
Recovering a comprehensive road appearance mosaic from video

Ivan Sikirić
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Karla Brkić, Siniša Šegvić
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Abstract—We describe a system that employs a single
calibrated camera mounted on a moving vehicle to produce
a road appearance map as a comprehensive mosaic of
individual orthogonal views. The system first transforms
the current image of the road acquired from a driver’s
perspective into the orthogonal view by inverse perspective
mapping. Consequently, the orthogonal image is aligned
with previously recovered parts of the mosaic by an ex-
haustive search optimization technique. Experiments have
been performed on videos taken along public roads through
Croatian countryside and small cities. The obtained results
are provided and discussed.

I. INTRODUCTION

We consider a setup in which video is captured using
a single calibrated camera mounted on a moving vehicle.
The vehicle is driving down the road for which we try
to obtain a comprehensive surface appearance map. We
apply inverse perspective mapping [1], [2] to each of
the captured video frames in order to obtain orthogonal
(bird’s eye) view of the road surface [3]. Neighbouring
orthogonal views typically have many corresponding road
pixels, i.e. pixels which are projected from the same
point of the road surface. We strive to employ these
correspondences in order to place all orthogonal views
in global alignment one by one. Fusion of the aligned
orthogonal views results in the desired comprehensive
map which we term road appearance mosaic.

A surface appearance map of the road can be useful
in a variety of applications. For instance, it can be
used to verify appropriate placement of road surface
markings, which is critical for traffic safety, especially
at the crossings. It can also be used to verify the extent
of road maintenance (the surface under new asphalt).
Assessing the state of road surface in many countries is
still performed manually by human operators, and is a
time consuming and cumbersome process [4]. Providing
a georeferenced road appearance map would speed up
and simplify this process considerably, by enabling the
verification of the road markings without the need for on-
location measuring. Furthermore, road appearance map
could be used to verify the existing cadastre maps against
the actual conditions. It is even possible to obtain a
vectorized terrain map suitable for GIS databases [5].

II. RELATED WORK

Existing approaches for obtaining road appearance
mosaics and similar forms of road appearance maps
differ in the number and types of sensors installed on
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the acquisition vehicle and in the level of supervision
required.

Given that the appearance, structure and other proper-
ties of the road are well constrained, it is possible to use
a wide array of sensors which add additional cues about
the road and hence improve the end result. Commonly
used sensors include stereo cameras, laser scanners, GPS,
odometers, etc. Different combinations of sensors call for
different approaches and algorithms.

Wang et al [6] describe a system which works with
data obtained by a mobile mapping vehicle equipped
with an inertial navigation system, dual frequency GPS,
6-12 color cameras and an odometer. Given the GPS
information, multi-camera panoramic images and sensor
calibration parameters, their algorithm outputs a GIS-
database-compatible road geometry information, which
consists of a 3D lane line model of all the lane lines
observed in the video. For each line, line type and color
attributes are also available. To obtain the model they
first perform a variant of inverse perspective mapping,
which enables them to get an orthogonal view of the
road. Orthogonal view of the road is beneficial because it
simplifies lane line detection. Inverse perspective mapping
relies on the assumption that the road is locally planar,
which is not always the case. Hence, pitch correction of
the mapping is achieved by modeling the road surface
profile using geolocation information. For each frame,
exact position of the measurement rack in a geographical
coordinate system is known. Using this information, it
is possible to estimate the spatial trajectory of the ve-
hicle, which corresponds with the road surface profile.
Having obtained the orthogonal image, line segments are
extracted, linked, classified and added to the model. The
system is fully automated.

Shi et al [7] rely on videos acquired from a vehicle
equipped with an odometer, two GPS receivers, two sets
of stereo camera systems and three laser scanners. By
using laser scanners they obtain range data for road and
roadside objects in the form of 3D point clouds. The laser
data is then fused with the image data to obtain fully
automated spatial positioning of road parts, which results
in a road appearance map. Other interesting results with
laser scanners are available in [8], [9].

There are approaches that rely on some amount of hu-
man interaction. For example, Barinova et al [10] present
an algorithm for road mapping which is continuously
trained to detect a road with the help of a human operator.
The algorithm includes an offline learning stage and
an online operation / correction stage. However, strong
supervision is not a drawback in this case, as the purpose
of the described system is to be used as an interactive
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Fig. 1. Images captured from a moving vehicle (a,b) and the corre-
sponding inverse perspective mappings (c,d). Different configurations of
the road are shown: a straight road (a) is transformed into the orthogonal
image (c), a slightly curved road (b) is transformed into the orthogonal
image (d).

tool for examination of road defects.
To summarize, using multiple different sensors yields

better maps. However, the overall cost and complexity of
obtaining a map increases with the number of sensors.
Depending on the application, the systems for road map-
ping can be fully automated or interactive. The system we
would like to build is similar in spirit to the approach of
Wang et al [6], as it also produces a road appearance
mosaic, however we would like to achieve that using
as little sensorial input as possible. To the best of our
knowledge, none of the previous research has addressed
the problem of recovering road appearance mosaics by
only employing a single perspective camera.

III. INVERSE PERSPECTIVE MAPPING

A single captured video frame represents a projection
of a 3D scene onto the image plane (cf. figure 1(a), 1(b),
figure 2(bottom) and figure 3(bottom)). This process is
generally impossible to invert since it is not injective.
However, we are only interested in obtaining the image of
the road surface from an orthogonal perspective (cf. figure
1(c), 1(d)), and do not need to attempt a full 3D recon-
struction of the scene. If we assume that the road surface
is contained in a plane, and that it is not occluded by other
objects, then we can employ inverse perspective mapping
[1], [2], [11] to obtain orthogonal images.

In the following, we shall denote the points of the plane
q ∈ π by homogeneous coordinates [12] such that qi =
[xi, yi, 1]>∀i, where (xi, yi) denote the usual cartesian
coordinates in the Euclidean plane. Denote the points on
the road plane as qR, their projections to vehicle’s camera
plane as qP and their projections to the orthogonal plane
as qI. Then these points can be related by the following
bijective mapping [12], [13]:

qPi = HRP · qRi,∀i (1)
qIi = HRI · qRi,∀i . (2)

The transformations HRP and HRP are planar projective
mappings, which are often also referred to as homogra-
phies. From (1) and (2) follows:

qIi = HIPM · qPi,∀i (3)

HIPM = HRI ·H−1
RP . (4)

The homography HIPM is often referred to as inverse
perspective mapping [1], [2], [11].

Once the matrix HIPM is known, the orthogonal view
Iorth is easily recovered from a given perspective image
Ipersp as follows:

Iorth(q) = Ipersp(H−1
IPM · q),∀q ∈ Iorth . (5)

There are many ways for recovering the matrix HIPM.
The simplest one is to manually locate four known points
in the perspective image, and to recover the unique
mapping as the solution of a homogeneous linear system
[12]. We have established an involved but somewhat more
practical method whereby it suffices to select the edges
of a straight road ahead, which is similar in spirit to what
has been proposed in [14]. However, the following two
assumptions need to hold: (i) that the internal camera
parameters are known [15], and (ii) that the roll of the
camera with respect to the road plane is negligible. The
matrix HIPM can be calibrated beforehand (this is our
current practice) [16], or continuously adapted to the
dynamics of the vehicle motion by a suitable optimization
procedure [14], [17].

The matrix HIPM could also be recovered by determin-
ing the appropriate motion between the physical camera
and the virtual camera corresponding to the orthogonal
view, using the following equation [13].

HIPM = KC · (R +
TnT

d
) ·K−1

C . (6)

In the above equation, KC denotes intrinsic camera
parameters [15], R and T rotation and translation from
the physical to the virtual camera, respectively, while n
and d denote the normal of the plane and its distance in
the coordinates of the physical camera.

In practice, the assumption about local planarity of the
road surface holds for short parts of the road, because
extreme slope changes would be dangerous and are hence
avoided in road construction. Nevertheless, the vertical
orientation of the camera (the tilt angle) can vary slightly
due to vehicle dynamics. Even slight errors in determined
orientation would produce large errors in the appearance
of the parts of the road that are far from the camera.
Fortunately, there is little pixel data for those parts of
the road, so they must be ignored in any case. For these
reasons, we can safely assume the plane of the road is
constant throughout the video sequence.

IV. OBTAINING THE ROAD APPEARANCE MOSAIC

The system we propose has been developed and tested
on a subset of a large collection of videos obtained from
a vehicle driving the countryside, suburbs and small cities
in Croatia [4]. The vehicle is equipped with a single
top-mounted camera, an odometer and a GPS sensor
(cf. figure 4). Hence, all obtained videos are georefer-
enced. Additionally, all sensor inputs are synchronized



Fig. 2. Five consecutive frames in a video of a straight road (top) and the corresponding orthogonal views (bottom).

Fig. 3. Five consecutive frames in a video of a curved road (top) and the corresponding orthogonal views (bottom).

with respect to the common clock. However, in this stage
of our work we rely exclusively on the video data and
discard the information obtained by GPS and odometer.

In the presented system the surface appearance map
is obtained by combining two techniques: (i) inverse
perspective mapping and (ii) similarity based image align-
ment. Each frame of the video is first transformed into an
orthogonal perspective. Subsequent frames are then joined
into a map by examining road pixel data.

V. ALIGNING ORTHOGONAL IMAGES

By using inverse perspective mapping, we obtain an
orthogonal image for every frame of the video sequence.
A single part of the road is represented in multiple
consecutive images, as shown in figures 2 and 3. Notice

Fig. 4. The vehicle used for acquisition of road videos, equipped with
a single camera, a GPS receiver and an odometer. The videos are geo-
referenced using an on-board computer equipped with a geoinformation
system.

that even though only a small part of the scene is
visible in orthogonal images, they still share vast amount
of common pixel data. This can be used to determine
the relative position of orthogonal images in a plane,
which enables us the construct the comprehensive road
appearance mosaic. The quality of the pixel data of the
common road part in subsequent images is not the same.
If the vehicle is moving forward, then the corresponding
part of the road has moved closer to the camera, and has
better resolution in newer frames. For that reason, newer
frames overwrite the pixel data of older ones.

Since we assume the road is locally planar, parts of the
road appearing in two subsequent orthogonal images can
be related by a transformation matrix T with 4 degrees
of freedom: translation along the line of movement (i.e.
direction of road), slight translation orthogonally to the
line of movement, rotation along a vertical axis, and
scaling (which approximates the effects of vehicle tilting).
Finding these parameters is an optimization problem. We
use sum of squares of differences of corresponding road
pixel intensities as the objective function. We denote the
orthogonal image that we are trying to place as Icur, its
predecessor as Iprev and the pixels of the predecessor as
qi. The objective function is:

F (T) =
∑

i

(Iprev(qi)− Icur(T · qi))2 (7)



It is important to note that we consider only pixels qi for
which intensity of their mapping Icur(T · qi) is defined
(falls within the current orthogonal image). If these pixels
form less than 30% of the total number of pixels in the
image, than the value of the function is set to infinity
instead. This avoids the trivial case of transformations
which result in zero overlap of the images. The threshold
of 30% was chosen by ad-hoc testing, and invites futher
discussion.

The transformation matrix T is obtained by solving:

T = arg min
T
{F (T)} (8)

Our system currently uses exhaustive searching to solve
this problem. It would perform poorly if it were to search
the entire state space (because evaluation of the objective
function is time consuming). Additional knowledge is
required to reduce the search space of the parameters.
A simple model of vehicle motion is used to constrain
the translation and rotation parameters, since the vehicle’s
ability to change velocity and direction is limited. The
perceived change of scale parameter has been low in
considered videos, so we chose to ignore it at this stage.
The obtained transformation matrix T is used to generate
the road surface appearance map in the following way:

1) Start with an empty road mosaic and set the orthog-
onal image of the first video frame as the current
orthogonal image.

2) Place the current orthogonal image at the origin of
the road mosaic image.

3) If the current image has no successor, end.
4) Obtain the tranformation matrix T for the current

orthogonal image and its successor.
5) Apply this transformation to the successor image.
6) Combine the current and the successor image, store

the result as new current image, and repeat from
step 2.

VI. RESULTS AND CONCLUSION

The proposed approach yields encouraging results un-
der some constraints. The image alignment performs well
if the movement of the vehicle is reasonably smooth.
Good results are obtained if there is little to no rotation
of the vehicle (cf. figure 5). Shadows, patches of newer
asphalt and surface markings ensure good convergence
of the image alignment algorithm, while bad convergence
has been occasionally noted on textureless parts of the
road. Those parts of the road, however, are the least
interesting, because absence of texture usually indicates
there are no defects in road surface. Due to heavy compu-
tational load of the exhaustive search, the system performs
at about 10 seconds per frame on a modern machine.

VII. FUTURE WORK

We plan to derive additional constraints from the use
of motion sensors, such as GPS. We have developed
a working visual odometry subsystem which has not
yet been integrated with the road mapping framework.
We have promising results with using steerable filters
to obtain road lane lines. The road lane lines can be
used to recover initial approximations of the alignment

Fig. 5. The obtained road appearance mosaic. The locations of the last
five orthogonal images are highlighted.

transformation parameters. If any lane line is present, we
can calculate the rotation parameter. Dashed lane line
can be used to impose constraints on translation. Road
detection simplifies removal of non-road pixels, which
would speed up the evaluation of the objective function,
by taking into account only pixels projected from the road
plane. More advanced modelling of vehicle movement
would be very useful. It would reduce the state space
for alignment optimization process, and it could be used
to detect errors occurring in other subsystems (such as
visual odometry).
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