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Relative pose (relative orientation): the mutual position of the
two cameras imaging a common scene

2 3D rotation + translation up to scale (5 DOF)

2 absolute scale can not be recovered by monocular vision
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Relative pose (relative orientation): the mutual position of the
two cameras imaging a common scene

2 3D rotation + translation up to scale (5 DOF)

2 absolute scale can not be recovered by monocular vision

2 important building block in structure and motion estimation

Applications:

2 autonomous navigation and/or mapping

2 offline and online 3D modelling

2 augmented reality

2 compression

2 automated inspection
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We address performance evaluation of the novel 5pt algorithm

2 5pt algorithm performance on planar scenes

2 comparison with homography (planar, near-planar)

2 comparison with conditioned 8pt algorithms (near-planar)
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We address performance evaluation of the novel 5pt algorithm

2 5pt algorithm performance on planar scenes

2 comparison with homography (planar, near-planar)

2 comparison with conditioned 8pt algorithms (near-planar)
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2 The problem description

2 The three considered algorithms
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2 Results
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The relative pose is recovered from image correspondences:

2 many correspondence approaches, all seek a compromise
between genuine matches and outliers

2 the main approaches: wide-baseline matching, tracking

2 the subpixel matching accuracy essential
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Three main contexts:

2 minimal case, with exact solutions (RANSAC loop)

2 overconstrained case: optimizing an algebraic criterion
(closed-form re-estimation on the set of inliers)

2 iterative refinement: optimizing a nonlinear criterion
(robust ML solution, may imply recovering structure as well)
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Three main contexts:

2 [CF] minimal case, with exact solutions (RANSAC loop)

2 [CF] overconstrained case: optimizing an algebraic criterion
(closed-form re-estimation on the set of inliers)

2 iterative refinement: optimizing a nonlinear criterion
(robust ML solution, may imply recovering structure as well)

What can be recovered in closed-form from two views?

2 the essential matrix† (epipolar geometry)
q⊤

iB
· E · qiA = 0 (E = [t]

×
R, decomposition unique)

2 the homography matrix‡ (geometry of a planar scene)
H · qiA ∼ qiB (H ∼ R + 1

d
T · n⊤, decomposition not unique)

2 the affine epipolar geometry, affine homography
(not considered here) Relative pose PE: problem(2) 5/19



The eight point (8pt) algorithm:

2 recovers the essential matrix as a solution to the
homogeneous linear system An×9 · e = 0

2 requires at least 8 correspondences in general position

2 badly conditioned by default (forward bias), can be improved
in the overconstrained case

2 does not work with planes: “wrong” matrices satisfy the
epipolar constraint.
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The five point algorithm:

2 epipolar geometry + the “calibrated” constraint:
2 · EETE − trace(EET )E = 0

2 operates on matrices Ei obtained as the lowest four
null-vectors of An×9

2 the linear combination E = a · E6 + b · E7 + c · E8 + d · E9

plugged into the calibrated constraint
2 the resulting cubic system solved for a, b, c, d

2 up to ten solutions (needs disambiguation)
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2 epipolar geometry + the “calibrated” constraint:
2 · EETE − trace(EET )E = 0

2 operates on matrices Ei obtained as the lowest four
null-vectors of An×9

2 the linear combination E = a · E6 + b · E7 + c · E8 + d · E9

plugged into the calibrated constraint
2 the resulting cubic system solved for a, b, c, d

2 up to ten solutions (needs disambiguation)

2 can operate with only five correspondences

2 very good results in minimal cases (5 + 1 points)

2 can operate on planar scenes
(but not with the plane at inifinity!)
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The linear recovery of the homography:

2 requires 4 or more correpondences, well conditioned
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θ=00◦:
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θ=10◦:
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θ=20◦:
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θ=30◦:
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θ=40◦:

Relative pose PE: algorithms(4) 9/19



θ=50◦:
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θ=60◦:
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θ=70◦:
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θ=80◦:
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θ=90◦:
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Improving the numeric conditioning of the 8pt algorithm:

2 the standard 8pt algorithm:
min |A · e| , subject to |e| = 1

2 in the overconstrained case, the choice of WL and WR

below dramatically affects the solution:
WL · A · WR · e′ = 0 , where e′ = WR

−1 · e
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Improving the numeric conditioning of the 8pt algorithm:

2 the standard 8pt algorithm:
min |A · e| , subject to |e| = 1

2 in the overconstrained case, the choice of WL and WR

below dramatically affects the solution:
WL · A · WR · e′ = 0 , where e′ = WR

−1 · e

2 how to choose WL and WR (equilibrate the system)?
→ Mühlich provides a convincing recipe for WR

2 Hartley’s normalization recovers E′ = T2
−⊤ET1

−1 relating
the transformed points q′

ik = Tkqik, k = A, B

2 normalization is a proper subset of right equilibration.
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The artificial experimental setup:

2 planar motion along a unit circle:
1 DOF rotation (φ) + 1 DOF translation (θ)
around the common y axis

2 the target point cloud instantiated between two planes
(distance, depth, slant)

2 i.i.d. Gaussian noise σ expressed in pixels of a 384×288
image
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(−5◦,90◦,10,5,0◦) (−23◦,60◦,2,1,0◦) (23◦,−60◦,2,1,−30◦)

(φ,θ, distance, depth, slant)
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Experimental design:

2 we look at the distribution of the angular error in the
recovered epipole, ∆t := ∡(t, t̂), for n=10000

2 q1{∆t} (minimal), med{∆t} (overconstrained)

2 the experiments were performed in
2 Matlab (prototype, 3D figures)
2 C++ with a little help from Python (production)

2 used 5pt implementations by the original authors (Matlab)
and from the library VW34 from Oxford (C++)
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The 5pt(6) algorithm and the planar scenes:

2 frequency distributions of t (top), and ∆t (bottom)

2 the unlabeled arrow denotes t̂

2 in the presence of ambiguity, both solutions are recovered
(preference may be present!)
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Left: depth=0, σ=(0.05,0.1,0.2); Right: depth=(1,2,5), σ=0.2
θ=150◦, slant=10◦
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5pt algorithm vs. homography (5pt vs. hg) for planar scenes:

2 minimal (left), and overconstrained cases (right)

2 makes sense to compare: 5pt(6) vs hg(6)
(and 5pt-ideal(5) vs hg-ideal(5))

2 the homography is better in minimal cases, and even more
better in the overconstrained cases

15/19



5pt vs. 8pt for 3D scenes (depth=5):

2 minimal (left), and overconstrained cases (right)

2 5pt(6) beats 8pt(8) (with less information!)

2 in the default overconstrained case 8pt-muehlich is better
(this depends on sample size, depth, distance, σ, αH)
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5pt vs. 8pt vs. hg for near-planar scenes:

2 log-ratio of {q1,med} against the depth, θ=0◦, 45◦, 90◦

2 hg and 5pt level-off between depth=2 and depth=4

2 in the overconstrained cases, 5pt is never the best option

θ=0◦ θ=45◦
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5pt vs. 8pt vs. hg for near-planar scenes (cont.):

2 log-ratio of the accuracy against the depth

θ=90◦
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The addressed issues:

2 “planar degradation” of the 5pt algorithm

2 comparison 5pt vs hg (planar, near-planar scenes)

2 comparison 5pt vs conditioned 8pt (near-planar, 3D scenes)
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The addressed issues:

2 “planar degradation” of the 5pt algorithm

2 comparison 5pt vs hg (planar, near-planar scenes)

2 comparison 5pt vs conditioned 8pt (near-planar, 3D scenes)

Conclusions:

2 5pt is usually not a method of choice in the overconstrained
cases (planar and 3D)

2 5pt is the best option in minimal 3D cases

2 5pt is a viable option in a minimal planar case,
but hg scores better

2 Model selection required for best results
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