accu-

racy was a notable milestone that signified the maturity of deep learning approaches in visual

recognition tasks.

In 2012, AlexNet [30] became the first deep learning model to achieve state-of-the-art results

on the ILSVRC, with a top-5 error rate of 16.4%. The architecture consisted of five convolu-

tional layers followed by three fully connected layers. Key innovations introduced by AlexNet

included the use of the Rectified Linear Unit (ReLU) activation function, which addressed the

vanishing gradient problem by allowing for better gradient propagation during training [56].

Additionally, AlexNet leveraged graphics processing units (GPUs) for accelerated computation,

enabling the training of deep networks on large datasets. The model also employed data aug-

mentation techniques such as random cropping and horizontal flipping to increase the diversity

of training samples and mitigate overfitting.

In 2014, the VGG model [66] further advanced convolutional architectures by systematically

investigating the effect of network depth on performance. The 19-layer variant of the model

achieved a top-5 error rate of 7.3% on the ILSVRC. A distinctive feature of VGG was the use

of small 3×3 convolutional filters throughout the network. This approach allowed for a deeper

network architecture while still maintaining a relatively small number of parameters. Despite

its simplicity, the VGG architecture demonstrated that network depth is a critical component for
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achieving high performance in convolutional neural networks.

The introduction of the ResNet architecture [67, 68] in 2015 marked a significant break-

through in training very deep neural networks. ResNets surpassed human-level performance on

the ILSVRC, achieving a top-5 error rate of 3.6%. The key innovation was the introduction of

residual learning through the use of skip (residual) connections. This was motivated by the ob-

servation that simply stacking more neural networks layers leads to higher training error - also

referred to as the "degradation problem" [67]. This phenomenon was surprising, considering

that a deeper network that avoids training performance degradation could be constructed man-

ually merely by inserting identity mapping layers into a shallower network. The fact that not

even this, more optimal, solution was found through training pointed to optimization difficulties

specific to deeper networks.

ResNets address this by reformulating the mapping between layers as learning residual func-

tions with reference to the layer inputs, denoted as:

y = F(x,{Wi})+x,

where x is the input to the residual block, F(x,{Wi}) represents the residual function to be

learned (typically a series of convolutional layers), and y is the output. The skip connection

adds the input x directly to the output of the residual function, with the hypothesis that this

residual mapping is easier to optimize than the original mapping. The aforementioned identity

mappings could now be achieved simply by setting the corresponding residual block param-

eters to zero. The hypothesis was confirmed by state-of-the-art experimental results and the

innovation enabled the training of much deeper networks. ResNet variants range from 18 layers

(ResNet-18) up to 152 layers (ResNet-152).

Building upon the concept of residual connections, DenseNets [69] introduced dense con-

nectivity between layers within dense blocks. In a dense block, each layer receives input from

all preceding layers within the block through feature concatenation, rather than summation as in

ResNet. This design promotes feature reuse and improved information flow throughout the net-

work. When they were introduced, DenseNets achieved state-of-the-art performance on several

classification benchmarks while being more parameter-efficient [69, 70].

More recently, ConvNeXt [71] has emerged as a modern reinterpretation of convolutional

neural networks inspired by the success of vision transformers [72]. ConvNext incorporates

several key architectural modifications: depth-wise separable convolutions [73], inverted bot-

tleneck blocks [74], and Layer Normalization [75] replacing traditional Batch Normalization.

Additionally, it features expanded kernel sizes, wider network layers, and adopts the Gaussian

Error Linear Unit (GELU) [76] for activation. These design choices result in a convolutional ar-

chitecture that achieves performance comparable with vision transformers on large-scale image
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classification tasks while retaining the advantages of convolutional networks.

3.5 Transfer learning

The introduction of large-scale datasets like ImageNet [41] has facilitated a paradigm shift from

isolated learning to transfer learning in the field of computer vision.

In many domains, collecting vast amounts of labeled data for every possible specific task is

impractical or cost-prohibitive. Transfer learning involves leveraging knowledge acquired from

solving a general task with abundant data to enhance performance on a specific task with limited

data [77, 78, 79]. It allows models to capitalize on representations learned from large, diverse

datasets. This approach is particularly effective when the source and target domains share un-

derlying similarities in their feature spaces [80]. By transferring knowledge from a broader

domain to a more specific one, models can achieve improved performance and generalization,

often with reduced training time and data requirements.

In the context of deep learning for image recognition, transfer learning often involves pre-

training a convolutional neural network on ImageNet and using its learned convolutional layers

in the task-specific model [79, 81]. This process leverages the hierarchical feature represen-

tations learned from the source task, which are often general and transferable across different

visual domains. The sequence of pre-trained convolutional layers can be used as a frozen fea-

ture extractor [82] or fine-tuned along with the task-specific output layers [83]. Fine-tuning

allows the model to adjust the pre-trained representations to better fit the target domain.

Empirical evidence suggests that this approach improves performance on various image

recognition tasks, particularly when the target dataset is small [81, 84]. Pre-training reduces

the risk of overfitting, accelerates convergence during training, and enhances generalization

capabilities [80]. For instance, Oquab et al. [79] showed that features learned on ImageNet can

be effectively transferred to tasks such as object and action recognition with minimal adaptation.

Similarly, Oršić et al. [80] demonstrated that pre-trained ImageNet architectures improve real-

time semantic segmentation performance in road-driving images.

Moreover, the success of transfer learning is influenced by the similarity between the source

and target domains and tasks [81, 85]. When the source and target tasks are closely related, the

transferred features are more likely to be beneficial. Conversely, significant domain discrepan-

cies may reduce the effectiveness of transfer learning, necessitating techniques such as domain

adaptation to bridge the gap [86, 87, 88].

Recently, the development of modern foundation models has further advanced the capabil-

ities of transfer learning. These models, trained on massive and diverse datasets, yield rich

transferable representations. Two notable examples are the vision-language model CLIP [89]

and the self-supervised model DINOv2 [90].
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CLIP (Contrastive Language-Image Pre-training) learns visual concepts from natural lan-

guage supervision via contrastive learning. The training objective encourages the model to

produce image and text embeddings that are close if they are associated and distant otherwise.

Aligning visual and textual representations enables zero-shot transfer to various vision tasks

without task-specific fine-tuning, simply by providing textual descriptions.

DINOv2, on the other hand, employs self-supervised learning techniques to extract mean-

ingful representations from unlabeled data at scale. It extends the self-distillation with no labels

(DINO) framework, where the model is trained to predict its own representations under dif-

ferent augmentations. The teacher-student setup encourages the student network to match the

teacher’s output, which is computed on a differently augmented view of the same image. By

training on massive unlabeled datasets, DINOv2 captures a wide variety of visual concepts and

exhibits strong transfer performance on downstream tasks.

3.6 Multi-task learning

Multi-task learning is a machine learning paradigm where a single model is trained to per-

form multiple tasks simultaneously [18, 91]. Unlike transfer learning, however, these tasks are

learned jointly by leveraging shared representations, with the aim of improving generalization

across all tasks.

The typical architecture of a multi-task model consists of shared layers followed by task-

specific branches [91]. The shared layers capture common features from the input data. Each

task-specific branch processes these shared features to produce task-specific outputs.

Let x denote the input data, and suppose there are T tasks. The shared representation h is

computed as:

h = fshared(x;θshared), (3.7)

where fshared represents the shared layers parameterized by θshared. For each task t ∈
{1,2, . . . ,T}, the task-specific output is obtained via:

ŷ(t) = f (t)task(h;θ
(t)
task), (3.8)

where f (t)task denotes the task-specific layers with parameters θ
(t)
task.

Each task typically has its own loss function L (t) [92]. The overall loss is often formulated

as a weighted sum of these individual losses:

Ltotal =
T

∑
t=1

α
(t)L (t), (3.9)

where α(t) ≥ 0 are weighting coefficients that balance the contribution of each task [93]. The
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model is trained end-to-end by minimizing Ltotal with respect to all parameters:

θshared,θ
(1)
task, . . . ,θ

(T )
task = argmin

θ
Ltotal. (3.10)

Alternatively, training can involve alternating optimization, where the model intermittently op-

timizes individual task losses during training [94].

Multi-task learning can offer some advantages over training separate task-specific models.

Feature sharing enables the transfer of knowledge across tasks and might lead to more robust

features and better generalization [18, 95]. At the same time, training and inference are faster

since a large portion of the network is shared among tasks, reducing the need to run separate

models [95].

However, it is important to note that multi-task learning does not always guarantee superior

or even equal performance compared to individually trained tasks. Not all tasks are mutually

beneficial when learned together. Empirical studies have shown that some groups of tasks may

not be mutually beneficial [96]. These incompatible tasks can interfere with each other, leading

to decreased performance compared to single-task learning [96, 97]. Task interference can occur

due to conflicting objectives [98], imbalanced task importance [93], and limited model capacity

[99].

3.7 Learning on Imbalanced Datasets

Class imbalance is a prevalent issue in real-world classification tasks, where examples across

different classes are very disproportionately distributed [29]. Imbalance can make it difficult

for accuracy-oriented classifiers to recognize underrepresented classes.

Addressing this issue becomes particularly important when the underrepresented classes are

of equal or greater importance than the majority classes, as is often the case in safety-critical ap-

plications. For instance, in the context of road-safety assessment, a dataset may contain mostly

safe roadside segments and only a few instances of very dangerous roadside objects. From a

purely accuracy-oriented perspective, a classifier might achieve high scores by simply ignor-

ing the underrepresented dangerous class. However, in practice, misclassifying a dangerous

roadside as safe one could have far more severe consequences than the reverse scenario.

Various techniques have been developed to address class imbalance issues, both during

training and evaluation. Data-level approaches attempt to rebalance the class distribution

by oversampling examples of rare classes or undersampling examples of frequent classes

[100, 101, 102]. While effective in single-task setups, these methods are less feasible in multi-

task scenarios [103, 104] where tasks are uncorrelated and exhibit non-uniform imbalance. In

such cases, an image that is rare in one task might be frequent in another, complicating the
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direct application of oversampling.

Cost-sensitive learning approaches adapt learning algorithms by assigning larger loss

weights to misclassified examples of underrepresented classes [105, 106, 107, 108]. While these

cost-sensitive approaches are widely used, standard inverse-frequency loss weighting schemes

have been shown to improve recall at the cost of reduced precision [21]. To address this issue,

Tian et al. [21] propose dynamic assignment of class weights. During training, class weights

are dynamically set according to the current false negative rate of the corresponding class. This

approach prevents classes that achieve high recall from suffering excessive false positives. Un-

fortunately, this method is not directly applicable in multi-task setups, as we discuss in Section

4.2.

Regarding the evaluation of classifiers on imbalanced datasets, naive metrics like accuracy

can hide poor classification performance on rare classes, making even trivial classifiers appear

deceptively good. One solution is to use performance metrics that give equal importance to each

class, regardless of its frequency. An example is the macro-F1 score, calculated as the mean of

F1 scores for each class. For a given class in a multi-class problem, its F1 score is calculated

by treating the problem as binary classification where the given class is the positive class and

all other classes are grouped into the negative class. The F1 score is the harmonic mean of

precision and recall:

F1 =
2 ·Precision ·Recall
Precision+Recall

. (3.11)

If either precision or recall is very low, the F1 score will also be very low. If a model were to

learn to ignore a particular class, its recall and - consquently - its F1 score will be very low,

significantly decreasing the macro-F1 score of the classifier.

3.8 Image Recognition in Traffic Scenes

Computer vision techniques have been extensively applied to detect and recognize various ele-

ments of road infrastructure pertinent to road safety assessment.

Prior research has focused on tasks such as localization of traffic control devices [109, 110],

recognition of fleet management attributes [25], detection of traffic signs [109, 111], and iden-

tification of road surface markings [110, 112, 113]. Semantic segmentation methods have also

been employed to classify pixels into different categories within road scenes, providing detailed

scene understanding [80, 114]. Yi et al. [115] leverage active learning techniques to detect

road-safety elements such as guardrails and utility poles, improving detection performance with

fewer labeled samples.

While these works are related to our task, they typically target only specific subsets of

road-safety attributes, focusing on particular elements rather than providing a comprehensive

assessment. Some approaches attempt to classify iRAP attributes by utilizing an intermediate
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semantic segmentation step, from which they extract the attributes using rule-based systems

[116, 117, 118]. For instance, Sanjeewani et al. [116] employ outputs from semantic segmen-

tation models to identify road-safety attributes based on the presence of certain semantic cate-

gories.

However, creating a training dataset for semantic segmentation requires dense pixel-level

annotations, which entails a significant annotation effort and is considerably more time-

consuming than annotating images with image-wide attributes provided by human coders.

Moreover, a semantic segmentation model receives learning signals only from segmentation

labels, not directly from the attribute class labels crucial for road-safety assessment. Conse-

quently, such models learn features optimized for semantic segmentation, which may not be

optimal for the specific task of attribute recognition. Additionally, the use of separate stages for

segmentation and attribute extraction can lead to error propagation, where inaccuracies in the

segmentation stage adversely affect the attribute recognition performance.

In contrast, deep learning models can be trained to recognize road-safety attributes directly

from input data in an end-to-end manner [20]. By predicting directly from images, the ap-

proach avoids complexities and potential errors associated with intermediate representations.

This allows the model to learn latent representations specifically tailored for attribute recogni-

tion, leading to improved performance.

Some approaches have attempted to predict even higher-level road-safety metrics directly

from video data without relying on intermediate representations. For example, Song et al. [119]

aim to predict the Star Rating Score - a composite metric used in road safety assessment -

directly from video sequences, bypassing the need even for explicit attribute recognition.

The authors of the Honda Scenes dataset [24] present a baseline approach for infrastructure-

related event detection in road-driving video. They pre-train a ResNet-50 backbone on the

Places365 dataset to capture scene-level features and utilize a frozen semantic segmentation

model to mask out dynamic objects like traffic participants, focusing on static infrastructure

elements. Their pipeline includes recurrent processing of frozen convolutional features followed

by standard softmax classification.

Context MTL [103] addresses recognition on Honda Scenes dataset using a multi-task learn-

ing architecture. They regularize the loss function with a lower bound of mutual information

between the input and latent-space features, computed using the Jensen-Shannon divergence

[120], to encourage the model to learn informative representations.

3.9 Recurrent models for video recognition

Long Short-Term Memory (LSTM) networks [23] have been widely employed in video classifi-

cation and action recognition tasks [121], owing to their ability to model temporal dependencies
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in sequential data. In video recognition applications, a common approach involves combining

convolutional neural networks (CNNs) with LSTM networks. CNNs are utilized to extract

spatial features from individual video frames, capturing the visual content within each frame.

Frame-level features are then fed into an LSTM network, which models the temporal dynamics

across the sequence of frames [122].

Beyond video recognition, LSTM networks have been utilized to enhance sequential predic-

tions in various domains. Tu et al. [123] applied LSTMs to improve speech recognition systems

by modeling temporal dependencies in audio sequences, leading to more accurate transcription

of spoken words. Similarly, Kratzert et al. [124] employed LSTMs for rainfall-runoff model-

ing, capturing the temporal dynamics of hydrological processes and improving the prediction

of water flow in river basins.

In the context of traffic scene analysis, Narayanan et al. [24] proposed an LSTM-based

architecture inspired by temporal region proposal methods [125, 126]. Their approach involves

a two-stage process:

1. Event Proposal Stage: Task-agnostic event proposals are generated as video intervals,

identifying segments that may contain relevant events. This stage uses temporal region

proposal techniques to segment the video into intervals of interest without assigning spe-

cific labels.

2. Classification Stage: The proposed intervals are classified into specific traffic scene

events using features pooled both spatially and temporally. This is achieved by feeding

the spatio-temporally pooled features into an LSTM network, which outputs the event

classifications.

Since the event proposal and classification stages are decoupled, the second stage treats the

problem as a single-task multi-class classification, independently assigning each proposed in-

terval to an event category.

Trabelsi et al. [127] extended the traditional LSTM network by incorporating multi-head

attention mechanisms [128], enhancing the model’s ability to focus on different aspects of the

input sequence. By combining this enhanced LSTM with a CNN, they capture and interpret

the complex dynamics of driver behavior in traffic scenes. The attention mechanism allows the

model to weigh the importance of different time steps and features, improving its capacity to

model long-term dependencies and interactions within the data.

However, recurrent models present challenges of their own, such as vanishing or exploding

gradients in very long sequences. While architectures like LSTMs and GRUs aim to mitigate

these issues, they do not fully eliminate them. Moreover, the sequential nature of recurrent mod-

els limits parallelization, potentially leading to longer training and inference times compared to

fully convolutional approaches.

Additionally, the sequential nature of recurrent models can limit parallelization, potentially
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leading to longer training and inference times compared to fully convolutional approaches.

In the context of road safety attribute recognition, the use of recurrent models offers the

potential to capture the temporal evolution of attributes along a road segment. This temporal

information can be crucial for attributes that may change gradually or exhibit patterns over time.

27



Chapter 4

Automatic road-safety assessment in
road-driving video

In this chapter, we present our proposed two-stage deep learning framework for automatic

recognition of road-safety attributes from driving video data. Building upon the challenges

and insights discussed in Chapter 2.2, our approach aims to efficiently and accurately assess

road infrastructure safety by automating the detection of the attributes defined by the iRAP

standard.

Our framework comprises three key components. We employ a convolutional neural net-

work (CNN) for local recognition (4.1), performing multi-task recognition using the local

spatio-temporal context. This stage focuses on extracting rich spatial features from individual

frames or short sequences, capturing immediate visual cues relevant to each attribute. Notably,

the shared part of our local-recognition model, including the CNN backbone (ResNet-18) and

the spatial pyramid pooling module, is pre-trained for semantic segmentation of street scenes

on the Vistas dataset [19]. Specifically, we utilize the encoder weights from a SwiftNet seman-

tic segmentation architecture [129]. This pre-training enables our model to better recognize

infrastructure elements and details relevant to road-safety attributes.

To further improve accuracy, we preform sequential enhancement of the initial predictions

by integrating temporal information over longer sequences of frames (4.3). This stage aims to

provide context beyond the local scope, leveraging recurrent models to better understand the

temporal dependencies inherent in road infrastructure.

Throughout both stages, we address the issue of significant class imbalance through multi-

task dynamic loss weighting (4.2). This approach adaptively adjusts the importance of classes

within each task, while also maintaining stable values of per-attribute losses. At the class level,

all weights are re-calculated each epoch by modulating inverse relative class frequencies with

current per-class false negative rates. At the task level, each individual loss is normalized by the

sum of the weights of all examples in the current iteration, rather than merely by the number
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of the examples. This prevents individual tasks from intermittently dominating the overall loss

and hampering the learning of other tasks.

By integrating these components, our framework leverages both spatial and temporal infor-

mation while effectively addressing the challenges of multi-task learning and class imbalance.

The local recognition stage provides initial attribute predictions based on spatial features, while

the sequential enhancement stage refines these predictions by considering temporal patterns.

Our dynamic loss weighting formulation facilitates balanced learning across all classes in a

multi-task setup.

The rest of this chapter is organized as follows. In Section 4.1, we detail the architecture

and training methodology of the local recognition stage,. Section 4.2 describes our dynamic loss

weighting scheme, explaining how it addresses class imbalance within each task and maintains

stable loss magnitudes across tasks. In Section 4.3, we discuss the sequential enhancement

stage, outlining how temporal modeling is implemented to enhance attribute recognition.

4.1 Recognition in the local spatio-temporal context

Having outlined the overall framework, we now detail the local recognition stage. Figure 4.1

illustrates our convolutional architecture designed for multi-task visual recognition of road-

safety attributes in road-driving imagery. The architecture comprises a shared encoder and

multiple task-specific classification heads, enabling efficient feature extraction and prediction

across different attributes.

Shared Encoder

The shared encoder begins with a ResNet-18 backbone to extract features from road-driving im-

ages. The choice of ResNet-18 balances computational efficiency and representational capacity,

making it suitable for applications requiring real-time or near-real-time processing.

The features extracted by the ResNet-18 backbone are then processed by a Spatial Pyramid

Pooling (SPP) module with grid dimensions of 6× 6, 3× 3, 2× 2, and 1× 1 [62]. The SPP

module aggregates multi-scale contextual information, producing a fixed-size representation

that captures both local and global spatial cues. This multi-scale representation can be beneficial

for recognizing road-safety attributes that may appear at different sizes and positions within the

image. It also serves as a common feature space for all attribute-specific classification heads.

Attribute-Specific Classification Branches

The architecture incorporates 43 attribute-specific classification branches, each designated to

recognize a particular road-safety attribute. Each branch begins with an attention pooling mod-
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Figure 4.1: Our multi-frame local recognition pipeline recognizes road-safety attributes in multi-frame
input X. Data tensors are represented as cuboids, while processing modules are shown as rounded
rectangles. The shared front-end (red) maps each input frame into convolutional features (F) that are
subsequently pooled by the SPP module. Attribute-specific back-ends (green) produce attention pools
(yellow) and concatenate them with the shared spatial pools (blue). Fully-connected layers (FCi) map
the concatenated descriptors into attribute-specific logits.

ule AT Ti [20], which operates on the shared convolutional features. The module is guided by a

learned attribute-specific query vector qi, allowing the model to focus on regions of the feature

map that are most relevant to the attribute Ai. The output of the attention pooling module is

an attribute-specific representation, which is then concatenated with the shared SPP features to

form a comprehensive single-frame descriptor for attribute Ai. This descriptor is subsequently

processed by the corresponding fully connected layer (prediction head) that predicts the poste-

rior probability P(Ai|x) for attribute Ai.

Extension to Multi-Frame Input

Our architecture can be naturally extended to operate on multi-frame input to capture a slightly

larger spatio-temporal context beneficial for recognizing partially visible and occluded at-

tributes. In the multi-frame setup, the convolutional backbones and the two pooling modules

process each frame independently. The resulting single-frame descriptors are then concate-

nated to form a multi-frame attribute descriptor. The per-attribute predictions heads process the

concatenated descriptors to produce the final predictions.

It is worth noting that while multi-frame input can provide richer contextual information,

there are practical limitations to the number of input frames that can be processed simultane-

ously. To balance performance and computational efficiency, our multi-frame models are de-
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signed to produce predictions for segment T by observing frames of segments T, T-1, and T-4.

This configuration allows for a temporal window that captures both immediate and moderately

distant context while avoiding excessive memory requirements.

Training Objective

Each per-attribute prediction head is associated with a cross-entropy loss function, measur-

ing the discrepancy between the predicted probabilities and the ground-truth labels. The per-

attribute loss for attribute Ai is given by:

Li =−
Ci

∑
c=1

yi,c logP(Ai = c |x),

where Ci is the number of classes for attribute Ai, and yi is a one-hot representation of the ground

truth class of attribute Ai for the input example x. Following the multi-task learning paradigm

[18], the total loss L is computed as the mean of all per-attribute losses:

L =
1
K

K

∑
i=1

Li, (4.1)

where K is the total number of attributes (tasks). This approach allows for a balanced optimiza-

tion process that considers the importance of each road-safety attribute equally.

Semantic Segmentation Pre-Training

To enhance the representational power of our shared encoder, we pre-train the ResNet-18 back-

bone and the spatial pyramid pooling (SPP) module on the task of semantic segmentation using

the Vistas dataset [19]. Semantic segmentation requires assigning a semantic label to every pixel

in an image, necessitating the extraction of detailed spatial features that capture the identity and

boundaries of various elements within street scenes.

In this pre-training step, we employ the SwiftNet architecture [129], leveraging its encoder

weights to initialize the ResNet-18 backbone and the SPP module. SwiftNet is designed to

achieve a balance between accuracy and computational efficiency, making it suitable for appli-

cations that require real-time or near-real-time performance.

The Vistas dataset provides a large and diverse set of street-level images captured in various

conditions, including different weather, lighting, and geographic locations. Pre-training on such

a rich dataset exposes our encoder to a wide variety of visual patterns and scenarios.

The decision to use semantic segmentation as a pre-training task stems from its similarity to

the ultimate objective of recognizing road infrastructure components. While classification tasks

often emphasize global image context, segmentation involves understanding the relationships
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between smaller scene elements. This capability directly transfers to our attribute classification

tasks, where understanding the spatial arrangement of infrastructure elements is crucial (e.g.

attribute Road severity). By initializing our shared encoder with weights learned from seman-

tic segmentation, we provide it with strong prior knowledge of street scene composition and

structure, enabling more robust detection of road-safety attributes.

4.2 Dynamic loss weighting for multi-task learning

In multi-task learning, the challenge of class imbalance is particularly pronounced, as each task

may contain classes with vastly different frequencies (cf. 3.7). To address this issue, we aim to

increase the influence of rare classes on the training objective, thereby improving the model’s

performance on underrepresented classes. At the same time, we do not want this to adversely

affect task-level learning dynamics.

We denote our training set as {(xn,yn)}N
n=1, where xn ∈Rd represents the n-th input sample,

yn ∈ {1, . . . ,C} is the corresponding class label, with C being the total number of classes. The

total number of training samples is N. Let Pc
n = P(Y = c | xn) denote the predicted posterior

probability of class c given input xn.

The standard cross-entropy loss function is commonly used for classification tasks. It can

be expressed as the negative logarithm of the geometric mean of the correct class posterior

probabilities across all training samples P =
(
∏

N
n=1 Pyn

n
)1/N over all training examples [21]:

CE =− 1
N

N

∑
n=1

lnPyn
n (4.2)

=− 1
N

ln

(
N

∏
n=1

Pyn
n

)

=− ln

(
N

∏
n=1

Pyn
n

) 1
N

=− lnP (4.3)

This formulation highlights that minimizing the cross-entropy loss is equivalent to maxi-

mizing the geometric mean of the predicted probabilities for the true classes.

To further analyze the impact of class imbalance, we can express the cross-entropy loss as a

weighted sum over per-class geometric mean posteriors. Let Nc denote the number of samples
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belonging to class c, such that ∑
C
c=1 Nc = N. Then, we can rewrite the cross-entropy loss as:

CE =− 1
N

C

∑
c=1

∑
n:yn=c

lnPc
n (4.4)

=−
C

∑
c=1

Nc

N
ln

(
∏

n:yn=c
Pc

n

) 1
Nc

=−
C

∑
c=1

Nc

N
lnPc (4.5)

where Pc =
(
∏n:yn=c Pc

n
) 1

Nc is the geometric mean posterior probability for class c. The notation

{n : yn = c} denotes the set of indices of samples belonging to class c.

Equation (4.5) shows that the standard cross-entropy loss gives more weight to classes with

higher frequencies, as the term Nc
N represents the relative frequency of class c in the dataset.

Consequently, rare classes contribute less to the loss, which can lead to poor performance on

these classes.

To mitigate this issue, we can assign higher weights to rare classes by using inverse fre-

quency weighting. To each class we assign a weight that is inversely proportional to its relative

frequency: wc =
N
Nc

. This leads to the inverse-frequency-weighted cross-entropy loss [106, 107]:

CEIFW =− 1
N

N

∑
n=1

wyn lnPyn
n (4.6)

=−
C

∑
c=1

wcNc

N
lnPc

=−
C

∑
c=1

lnPc (4.7)

Here, the weighting effectively cancels out the relative frequencies, ensuring that each class

contributes equally to the loss function. While this approach balances the influence of each

class, it may introduce new issues.

Specifically, the standard cross-entropy loss focuses on maximizing the posterior probability

of the correct class, but does not take into account the distribution of the posterior probabilities

over the incorrect classes. In essence, cross-entropy focuses solely on penalizing false negatives

while disregarding false positives. Consequently, assigning a large weight to a particular class

might inadvertently increase the incidence of false positives for that class. Empirical analysis

has shown that increasing the class weight indeed often decreases the precision for that class,

as the model becomes more likely to over-predict it [21]. At the same time, as classes achieve

higher recall scores, class weighting starts to show diminishing returns in terms of additional

increase in recall. These observations suggest that overly emphasizing rare classes without
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considering model performance can be counterproductive.

To address this issue, we can adapt class weights dynamically based on model performance,

specifically in terms of per-class recall [21]. Let Rc,t represent the validation recall of class c

after epoch t −1. Then, recall-balanced class weights wR
c,t can be defined as follows [21]:

wR
c,t =

N
Nc

(1−Rc,t)+ ε (4.8)

where ε = 10−4 is a small constant added to prevent the weight from becoming zero in the

unlikely event of perfect recall. This formulation ensures that classes with low recall receive

higher weights, thereby focusing the learning process on difficult classes that the model strug-

gles with.

When the recall Rc,t for a class is close to zero, the weight wR
c,t approaches the inverse

relative frequency, similar to the inverse-frequency weighting scheme. As the recall improves,

the weight diminishes, reducing the emphasis on classes that the model already predicts well.

However, class weighting schemes based on inverse frequencies, including both static and

dynamic approaches, can lead to high variance in loss magnitudes across training iterations.

Batches containing more examples from extremely rare classes will tend to have a much larger

loss compared to batches with fewer such examples, as these rare examples are assigned cor-

respondingly large weights. The extreme scarcity of these examples results in their sporadic

presence across batches, causing significant loss fluctuations between training iterations that

can destabilize the learning process.

In multi-task learning, where the total loss is often computed as the arithmetic mean over

individual task losses, this issue is exacerbated. In a given training iteration, if an imbalanced

task experiences a large loss magnitude due to the presence of extremely rare examples, it

can dominate the total loss and impede the learning of other tasks. When there are multiple

extremely imbalanced tasks, this scenario can occur frequently, leading to a situation where

different tasks intermittently suppress each other’s progress.

To address this issue, we seek to stabilize the loss magnitude across tasks by normalizing

each task’s loss with respect to the sum of the weights of individual examples. This approach

stabilizes the loss magnitude across different batches and tasks. Utilizing the recall-balanced

weights from Equation (4.8), we express the loss for each individual task as:

CER
MT =

−∑
N
n=1 wR

yn,t lnPyn
n

∑
N
n=1 wR

yn,t
(4.9)

This formulation ensures that the contribution of each task to the overall loss remains stable,

preventing situations where one task might impede the progress of others due to class imbalance.

By dynamically adjusting the class weights based on per-class recall and normalizing the task
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losses, our approach balances precision and recall while maintaining stable multi-task training

dynamics.

4.3 Sequential enhancement

In the second stage of our recognition approach, we aim to enhance the initial local predic-

tions by aggregating information across a larger temporal context. The motivation behind this

strategy is to leverage the inherent temporal patterns and dependencies present in road-safety

attributes along a sequence of road segments.

To achieve this, we construct temporal inputs as sequences of T = 21 vectors, encompassing

consecutive segments from time t − 10 to t + 10. This forms a temporal window centered at

the current segment t, providing context from both preceding and succeeding segments. By

incorporating data from a broader context, we can capture the temporal dynamics and improve

the robustness of our predictions against transient noise or occlusions that may affect individual

frames.

Rather than relying on hand-crafted post-processing rules, we propose to utilize deep re-

current neural networks for sequence classification [22]. Specifically, we employ per-attribute

recurrent models that can learn attribute-specific temporal behavior patterns described in Sec-

tion 2.2.4. This approach allows the model to learn complex temporal patterns directly from the

data, potentially capturing nuances that might be difficult to encode in manual rules.

Our recurrent models are based on bidirectional Long Short-Term Memory (Bi-LSTM) net-

works, consisting of four layers of Bi-LSTM cells. Each Bi-LSTM layer processes the input

sequence in both forward and backward directions through separate unidirectional LSTM mod-

ules. This bidirectional approach enables the model to capture both past and future temporal

dependencies for each attribute, which is particularly useful in identifying patterns that evolve

consistently over time.

At each time step i, the input to our recurrent model is constructed by concatenating the

local logits sa
i and the embedding eca

i
of the predicted class ca

i = argmaxsa
i . The local logits

provide the model with the raw predictions from the first stage, while class embeddings provide

additional context regarding the predicted class through its learned representation.

The matrices of per-attribute class embeddings are jointly learned during the training of

these recurrent models, enabling them to adapt to the specific characteristics of each attribute.

We set the dimensionality of the class embeddings to max(4,C), where C denotes the number of

classes for a particular attribute. This ensures sufficient representation capacity while keeping

the model lightweight.

The hidden states in all Bi-LSTM layers have a dimension of 128. Each Bi-LSTM layer

outputs hidden states for each time step, but for our final representation, we focus on the last
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hidden states produced by both the forward and backward LSTM modules in each layer. By

concatenating these last hidden states across all four layers, we capture hierarchical temporal

features from different levels of abstraction. Additionally, we include the hidden state corre-

sponding to the middle element (time t) from the last layer, which emphasizes the representation

at the current segment.

The concatenation of these hidden states results in a feature vector of size 1280, which

is then passed through a fully-connected softmax classifier to produce the final classification

output. This output represents the predicted posterior distribution over the classes for attribute

a at time t, denoted as P(Ai = ci
j | xt−T :t+T ).

The use of Bi-LSTMs in this context allows our model to effectively capture the temporal

evolution of road-safety attributes, which is crucial for understanding attributes that may change

gradually or exhibit specific patterns over time.
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Figure 4.2: Sequential enhancement corrects local predictions with per-attribute Bi-LSTM models. For
each attribute a, the model Bi-LSTMa outputs corrected logits s′at in segment t by observing T = 21
vectors that correspond to segments from (t-10) to (t+10). Each of these vectors is a concatenation of
the logits sa

i and the jointly learned embedding ea
i of the the most probable class according to the local

model.
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Chapter 5

Experiments

This chapter presents a comprehensive experimental evaluation of our approach for automatic

road-safety attribute recognition. We begin by introducing the datasets used in our experi-

ments, including the novel iRAP-BH dataset and three established datasets from the literature

that enable a broader validation of our method. We then detail our experimental setup, includ-

ing evaluation metrics and training configurations, before presenting extensive quantitative and

qualitative results. Our experiments demonstrate the effectiveness of our approach in captur-

ing spatial and temporal dependencies for road safety attribute recognition. Through ablation

studies and comparisons to state-of-the-art methods, we validate the impact of our key contri-

butions: semantic segmentation pre-training, multi-task dynamic loss weighting, and sequential

enhancement.

5.1 Datasets

In this section, we present the datasets used to evaluate our approach for automatic road-safety

assessment. Our experiments encompass four distinct datasets, each offering unique character-

istics and challenges relevant to the task of road-safety attribute recognition.

The cornerstone of our evaluation is the novel iRAP-BH dataset, which we introduce as a

comprehensive corpus of georeferenced video data specifically designed for off-line road-safety

assessment.

To further validate the efficacy and generalizability of our approach, we extend our exper-

iments to three additional datasets from the literature: Honda Scenes [24], FM3m [25], and

BDD100k [26]. These datasets, while not specifically curated for road-safety attribute recogni-

tion, offer valuable benchmarks for related tasks in traffic scene understanding and classifica-

tion.

In the following subsections, we provide detailed descriptions of each dataset, including

their composition, annotation schemes, and specific considerations for our experimental setup.
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5.1.1 iRAP-BH

Road safety assessment requires high-quality, diverse data that captures the complexity of real-

world infrastructure. To meet this need, we present iRAP-BH, a novel dataset of georeferenced

video recordings specifically designed for off-line road-safety assessment. It was acquired along

194 public city, inter-city and rural road sections in Bosnia and Herzegovina, spanning a total

of 2,300 km. The dataset captures a diverse road infrastructure and varying road conditions,

providing a rich dataset for training and evaluating road-safety assessment algorithms.

All videos were recorded in RGB format at a resolution of 2704×2028 pixels and a frame

rate of 25 frames per second. The average road section within this dataset consists of 1,175

segments, each segment corresponding to a 10-meter stretch of road, with an average segment

spanning approximately 18 frames. This granular segmentation allows for detailed analysis

and annotation of road attributes, capturing subtle changes that may occur over short distances.

To illustrate the geographical coverage of our dataset, Figure 5.1 presents a map showing the

distribution of recorded road sections across Bosnia and Herzegovina.

The iRAP-BH dataset was meticulously annotated with all iRAP attributes by trained human

annotators at the Faculty of Transportation and Traffic Sciences, University of Zagreb (UniZG-

FTTS). The annotators underwent specialized training to ensure consistency and accuracy in the

annotations. The process was facilitated by a manual annotation interface, designed at UniZG-

FTTS to streamline the workflow and reduce the potential for human error.

While the iRAP Star Rating Score typically requires 100-meter granularity, iRAP-BH was

deliberately annotated at a finer ten-meter level. This decision was made to provide more fine-

grained supervision for machine learning algorithms, as the increased resolution in annotations

allows models to learn from more detailed and localized features.

For the purposes of model training and evaluation, we divided the dataset into three distinct

splits: 214,073 segments for training, 5,813 for validation, and 6,563 for testing. We ensured

that all segments belonging to the same road section were allocated to the same split, in order

to avoid any risk of data leakage between training and evaluation phases. This strategy also

enables the training of sequential and multi-frame models without compromising the integrity

of the evaluation process.

Each 10-meter road segment in the dataset is represented by its middle frame, resized to

384× 288 pixels to reduce computational complexity while retaining sufficient visual detail.

This preprocessing results in a comprehensive multi-task, multi-class video recognition dataset

comprising 226,449 images. The iRAP-BH dataset thus provides a rich resource for the de-

velopment and evaluation of computer vision and machine learning techniques for road-safety

attribute recognition.
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Figure 5.1: The geographical coverage of the IRAP-BH dataset. The road network captured by the
dataset is shown in blue.
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5.1.2 Honda Scenes

The Honda Scenes dataset [24] offers a comprehensive collection of annotated road-driving

videos intended to advance research in traffic scene understanding and classification. The

dataset consists of 80 training videos and 20 evaluation videos. Each frame within these videos

has image-wide labels for four distinct traffic scene classification problems: Road place, Road

environment, Road surface, and Weather. Figure 5.2 illustrates the four problems and their

temporal annotations.

Figure 5.2: Video annotations for four separate problems of the Honda Scenes dataset: Road Place,
Road Environment, Road Surface and Weather. The figure is reproduced from the original paper that
describes the dataset [24].

To generate frame-level data for the Road place and Road environment classification prob-

lems, frames were extracted by subsampling the videos at a rate of 3Hz. This resulted in a

substantial dataset consisting of approximately 760,000 training frames and 160,000 evaluation

frames, which serve as inputs for our recognition models. In our experimental setup, we treat

these consecutive frames as consecutive road segments, analogous to the 10-meter segments

in the iRAP-BH dataset. This approach allows us to apply our multi-frame and sequential en-

hancement models, capturing temporal dependencies and improving classification performance.

The Road Surface and Weather classification problems involve images sampled from both

the Honda Scenes dataset and the BDD100k dataset [26]. Specifically, the Road Surface dataset

comprises a total of 10,139 images, with 2,676 images from Honda Scenes and 7,463 images

from BDD100k. The dataset is split into 9,150 images for training and 898 images for evalua-

tion. The Weather dataset, meanwhile, consists exclusively of data from BDD100k, containing

11,781 training images and 1,255 evaluation images.

In the rest of this section, we provide a detailed description of each classification problem,

including their relevance to our research and the specific considerations in our experimental

approach.

Road place

The Road place classification problem is unique among the four as it involves multiple, concur-

rent multi-class classification tasks. It encompasses a series of fine-grained temporal labels that

capture the dynamic relationship between the vehicle and various road elements. These labels
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include Approaching (A), Entering (E), and Passing (P), indicating the relative position of the

vehicle to a specific place of interest in each frame.

The tasks within this problem cover a wide array of road infrastructure elements:

• Construction Zone

• Intersection (3-way)

• Intersection (4-way)

• Intersection (5-way & more)

• Overhead Bridge

• Rail Crossing

• Merge - Gore on Left

• Merge - Gore on Right

• Branch - Gore on Left

• Branch - Gore on Right

• Background

These tasks are relevant to our work with the iRAP-BH dataset, as they involve recognizing

road infrastructure elements in a sequential manner. The fine-grained temporal labeling allows

our models to capture the nuanced temporal dynamics of driving scenes. It is important to

note that some of these tasks, such as rail crossings and complex intersections, suffer from

significant class imbalance, reflecting the natural distribution of these features in real-world

driving scenarios.

Road Environment

The Road environment problem classifies scenes into four distinct categories: Local, Highway,

Ramp, Urban. Unlike Road Place, this problem does not utilize temporal labels. However,

since it consists entirely of frames from continuous driving videos from the Honda Scenes

dataset, we can still apply our multi-frame and sequential models. By incorporating sequential

frames, we aim to capture the temporal continuity inherent in the road environment, enhancing

the robustness of our classification results.

Road surface

The Road Surface problem involves multi-class classification, where each image is categorized

into one of three surface conditions: Wet, Dry, Snow. Since this problem involves only non-

sequential, individual images, our evaluation is limited to the single-frame version of our model.

Additionally, the classes within this subset of data are fairly balanced, which diminishes the

need for weighted loss functions, as they do not significantly impact model performance in this

particular case.
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Weather

The Weather classification problem involves categorizing images into one of four weather con-

ditions: Clear, Overcast, Rainy, Snowy. Similar to the Road surface problem, this dataset also

consists of relatively balanced non-sequential frames, thus we only evaluate our single-frame

model, without loss balancing or sequential enhancement.

5.1.3 Fleet Management Dataset (FM3)

The third iteration of the Fleet Management Dataset, FM3 [25], offers a diverse collection of

11,448 images depicting various traffic scenes from roads in Croatia. For our experiments, we

utilize the main subset of this dataset, referred to as FM3m, which consists of 6,413 images

labeled for classification tasks. Each image is annotated with eight binary labels (true/false)

corresponding to eight distinct classification attributes. These attributes encompass various

aspects of road infrastructure and traffic conditions: highway, road, tunnel, exit, settlement,

overpass, booth, and traffic.

The dataset is partitioned into training, validation, and test sets containing 1,607, 1,600,

and 3,206 images, respectively. These subsets we constructed through uniform random frame

assignment. As a result, consecutive frames from the same driving sequence are generally

distributed across different subsets. This random allocation disrupts the temporal continuity of

data within each subset and precludes the use of multi-frame or temporally linked segments as

input for training and evaluation. Therefore, in our experiments with FM3m, we restrict our

evaluation exclusively to the single-frame version of our approach. This experimental setup

serves as an important baseline to assess the effectiveness of our model when operating without

the sequential enhancement strategies that play a crucial role in other experiments.

5.1.4 Berkeley Deep Drive (BDD100k)

The Berkeley Deep Drive (BDD100k) dataset [26] is a large-scale collection curated for het-

erogeneous multi-task visual recognition in road driving scenes. It consists of 100,000 video

clips, each 40 seconds in length, capturing a wide variety of driving environments. These envi-

ronments include both urban and rural areas, various weather conditions, and different times of

day, providing a diverse representation of real-world driving situations.

From each video, a single frame has been chosen and annotated with detailed visual features.

These annotations encompass object bounding boxes, drivable areas, lane markings, and full-

frame panoptic segmentation labels. In addition to the detailed per-pixel annotations, BDD100k

incorporates three image-wide classification tasks: Scene, Weather, and Time of Day. The

dataset is partitioned into 70,000 training images, 10,000 validation images, and 20,000 test

images, respectively.
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The Scene task includes seven distinct classes: Tunnel, Residential, Parking Lot, City Street,

Countryside, Gas Station, and Highway. Our experiments concentrate on this task, as it more

closely aligns with road-safety attributes pertinent to our study and provides a relevant bench-

mark for comparison with previous work in the field. The other two tasks, Weather and Time

of Day, have not been the focus of related previous work. Additionally, there is an overlap

between the Weather task of BDD100k and the homonymous task within the Honda Scenes

dataset, which makes the separate evaluation of these tasks redundant within the context of our

objectives.

It is important to note that the structure of the BDD100k dataset does not facilitate the use

of sequential processing techniques. Each annotated image is extracted from a distinct video

sequence, resulting in the absence of consecutive frames within the dataset. Consequently, our

experiments on BDD100k exclusively employ single-frame models. This approach mirrors our

methodology with the FM3m dataset and the Road Surface and Weather tasks of Honda Scenes,

where sequential data is also unavailable.

5.2 Experimental Results and Analysis

In this section, we present a comprehensive evaluation of our approach for the automatic recog-

nition of road-safety attributes. Our experimental evaluation primarily focuses on the iRAP-

BH dataset, complemented by additional experiments on Honda Scenes [24], FM3m [25], and

BDD100k [26] datasets that contain related road scene classification tasks.

In the following subsections, we delve into the specifics of our experimental setup, including

the evaluation metrics and training hyperparameters. We then present the results obtained on

the iRAP-BH dataset, analyzing the impact of various design choices and providing qualitative

examples. Subsequently, we report our findings on the Honda Scenes, FM3m, and BDD100k

datasets, comparing our results with those of existing methods and highlighting the strengths of

our approach.

5.2.1 Evaluation metrics

In this section, we outline the evaluation metrics used to assess the performance of our ap-

proach across different datasets. Given the multi-task multi-class nature of our problem and the

presence of class imbalance, selecting appropriate metrics is crucial for a fair and informative

evaluation.

For binary classification tasks, the performance of a model is commonly evaluated using

precision, recall, and the F1 score.

Precision measures the proportion of correctly predicted positive instances among all in-
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stances predicted as positive:

Precision =
True Positives

True Positives+False Positives
. (5.1)

Recall, also known as sensitivity, measures the proportion of correctly predicted positive

instances among all actual positive instances:

Recall =
True Positives

True Positives+False Negatives
. (5.2)

The F1 score is the harmonic mean of precision and recall, providing a single metric that

balances both:

F1 = 2× Precision×Recall
Precision+Recall

. (5.3)

A low value in either precision or recall results in a low F1 score, highlighting any deficien-

cies in the model’s ability to correctly identify positive instances.

In multi-class classification problems, especially those with class imbalance, it’s important

to evaluate performance across all classes equitably. The macro-F1 score addresses this by com-

puting the F1 score for each class independently, treating the problem as binary classification

(one-vs-rest), and then taking the average:

Macro-F1 =
1
C

C

∑
i=1

F1i, (5.4)

where C is the total number of classes and F1i is the F1 score for class i.

Given its equal weighting of all classes, the macro-F1 score can be more informative than

accuracy, which can obscure poor classification of minority classes in imbalanced datasets. For

instance, in a dataset where a rare class comprises only 1% of the samples, a naive classifier that

always predicts the majority class achieves 99% accuracy while completely failing to identify

the minority class. Conversely, the macro-F1 score paints a different picture. The classifier’s

complete failure to identify any minority class instances yields zero recall, and consequently

an F1 score of zero. This substantially lowers the macro-averaged F1, revealing the classifier’s

inability to detect these infrequent instances.

Given these considerations, we evaluate our approaches on the iRAP-BH and Honda Scenes

datasets using the mean macro-averaged F1 score [130, 131]. Notably, the creators of Honda

Scenes also employ macro-F1 in their experiments, facilitating direct comparison.

For datasets involving multiple binary classification tasks, such as FM3m, we use the mean

Average Precision (mAP) as the evaluation metric. The Average Precision (AP) for a single

binary task is calculated from the precision values at each recall threshold where the prediction
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confidence results in a true positive. It can be expressed as:

AP = ∑
n
(Rn −Rn−1)Pn, (5.5)

where Pn is the precision and Rn is the recall at the nth threshold, and the sum is taken over all

unique recall values.

The mAP is then computed by averaging the AP across all tasks [132]:

mAP =
1
T

T

∑
t=1

APt , (5.6)

where T is the total number of tasks and APt is the Average Precision for task t.

This metric is suitable for FM3m since all tasks involve binary classification, and it effec-

tively captures the model’s ability to balance precision and recall across different thresholds

[25].

In the case of the BDD100k dataset, we evaluate classification performance using accuracy,

which measures the proportion of correct predictions among all predictions made. This metric

is standard for this dataset and is used in related works [133, 134].

To ensure clarity and consistency, we present all performance metrics as percentage points

(pp) throughout our analysis.

5.2.2 Training setup

As described in Chapter 4, our method comprises two stages: local recognition and sequential

enhancement. In this section, we detail the training setup and hyperparameter configurations

for both stages, with particular attention to data augmentation and optimization parameters.

To improve the robustness and generalization of our model without significantly altering

key image features, we apply data augmentation to the input images. Specifically, we use color

jittering by varying the brightness, contrast, saturation, and hue with relative ratios of 0.6, 0.3,

0.2, and 0.02, respectively. We deliberately exclude horizontal flipping since it could disrupt the

detection of attributes that are specific to right-hand traffic scenarios (e.g. Roadside severity -

passenger side). Similarly, we avoid random cropping and related augmentation methods, since

they may remove critical visual information from the peripheral regions of the images. which

is essential for identifying roadside attributes like Street lighting. This peripheral information

is crucial for identifying various roadside attributes, such as Street lighting.

Both stages of our approach are trained using the Adam optimizer. For the local recognition

stage, we set the learning rate to 1× 10−5, weight decay to 1× 10−3, and use a batch size

of 12. The training is conducted for 15 epochs, with the learning rate decreasing according

to a multiplicative scheduler using an annealing factor of 0.88 per epoch. For the sequential
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enhancement stage, we set the learning rate to 5×10−4, the weight decay to 1×10−4, and train

for 10 epochs with a batch size of 32.

To determine the optimal hyperparameter values, we systematically explored multiple con-

figurations through two grid searches on the validation split of the iRAP-BH dataset. The first

grid search optimized the parameters of the local recognition stage, followed by a second search

focused on the sequential enhancement stage. The resulting optimal hyperparameters identified

are consistently applied in all subsequent experiments across all datasets.

5.2.3 iRAP-BH

In this section, we present and analyze the experimental results obtained on the iRAP-BH

dataset. We begin our analysis by examining the impact of our proposed contribution on the

overall performance. Table 5.1 demonstrates the cumulative impact of each component on the

overall Macro-F1 score on the iRAP-BH test set.

Table 5.1: Impact of our contributions on overall Macro-F1 performance on iRAP-BH test. IFW -
inverse frequency weighting; R - dynamic recall weighting; SE - sequential enhancement.

Model Pre-training Macro-F1

ConvCE ImageNet 53.79

ConvCE Vistas 54.96

ConvCEIFW
MT Vistas 56.43

ConvCER
MT Vistas 57.77

ConvCE-SE Vistas 59.68

ConvCER
MT-SE Vistas 62.86

Semantic segmentation pre-training on the Vistas dataset improves performance by 1.2 per-

centage points (pp) in mean Macro-F1 compared to pre-training on ImageNet-1k. This in-

dicates that leveraging prior knowledge of road scene semantics is beneficial for recognizing

road-safety attributes.

Next, we examine the impact of different loss weighting strategies. The multi-task formula-

tion of inverse-frequency weighting (ConvCEIFW
MT ) delivers an improvement of 1.5 pp in Macro-

F1. Multi-task dynamic recall weighting (ConvCER
MT) further enhances the performance by

1.3 pp over IFW.

Finally, we incorporate sequential enhancement (ConvCER
MT-SE) through recurrent models

that capture a larger temporal context. It further increases performance by 5.1 pp. The combina-

tion of semantic segmentation pre-training, dynamic loss weighting and sequential enhancement

yields the best performance, achieving a mean Macro-F1 score of 62.86%.
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To gain deeper insights into the effectiveness of our approach on individual attributes, we

present per-attribute Macro-F1 scores in Table 5.2.

Table 5.2: Per-attribute mean macro-F1 performance of two ablated models and our best model on
iRAP-BH test.

Attribute CNN CE +LSTM CE +LSTM CER
MT Attribute CNN CE +LSTM CE +LSTM CER

MT

Area type 90.49 90.93 94.56 Ped. obs. flow, driver 24.73 27.61 29.37

Bicycle facility 53.72 100.00 100.00 Ped. obs. flow, pass. 26.96 28.74 35.62

Bicycle observed flow 35.77 35.82 34.83 Property access points 56.64 57.28 59.71

Carriageway label 93.88 94.20 97.54 Quality of curve 65.46 65.99 71.24

Curvature 55.22 59.55 64.77 Road condition 72.76 73.32 77.70

Delineation 98.12 99.17 98.94 Roadside severity, driver dist. 56.94 57.05 57.86

Grade 53.60 53.63 51.85 Roadside severity, driver obj. 35.25 35.26 43.31

Intersection channelisation 61.55 63.41 62.74 Roadside severity, pass. dist. 54.90 56.87 59.97

Intersection quality 47.83 51.14 52.02 Roadside severity, pass. obj. 46.94 50.51 51.06

Intersection type 27.39 33.51 34.97 Roadworks 70.61 74.29 78.80

Land use - driver 62.35 64.46 63.85 Sc. zone crossing supervisor 62.84 65.60 66.51

Land use - passenger 62.81 67.08 69.60 Sc. zone warning 62.57 66.90 68.03

Lane width 64.99 71.21 75.60 Service road 55.28 59.44 62.26

Median Type 40.76 44.45 55.62 Sidewalk - driver-side 43.63 46.08 43.72

Motorcycle observed flow 26.04 33.23 36.45 Sidewalk - passenger-side 44.31 45.83 50.19

Number of lanes 71.09 84.32 98.49 Sight distance 70.00 70.85 75.67

Paved shoulder - driver 63.54 64.71 65.02 Skid resistance / grip 38.77 44.52 50.90

Paved shoulder - passenger 46.43 48.52 54.01 Speed management 61.57 100.00 100.00

Ped. crossing - inspected rd. 35.61 35.73 45.03 Street lighting 90.58 91.38 91.53

Ped. crossing - side rd. 39.12 43.78 46.58 Upgrade cost 61.48 62.45 63.28

Ped. crossing quality 48.11 53.11 59.21 Vehicle parking 56.29 60.57 60.28

Ped. obs. flow, across 26.22 33.54 44.31 Mean 54.96 59.68 62.86

We compare three models: the convolutional model trained with standard cross-

entropy loss (CNN CE), the model with added sequential enhancement (+LSTM CE), and

our full model with both sequential enhancement and multi-task dynamic loss weighting

(CNN+LSTM CER
MT). All three models incorporate semantic segmentation pre-training.

We observe that attributes affected by severe class imbalance benefit the most from our dy-

namic loss weighting approach. Notably, the attributes Pedestrian crossing - inspected road,

Median type, Pedestrian observed flow along the road passenger-side, Roadside severity -

driver-side object, and Bicycle facility show relative improvements ranging from 19% to 26.5%

compared to the standard cross-entropy loss. This confirms that our loss weighting strategy

effectively mitigates the negative impact of class imbalance in multi-task learning.

Our analysis further reveals the benefits of sequential enhancement for different attribute

types. Single-peak attributes that benefit most from sequential enhancement include Speed

management and Intersection type, with relative improvements of 62.4% and 22.3%, respec-

tively. This improvement suggests that recurrent models are able to learn and accommodate the

annotation rule specific for these attributes, which mandates that the positive class be annotated

only in the one nearest segment per appearance.
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For smooth attributes, which rarely change classes, the sequential model effectively corrects

spurious class transitions made by the local model by considering a larger temporal context. The

attributes Bicycle facility, Number of lanes, and Skid resistance / grip show the largest relative

improvements in this group of attributes.

Figure 5.3 illustrates four examples where sequential enhancement successfully corrects er-

roneous predictions of the local model. In the first example involving the single-peak attribute

Intersection type, the local model incorrectly assigns a positive class (3-way intersection) to

two consecutive segments. Sequential enhancement rectifies this prediction to adhere to the

single-peak annotation convention. In the second and third examples, involving smooth at-

tributes Bicycle facility and Number of lanes, the local model predicts spurious class transitions

due to visual ambiguities or momentary occlusions. For instance, the local model mistakes a

motorcyclist near a tram rail for a dedicated bicycle lane and fails to predict the correct num-

ber of lanes. Sequential enhancement considers a larger temporal context and successfully

corrects these local mistakes. The fourth example involves the Street lighting attribute, which

should be annotated continuously through all segments between two nearby lighting poles. In

the example, the upcoming lighting poles are obscured by road curvature and overgrown road-

side vegetation, causing the local model to misclassify segments between poles. Sequential

enhancement utilizes a larger context to infer the presence of street lighting and corrects the

misclassifications.

To evaluate the effect of different pre-training strategies for our model’s backbone, we con-

duct an ablation study summarized in Table 5.3. We compare semantic segmentation pre-

training on the Vistas dataset with classification pre-training on ImageNet-1k and two road

scene classification datasets: BDD100k and Honda Scenes. Results indicate that semantic seg-

mentation pre-training consistently outperforms classification pre-training. This suggests that

detailed spatial understanding of visual concepts, as learned through semantic segmentation, is

beneficial for recognizing road-safety attributes in traffic scenes.

Table 5.3: Impact of different pre-training strategies on overall Macro-F1 performance on iRAP-BH
test.

Dataset Task Macro-F1

ImageNet-1k Classification 61.26

BDD100k Classification 61.19

Honda Scenes Classification 61.35

Vistas Semantic Segmentation 62.86

Overall, our experimental results on the iRAP-BH dataset demonstrate the efficacy of our

multi-stage approach and the impact of our contributions. The combination of semantic seg-
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Figure 5.3: Four iRAP-BH examples where sequential enhancement (LSTM) succeeds to correct local
visual predictions (CNN). For each of the five consecutive segments (columns), we display the cate-
gorical predictions by both models (top) and the ground truth label (bottom right). Row 1 involves a
single-peak attribute - Intersection type. We observe that the local model incorrectly assigns a positive
class (3-way intersection) in column 4. Rows 2 and 3 involve smooth attributes - Bicycle facility and
Number of lanes. We observe that the local model mistakes a motorcyclist near a tram rail for a dedi-
cated bicycle lane in column 3 and fails to predict the correct number of lanes again in column 3. Row
4 involves the Street lighting attribute. We observe that the upcoming lighting poles are obscured by the
road curvature and overgrown roadside bushes. Consequently, the local model fails in columns 2-4. In
all cases, the sequential model succeeds to correct the mistakes by leveraging a larger temporal context.

mentation pre-training, multi-task dynamic loss weighting, and sequential enhancement leads

to substantial improvements in recognizing road-safety attributes, particularly those affected by

class imbalance and temporal dependencies.

5.2.4 Honda Scenes

This subsection compares our method with prominent previous work on the Honda Scenes

dataset. We include several methods from the original paper [24], as well as Context MTL [103],

MTAN [104], and two of our own ablations that demonstrate the impact of our contributions.
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Road Place

Table 5.4 evalutes the overall performance across all tasks of the Road place problem. We refer

to the original sequential baseline as Honda BiLSTM and their two-stage sequential approach

as Honda Event [24].

Table 5.4: Macro-F1 performance on Honda Scenes - Road-place.

Model BB
Road place

Mean Mean w/o Background

Honda BiLSTM [24] rn50 27.56 25.23

Honda Event [24] rn50 28.36 25.91

Context MTL [103] rn50 - 27.92

MTAN [104] wrn28 29.14 26.73

ConvCE (ours) rn18 34.11 31.96

ConvCER
MT (ours) rn18 37.00 34.92

ConvCER
MT-SE (ours) rn18 40.93 39.00

Table 5.5 offers a more granular view by providing per-task results. Despite using a weaker

backbone, our baseline model (multi-frame model with standard loss and without sequential

enhancement) outperforms all previous approaches. The strong performance of this baseline

Table 5.5: Experimental evaluation on all Road-Place tasks of Honda Scenes (macro-F1, percentage
points). Legend: BB - backbone; B-Background, A-Approaching, E-Entering, P-Passing.

Model BB
B Intersection 5-way Railway Crossing Construction Left Merge Right Merge

- A E P Mean A E P Mean A E P Mean A P Mean A P Mean

Honda BiLSTM [24] rn50 88 0 0 9 3 24 14 46 28 2 5 29 12 9 28 19 16 23 20

Honda Event [24] rn50 92 0 0 0 0 23 47 46 39 2 6 38 15 5.6 8 7 13 16 15

Context MTL [103] rn50 - 0 6 0 2 1 35 52 32 0 4 38 14 4 6 5 26 18 22

MTAN [104] wrn28 92 1 2 5 3 19 27 42 29 3 9 24 12 11 17 14 19 12 16

ConvCE (ours) rn18 90 19 0 5 8 13 49 52 38 2 11 56 23 22 29 26 29 33 31

ConvCER
MT (ours) rn18 91 27 0 10 12 15 56 59 43 3 12 63 26 27 36 32 31 35 33

ConvCER
MT-SE (ours) rn18 91 29 0 9 13 28 53 71 51 11 22 64 32 29 43 36 34 45 40

Model BB
Overhead Bridge Intersection 3-way Intersection 4-way Left Branch Right Branch

A E P Mean A E P Mean A E P Mean A P Mean A P Mean

Honda BiLSTM [24] rn50 23 55 53 44 3 28 27 19 14 68 66 49 36 22 29 28 28 28

Honda Event [24] rn50 42 58 59 53 8 16 23 16 31 7 67 56 30 19 25 24 22 23

Context MTL [103] rn50 47 59 60 55 11 38 28 26 14 78 79 57 33 19 26 34 27 31

MTAN [104] wrn28 31 49 57 46 15 35 31 27 25 75 73 58 38 26 32 30 19 25

ConvCE (ours) rn18 31 57 60 50 10 33 32 25 25 77 66 56 29 18 24 35 38 37

ConvCER
MT (ours) rn18 33 58 61 51 10 34 34 26 26 77 68 57 31 23 27 37 42 40

ConvCER
MT-SE (ours) rn18 37 59 64 53 14 32 38 28 30 78 73 60 42 24 33 41 44 43
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makes the impact of our subsequent contributions more compelling. Incorporating multi-task

dynamic loss weighting increases performance by 2.9 percentage points (pp). This is due to

significant class imbalance, recognized also by the authors of the dataset [24]. We observe the

greatest relative improvements on tasks Intersection (5-way or more), Railway, Left Merge, and

Left Branch. Sequential enhancement brings an additional improvement of 3.9 pp.

Road Environment

Table 5.6 compares per-class performance of our multi-frame model with Context MTL,

MTAN, and the two original frame-based approaches [24]. The original approaches employ

a ResNet-50 backbone pre-trained on Places365 and leverage the DeepLabV2 semantic seg-

mentation model. The latter is utilized either to mask out traffic participants (Honda Frame -

Mask) or to augment the input image with its segmentation map (Honda Frame - SemSeg).

Our model achieves superior results across most classes, with the largest improvement oc-

curring on the challenging class Ramp. This class is the least frequent in the dataset and benefits

the most from multi-task loss weighting. The addition of sequential enhancement further im-

proves overall performance by 1.2 pp.

Table 5.6: Macro-F1 performance on the Road environment problem of Honda Scenes.

Road environment

Model BB Local Highway Ramp Urban Mean

Honda Frame - Mask [24] rn50 33.0 91.0 20.0 83.0 56.8

Honda Frame - SemSeg [24] rn50 34.0 89.0 13.0 81.0 54.3

Context MTL [103] rn50 36.0 92.0 21.0 81.0 57.5

MTAN [104] wrn28 37.2 91.1 19.7 80.3 57.1

ConvCE (ours) rn18 29.1 91.2 36.3 82.9 59.9

ConvCER
MT (ours) rn18 30.8 92.3 42.6 83.7 62.4

ConvCER
MT-SE (ours) rn18 32.8 93.1 44.1 84.2 63.6

Road surface

Table 5.7 shows that our single-frame model surpasses previous approaches on the Road surface

task. Since the classes in this task are relatively balanced, loss weighting does not not yield

additional performance gains. Furthermore, multi-frame and sequential enhancements are not

applicable, as this task is restricted to single-frame prediction.

Table 5.8 reveals that pre-training our ResNet-18 on the Vistas semantic segmentation

dataset provides better results than using the larger ResNet-50 pre-trained on ImageNet-1k.
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Table 5.7: Macro-F1 performance on the Road surface problem of Honda Scenes.

Road surface

Model BB Dry Wet Snow Mean Mean w/o Snow

Honda Frame - Mask [24] rn50 93.0 92.0 99.7 94.9 92.5

Honda Frame - SemSeg [24] rn50 92.2 92.5 99.0 94.6 92.4

Context MTL [103] rn50 93.0 92.0 - - 92.5

MTAN [104] wrn28 94.2 94.1 98.9 95.7 94.2

Conv single (ours) rn18 98.5 98.5 100.0 99.0 98.5

Table 5.8: Ablation of segmentation pre-training (Macro-F1) on the Road surface problem of Honda
Scenes.

Road surface

Pre-training BB Dry Wet Snow Mean

IN-1k (ours) rn18 97.2 96.8 99.7 97.9

IN-1k (ours) rn50 97.7 97.3 99.7 98.2

Vistas (ours) rn18 98.5 98.5 100.0 99.0

Weather

Table 5.9 shows that our single-frame model outperforms previous approaches on the classes

Overcast and Snow, as well as in overall performance, while underperforming on classes Clear

and Rain.

Table 5.9: Macro-F1 performance on Weather problem of Honda Scenes.

Weather

Model BB Clear Overcast Rain Snow Mean Mean w/o Snow

Honda Frame - Mask [24] rn50 92.0 83.0 96.0 94.0 91.3 90.3

Honda Frame - SemSeg [24] rn50 91.6 83.4 96.0 93.9 91.2 90.3

Context MTL [103] rn50 93.2 84.0 97.0 - - 91.4

MTAN [104] wrn28 90.4 85.9 91.2 92.5 90.0 89.2

Conv single (ours) rn18 91.0 90.9 95.0 95.3 93.0 92.3

Similar to the Road Surface problem, the balanced distribution of classes means that loss

weighting does not provide additional benefits, while sequential enhancement is not applicable

since due is a single-frame prediction task. Moreover, ablations in Table 5.10 suggests that task-
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specific segmantic segmentation pre-training is more beneficial than classification pre-training,

even using a larger model.

Table 5.10: Ablation of segmentation pre-training (Macro-F1) on the Weather problem of Honda Scenes.

Weather

Pre-training BB Clear Overcast Rain Snow Mean

IN-1k (ours) rn18 89.5 86.8 94.0 93.0 90.8

IN-1k (ours) rn50 90.1 87.6 94.3 94.0 91.5

Vistas (ours) rn18 91.0 90.9 95.0 95.3 93.0

5.2.5 FM3m

We evaluate our approach on the Fleet Management (FM3m) dataset by comparing against

several approaches.

The original dataset authors provided two baselines which leverage SVM classifiers with

radial basis function kernels. These approaches leverage SVM classifiers with radial basis

function kernels. The classifiers operate on image descriptors extracted by ResNet-50 and

DenseNet-121 models, both pre-trained on ImageNet-1k. It is important to note that the back-

bones were not fine-tuned on the FM3m dataset.

We also evaluate our method against other contemporary traffic scene recognition ap-

proaches, namely the two variants of the Honda Frame-based model [24] and the Multi-Task

Attention Network (MTAN) [104]. The Honda Frame models use a ResNet-50 backbone pre-

trained on the Places365 dataset and improve classification performance by leveraging semantic

segmentation masks. One variant masks out traffic participants, while the other adds the seg-

mentation mask as an additional input channel.

The results presented in Table 5.11 demonstrate that our single-frame models achieve com-

petitive performance with all of the aforementioned approaches. Furthermore, multi-task dy-

namic loss weighting improves performance across nearly all classes.

To further explore the impact of pre-training and backbone architecture on our model’s

performance, we conduct an ablation study comparing three variants of our single-level model:

1. A model with a ResNet-18 backbone pre-trained on the ImageNet-1k dataset.

2. A model with a ResNet-18 backbone pre-trained on the Vistas dataset.

3. A model with a larger ResNet-50 backbone pre-trained on the ImageNet-1k dataset.

As shown in Table 5.12, semantic segmentation pre-training on the Vistas dataset offers

more substantial improvements in classification performance than increasing the capacity of

the backbone.
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Table 5.11: AP performance on the FM3m dataset: H-Highway, R-Road, Tu-Tunnel, E-Exit, S-
Settlement, O-Overpass, B-Booth, Tr-Traffic.

Model H R Tu E S O B Tr Mean

RN50-SVM [25] 99.8 91.1 100.0 97.7 98.3 97.2 98.8 86.8 96.2

DN121-SVM [25] 93.7 100.0 98.0 98.3 97.9 98.8 87.9 96.8 96.4

Honda Frame - Mask [24] 99.5 91.0 99.2 93.1 97.1 96.5 97.9 80.4 94.4

Honda Frame - SemSeg [24] 96.5 92.9 95.8 92.1 95.6 97.5 94.0 92.3 94.6

MTAN [104] 98.2 92.3 98.1 94.3 98.0 94.1 97.9 91.0 95.5

Conv single, CE (ours) 100.0 94.2 99.8 98.0 98.2 98.5 99.4 90.5 97.3

Conv single, CER
MT (ours) 100.0 94.6 100.0 98.6 98.5 98.9 99.8 91.2 97.7

Table 5.12: Ablation of pre-training on FM3m (AP): H-Highway, R-Road, Tu-Tunnel, E-Exit, S-
Settlement, O-Overpass, B-Booth, Tr-Traffic.

Model BB H R Tu E S O B Tr Mean

IN-1k (ours) rn18 99.2 91.5 99.6 97.3 97.8 97.0 98.2 89.9 96.3

IN-1k (ours) rn50 99.6 92.5 99.9 98.2 98.0 97.4 98.9 90.5 96.9

Vistas (ours) rn18 100.0 94.6 100.0 98.6 98.5 98.9 99.8 91.2 97.7

It is important to note that sequential enhancement is not applicable in this context, as the

FM3m dataset involves only single-frame predictions.

5.2.6 BDD100k

In this section, we evaluate our approach on the BDD100k dataset, focusing on the Scene clas-

sification task. We consider both the default and the cross-domain evaluation setup.

In the default setup, shown in table 5.13, we train and test our model on the full dataset with-

out any domain constraints. In the cross-domain setup, shown in table 5.14, we simulate domain

shifts by training models exclusively on images captured under sunny weather conditions and

evaluating them on images from cloudy, rainy, and snowy conditions. This setup tests gen-

eralization capabilities under significant domain shifts caused by varying weather conditions.

We present the performance of our method compared to several state-of-the-art approaches. In

both setups, we compare against Honda Frame - Mask, Honda Frame - SemSeg [24], and the

Multi-Task Attention Network (MTAN) [104].

The default setup additionally includes the Local-Global FCRNN model [133], which em-

ploys a two-stream architecture combining local features from Faster R-CNN and global fea-

tures from InceptionV2.
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Table 5.13: Comparison with prior work on the Scene task BDD100k (default setup).

BDD100k default setup

Model Accuracy

Honda Frame - Mask [24] 76.8

Honda Frame - SemSeg [24] 76.0

MTAN [104] 73.9

Local-Global FCRNN [133] 76.0

Conv single, CE (ours) 78.4

Conv single, CER
MT (ours) 78.7

For the cross-domain setup, we additionally compare against the "source-only" baseline

from the Sparse Adversarial Domain Adaptation (SADA) method [134]. This baseline provices

a reference point for evaluating generalization under domain shifts.

Table 5.14: Comparison with prior work on the Scene task of BDD100k (cross-domain setup).

BDD100k cross-domain setup

Model Cloudy Rainy Snowy

Honda Frame - Mask [24] 70.9 63.8 62.2

Honda Frame - SemSeg [24] 72.3 65.1 62.3

MTAN [104] 71.1 66.2 60.7

SADA [134] 70.5 62.7 59.1

Conv single, CE (ours) 75.9 71.4 70.0

Conv single, CER
MT (ours) 76.6 71.5 70.9

Experiments show that our single-frame models consistently outperform all competing

methods across both the default and cross-domain setups. The results imply some degree of

robustness of our method in handling diverse scenes and weather conditions. Incorporating

multi-task dynamic loss weighting increases performance in every configuration. Lastly, our

sequential enhancement approach is not applicable in this context due to the single-frame pre-

diction constraint of the BDD100k dataset.

5.3 Qualitative examples from iRAP-BH

In this section, we present qualitative examples that showcase the detection of road-safety at-

tributes on the iRAP-BH dataset. These examples are designed to provide a more intuitive
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understanding of how our models perform on individual road segments and how they gener-

ate predictions across a sequence of frames. Figure 5.4 displays examples of five different

attributes. For each example, we display a sequence of five images corresponding to successive

10-meter road segments.

Each road segment is represented by two aligned images: the original input image and its

corresponding saliency map generated by the convolutional model. The saliency maps highlight

the image regions that most strongly influence the model’s decisions. In the upper-right corner

of each image, we provide the ground truth label for the corresponding road-safety attribute.

Additionally, the predictions from the convolutional (conv) and sequential (seq) models are dis-

played in the upper-left and upper-right corners of the corresponding saliency map, respectively.

The name of each attribute is shown to the left of the image sequence, along with its associ-

ated class labels. The attributes showcased in these examples include Median type, Sidewalk -

passenger-side, Roadside severity - passenger-side object, Roadworks, and Pedestrian crossing

- inspected road.

These qualitative results demonstrate how our models capture both spatial and temporal

features to make accurate predictions across consecutive road segments.
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Figure 5.4: Qualitative experiments on iRAP-BH for 5 road-safety attributes. For each attribute, the top
row shows 5 input images with the ground truth label, while the bottom row presents the corresponding
saliency maps and the predictions of the two stages of our model (conv, seq).

58



Chapter 6

Conclusion

This thesis introduces a novel two-stage visual recognition framework for automatic assessment

of road infrastructure safety attributes from monocular video data. In contrast to traditional re-

active road safety assessment methods that depend on historical accident data, this framework

adopts a proactive approach. It attempts to identify potential hazards within the road environ-

ment before the incidents occur. The shift towards proactive road safety assessment is crucial,

as traffic-related fatalities continue to be a significant global issue. This approach aligns with

international efforts to develop safer transportation infrastructure and reduce the loss of life on

roads.

The proposed framework consists of two stages - local recognition and sequential enhance-

ment. Both stages leverage deep learning techniques to handle the complexities inherent in

real-world road scenes and the challenges posed by the iRAP attribute set, such as class imbal-

ance, visually similar fine-grained classes, and temporal behavior.

The local recognition stage pre-trains a convolutional feature extractor for semantic seg-

mentation on the Vistas dataset. This facilitates detailed representations of road infrastructure

elements. This pre-training strategy proves more effective than classification pre-training on

ImageNet-1k and demonstrates the importance of detailed scene understanding for road safety

attribute recognition.

To address the pervasive challenge of extreme class imbalance in road safety datasets, this

work introduces a dynamic multi-task loss weighting strategy. By adjusting class weights based

on their recall score during training, the system maintains focus on rare classes without compro-

mising its ability to recognize more common ones. Additionally, by normalizing each per-task

loss with the sum of the example weights, we alleviate inter-attribute interference during train-

ing. This enables more effective joint learning across many significantly imbalanced tasks.

A key innovation of this research lies in the analysis and treatment of specific temporal pat-

terns of road infrastrucure safety attributes. The sequential enhancement stage, implemented

through per-attribute bidirectional LSTM networks, refines the local predictions by incorpo-
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rating a larger temporal context from adjacent road segments. This approach is particularly

effective for attributes that exhibit characteristic temporal behaviors, such as "single-peak" pat-

terns where infrastructure elements should be predicted only in the closest road segment, or

"smooth" patterns where the attributes tend to maintain consistency across consecutive seg-

ments. The bidirectional nature of these networks enables the system to leverage both past and

future context, resulting in more coherent and accurate predictions across sequences of road

segments.

The effectiveness of the proposed framework was validated through experiments across mul-

tiple datasets. The novel dataset iRAP-BH encompasses over 226,000 labeled images of 10-

meter road segments collected along 2,300 kilometers of diverse road infrastructure in Bosnia

and Herzegovina. Each image is annotated with the values of all iRAP attributes, providing

a comprehensive resource for training and evaluation of road safety assessment models. Ex-

perimental results on the iRAP-BH dataset validate the impact of each contribution - seman-

tic segmentation pre-training, dynamic multi-task loss weighting and sequential enhancement.

Qualitative analyses provide intuition and illustrate the model’s capacity to leverage spatial

and temporal context in order to adhere to the nuanced annotation conventions outlined in the

iRAP standard. In addition, the robustness and generalizability of the framework was tested

on three established road scene classification datasets: Honda Scenes, FM3m and BDD100k.

The framework outperforms all previous work on the Honda Scenes dataset, particularly on

the Road place task which provides sequential input and involves significantly imbalanced tax-

onomies. We also achieve competitive performance on FM3m and BDD100k, even though our

approach employs a weaker backbone and the two datasets allow only for single-frame input.

The results confirm the framework’s ability to accurately and robustly classify complex road

scene scenarios across different datasets and environmental conditions.

This work provides a foundation for future advancements in automated road safety assess-

ment. The rapid advancement of transformer architectures for image and video recognition

presents opportunities for enhancing both the local and sequential components of the system.

Self-supervised and contrastive training of very large foundation models on large-scale datasets

enable extraction of general, robust and transferrable image features across various domains.

The presented contributions mark a step towards efficient, scalable, and automated road in-

frastructure safety assessment. The framework provides valuable tools for infrastructure plan-

ning and maintenance by enabling more comprehensive and frequent road safety assessments.

The resulting insights can inform policy decisions, guide infrastructure improvements, and con-

tribute to the reduction of traffic-related fatalities worldwide.
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išta u Zagrebu 2016. godine završio je preddiplomski, a 2019. godine diplomski studij raču-
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TakeLab Fakulteta elektrotehnike i računarsta Sveučilišta u Zagrebu.
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