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tumačenju scena”. Doktorsku disertaciju pod naslovom “Višeagentsko praćenje objekata ak-
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Abstract

This thesis proposes an image categorization framework to deliver added value to fleet manage-

ment systems. In order to match the client-server nature of fleet management the framework is

conceived around the following two requirements: i) the bandwidth should be used sparingly,

and ii) the set of image categories must be open. These requirements can be satisfied by a suit-

able division of responsibility between the clients and the server. The clients are responsible for

representing images with descriptors which are designed to be compact and category-agnostic.

The server is responsible for classifying descriptors into an arbitrary set of categories. This

organization minimizes the bandwidth requirements due to compactness of the descriptors, and

ensures that the set of categories remains open due to clients being oblivious to it.

Several kinds of image descriptors have been considered: handcrafted gradient histograms

(GIST, SIFT), spatial Fisher vector embeddings, and convolutional representations trained in

an end-to-end fashion (VGG, DenseNet, ResNet, MobileNetV2 and DCGAN). The descriptors

are further compressed using PCA and quantization, after which they are classified by SVM.

In order to evaluate the considered methods we introduce FM3–a novel image dataset which

is specifically designed for fleet management applications. The dataset contains 11448 images

which were acquired in different weather conditions and labeled with the following binary at-

tributes: highway, road, tunnel, tunnel exit, settlement, overpass, booth, traffic. The results

indicate that excellent classification results can be achieved with deep convolutional representa-

tions trained in a supervised manner. We refrain from fine tuning on the target dataset (although

this further improves the results) in order to avoid reducing the descriptor performance on new

categories due to catastrophic forgetting. Image descriptors can be as small as 512 bits, while

still offering good performance. The proposed framework is able to tolerate adverse weather

and poor illumination conditions provided that some such samples are present in the SVM train-

ing dataset.

Keywords: computer vision, intelligent vehicles, image classification





Sažetak

Ova doktorska disertacija proučava načine obogaćivanja sustava za upravljanje voznim parkom

(engl. fleet management) korištenjem računalnog vida. Sustavi za upravljanje voznim parkom

detaljno se opisuju, te se ukazuje na moguća poboljšanja koja bi bila omogućena korištenjem

podsustava za kategorizaciju slika prometnih scena. Sustavi za upravljanje voznim parkom

sastoje se od velikog broja jednostavnih klijenata (ured̄aja ugrad̄enih u vozila) koji se spa-

jaju na središnji poslužitelj koji vrši nadzor. Ova disertacija utvrd̄uje ograničenja i zahtjeve

nametnute takvom arhitekturom te predstavlja sustav za kategorizaciju slika koji ih zadovol-

java. Razmatraju se suvremene metode računalnog vida potrebne za izgradnju takvog sustava,

s glavnim fokusom na metode računanja kratkih opisnika slika. Ova disertacija doprinosi novi

skup podataka nazvan FM3 koji se sastoji od 11448 slika prometnih scena snimljenih iz per-

spektive vozača. Slike su označene s osam binarnih atributa korisnih sustavima za upravljanje

voznim parkom: autocesta, cesta, tunel, izlaz iz tunela, naselje, nadvožnjak, naplatna kućica,

gust promet. Skup slika FM3 se koristi za detaljnu eksperimentalnu evaluaciju svih korištenih

metoda računalnog vida. Rezultati eksperimenata pokazuju da se prometne scene mogu kat-

egorizirati vrlo pouzdano, poštujući sva ograničenja i zahtjeve sustava za upravljanje voznim

parkom. Najbolji rezultati postižu se korištenjem vrlo dubokih modela konvolucijskih neu-

ralnih mreža. Uz korištenje metoda za reduciranje dimenzionalnosti i kvantizaciju moguće je

proizvesti opisnik slike velik 512 bitova koji se kategorizira uz prosječnu preciznost 96%.

Poglavlje 1, “Uvod”, daje kratak opis područja istraživanja, te ciljeve i doprinose istraži-

vanja.

Poglavlje 2, “Relevantni radovi”, daje pregled radova relevantnih sustavima za upravljanje

voznim parkom, te srodnih radova iz područja računalnog vida, s naglaskom na kategorizaciju

slika. U kontekstu ove disertacije, područja relevantna sustavima za upravljanje voznim parkom

su odred̄ivanje pozicije vozila na mreži prometnica, te rekonstrukcija ruta. Daje se kratak pre-

gled šesnaest relevantnih radova iz tih područja. Pregled područja kategorizacije slika započinje

kratkim opisom ručno krojenih pristupa za opisivanje slika histogramima lokalnih značajki.

Slijedi pregled područja dubokog učenja: daje se kratak pregled povijesti neuronskih mreža,

definiraju se temeljni pojmovi, te se opisuju arhitekture mreža. Poseban naglasak je na modele

korištene u ovoj disertaciji: VGG, ResNet, DenseNet i MobileNet, za koje se daje usporedni

pregled broja parametara, složenosti i uspješnosti. Konačno, daje se kratak pregled radova koji

se bave kategorizacijom prometnih scena. Učenje prijenosom znanja se primjenjuje u ovom

istraživanju, zbog čega slijedi pregled radova koji proučavaju to područje, s naglaskom na prob-

lem katastrofične interferencije. Slijedi pregled radova nenadziranog učenja dubokih konvolu-

cijskih modela GAN, DCGAN i WGAN. Poglavlje završava pregledom radova koji se bave

metodama za računanje vrlo kratkih opisnika slika, te metodama za skraćivanje zapisnika slika.



Poglavlje 3, “Unaprjed̄enje sustava za upravljanje voznim parkom računalnim vidom”, de-

taljno opisuje namjenu i funkcionalnosti sustava za upravljanje voznim parkom. Daje se detalji

pregled klijent/poslužitelj arhitekture tih sustava. Opisuje se na koji način postojeći sustavi

prikupljaju informacije o vozilima, te na koji način se prikupljene informacije koriste. Daje se

jednostavan i ilustrativan pristup odred̄ivanja pozicije vozila na karti, te odred̄ivanja rute kojom

je vozilo prošlo. Identificiraju se neki problemi postojećih pristupa, te se ilustrira kako bi ih

bilo moguće umanjiti poznavanjem kategorija prometnih scena. Poglavlje završava pregledom

ostalih potencijalnih upotreba kategorija prometnih scena: unaprjed̄enje praćenja u realnom

vremenu, alarmiranja te generiranju detaljnijih izvještaja na temelju povijesnih podataka.

Poglavlje 4, “Integriranje komponente za kategorizaciju slika u arhitekturu sustava za up-

ravljanje voznim parkom”, predstavlja podsustav za kategorizaciju slika kakav bi se mogao

ugraditi u sustave za upravljanje voznim parkom. Prvo se analiziraju dva naivna pristupa:

klasifikacija slika na klijentima i klasifikacija slika na poslužitelju, te se identificiraju njihovi

nedostatci. Klasifikacija slika na klijentima nije dovoljno fleksibilna iz dva razloga: i) zahti-

jeva kompleksne i skupe procedure za promjenu skupa ciljnih kategorija, te ii) onemogućuje

rekalkulaciju ciljnih kategorija iz arhivskih podataka. Klasifikacija slika na poslužitelju je vrlo

zahtjevna u terminima potrebnog podatkovnog prometa, te prostora za pohranu podataka. Pred-

laže se bolje rješenje: klijenti računaju i poslužitelju šalju kratak opisnik slike, na temelju kojeg

poslužitelj odred̄uje ciljne kategorije prometne scene. Utvrd̄uju se poželjna svojstva opisnika:

deskriptivnost, kratkoća, jednostavnost računanja. Takod̄er se utvrd̄uju poželjna ograničenja na

način učenja opisnika. Opisnici ne smiju znati za ciljne kategorije, kako bi se skup ciljnih kate-

gorija mogao što lakše mijenjati u budućnosti. Zbog što bolje generalizacije poželjno je i da se

opisnici ne trebaju učiti na ciljnim slikama. Poglavlje završava kratkim razmatranjem sustava

klasifikacije i arhiviranja podataka na poslužitelju.

Poglavlje 5, “Metode”, opisuje metode koje su razmatrane za izgradnju predloženog sus-

tava kategorizacije prometnih scena. Prvo se navode dva opisnika temeljena na prostornim

Fisherovim vektorima. Jedan se bazira na lokalnim SIFT značajkama i GIST opisniku (naz-

van SIFT/SFV+GIST), dok drugi koristi značajke dobivene konvolucijskom mrežom VGG-19

(nazvan VGG/SFV). Zatim je dan pregled opisnika zasnovanih na dubokim konvolucijskim

modelima ResNet-50, DenseNet-121 i MobileNetV2. Konačno se razmatra opisnik baziran

na nenadziranom učenju, temeljen na DCGAN generativnoj suparničkoj arhitekturi. Za svaki

opisnik se analiziraju računalni zahtjevi i složenost, kao i potencijal za postizanje dobre gen-

eralizacije. Komentiraju se mogućnosti postizanja niskodimenzionalnih varijanti opisnika od-

abirom prikladnih hiperparametara. Zatim se opisuju metode za smanjenje dimenzionalnosti i

efikasno kodiranje opisnika. Poglavlje se nastavlja opisom SVM klasifikatora te završava pre-

gledom metoda za mjerenje uspješnosti klasifikacije.

Poglavlje 6, “Skup podataka za sustave s upravljanjem voznim parkom”, prezentira skup
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podataka prikupljen za potrebe eksperimentalne evaluacije ovog istraživanja. Skup sadrži 11448

slika prometnih scena iz perspektive vozača. Detaljno se opisuje postupak prikupljanja slika.

Velika većina slika (98%) je prikupljena iz video snimki vožnji po hrvatskim cestama. Vožnje

je snimio autor disertacije kroz period od pet godina, od 2013. do 2018. godine, koristeći

kamere pametnih telefona. Manji dio slika (ukupno 205) je preuzeta s internetskog servisa

Mapillary.com. Slike preuzete s interneta su rukom odabrane kako bi se povećao broj uzoraka

nekih vrsta prometnih scena koje se rijetko pojavljuju. Sve slike su prikupljene za vrijeme

dana ili sumraka. Posebna pažnja je posvećena prikupljanju slika s raznim oblicima vizualne

degradacije. Podskup od 5035 slika sadrži scene snimljene za vrijeme kiše, snijega, magle, te

u periodima nepovoljnih kuteva sunca (pred sumrak i za vrijeme sumraka), dok preostale 6413

slike nisu značajno vizualno degradirane. Uvidom u prikupljene slike uočeno je osam kategorija

scena korisnih sustavima za upravljanje voznim parkom: autocesta, cesta, tunel, izlaz iz tunela,

naselje, nadvožnjak, naplatna kućica, gust promet. Za svaku od kategorija opisani su očekivani

doprinosi sustavima za upravljanje voznim parkom. Poglavlje završava definiranjem kriterija

anotiranja te pregledom distribucije kategorija.

Poglavlje 7, “Eksperimenti”, detaljno opisuje postavke i rezultate svih eksperimenata prove-

denih u ovom istraživanju. Prvo se opisuju detalji sustava za klasifikaciju, jer se isti sustav klasi-

ficiranja koristi za evaluiranje svih opisnika. Zatim se precizno i detaljno opisuju hiperparametri

svih šest opisnika opisanih u poglavlju 5. Za svaki opisnik se navode postignute prosječne

preciznosti klasificiranja na svakoj od osam kategorija. Kao ukupna mjera uspješnosti uzima

se aritmetička sredina prosječnih preciznosti svih osam kategorija. Svim opisnicima se zatim

smanjuje dimenzionalnost korištenjem PCA, osim MobileNetV2 opisnika, koji je vrlo kratak

i bez tog koraka. Opisnici dimenzionalnosti reducirane na potenciju broja dva od 1024 do

16 se zatim klasificiraju linearnim SVM klasifikatorom i SVM klasifikatorom s RBF jezgrom.

Ovisnost postignute prosječne preciznosti klasifikacije o duljini opisnika se zatim prikazuje

u grafičkom obliku, čime se pokazuje da se opisnici mogu smanjiti do 128 komponenti bez

velikih gubitaka performansi, ukoliko se koristi RBF jezgra. Pokazuje se da DenseNet-121

opisnik postiže najbolje rezultate bez obzira na duljinu. Dobiveni opisnici se zatim kvantiziraju

koristeći dva pristupa: product quantization (PQ) i naše njemu jednostavnije varijante nazvane

component-independent quantization (CQ). Detaljnom serijom eksperimenata se pokazuje da

je za vrlo malene kodove opisnika (64 bita i manje) bolje koristiti PQ kvantizaciju, dok je za

kodove od 128 bitova i veće bolje koristiti CQ pristup. Opisnici od 128 komponenti kodirani

s 512 bitova ne pokazuju gotovo nikakve gubitke u performansama u odnosu na pune verzije

opisnika. Daljnji eksperimenti pokazuju da je primjenom algoritama za kompresiju opće nam-

jene na veće skupove opisnika moguće uštedjeti još 20% do 40% prostora za pohranu. Poglavlje

završava detaljnom analizom DenseNet-121 opisnika, s naglaskom na testiranje otpornosti na

vizualne degradacije. Pokazuje se da se i vizualno degradirane slike mogu uspješno klasificirati,

vi



pod uvjetom da se dio takvih slika uključi u skup za učenje SVM klasifikatora.

Poglavlje 8, “Zaključci i budući rad”, rezimira provedeno istraživanje. Dobiveni rezultati se

diskutiraju, donose se zaključci te se daje smjernice za buduća istraživanja.

Ova disertacija demonstrira da je moguće izgraditi sustav za kategoriziranje slika koji je

koristan sustavima za upravljanje voznim parkom. Ograničenja i zahtjevi takvih sustava su

identificirani i zadovoljeni. Razmatrane metode su detaljno evaluirane na novom skupu po-

dataka koji je doprinos ove disertacije. Korištenjem dubokih konvolucijskih modela moguće je

dobiti vrlo kompaktne i robusne opisnike slika koje je moguće kategorizirati s velikom razinom

preciznosti.

Ključne riječi: računalni vid, inteligentna vozila, kategorizacija slika
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Chapter 1

Introduction

This thesis studies how computer vision can be used to improve fleet management systems.

Fleet management systems monitor fleets of vehicles using a global navigation satellite

system (GNSS), and possibly other sources of data. Although use of computer vision in vehicles

is on the rise [1], it is being used primarily to implement and improve advanced driver assistance

subsystems, not for fleet management.

This thesis shows that computer vision can be used to improve some existing features of

fleet management, as well as to add some new features. It discusses the hardware and software

requirements, limitations and considerations pertinent to fleet management systems. It proposes

an elaborate computer vision framework integration which meets all the requirements and does

not exceed the hard limitations. It does so in a way that is feasible at current level of technology,

and is also expected to remain relevant in the foreseeable future. It presents a testing framework

which verifies the proposed methods and enables their comparison with latest state-of-the-art

methods.

1.1 Contributions

One of the contributions of this thesis is improving fleet management systems by providing a

vision based subsystem which can be used to augment several aspects of fleet management, as

will be discussed in Chapter 3. Due to architectural limitations of fleet management systems,

it is not trivial to construct an image categorization subsystem that meets all the requirements.

Another contribution of this thesis is exactly that: the organization of a scene categorization sub-

system which is technologically suitable for use in fleet management. The proposed framework

is presented in Chapter 4. The integration between fleet management and image categoriza-

tion subsystem is not useful unless the image categorization performs accurately. Design and

evaluation of image descriptors on a limited representation budget is presented in Chapter 5,

and is another contribution of this thesis. Finally, a detailed experimental evaluation of the pro-
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posed methods, and their comparison to latest state-of-the-art methods was done, as presented

in Chapter 7. A novel dataset of labeled traffic scene images was collected and contributed in

order to make this possible, presented in Chapter 6.

To summarize, the contributions of this thesis are as follows:

1. Including visual information into the vehicle status in order to enable providing a more

complete fleet management service.

2. Organizing the subsystem for collecting visual information about the vehicle environment

according to requirements and limitations specific to fleet management, such as network

bandwidth, processing power of embedded computers and feasible implementation.

3. Designing and evaluating image representation models suitable for describing traffic scenes

with descriptors of constrained dimensionality.
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Chapter 2

Related work

This thesis explores how fleet management systems might be improved by computer vision

methods. This chapter overviews prior research relevant to both fields.

Fleet management systems employ a wide variety of algorithms to implement their many

features. The key features of interest in this work are map matching and, to lesser extent route

reconstruction. Their overview is presented in the first section of this chapter.

The second section of this chapter gives detailed overview of relevant computer vision ap-

proaches, more specifically of image categorization approaches.

2.1 Map matching and route reconstruction

Map matching is s process of matching the vehicle coordinates with the most likely road seg-

ments of a digital road map. Route reconstruction is a process of guessing the most probable

route the vehicle traveled, based on received coordinates. Since many map matching approaches

take road connectivity into account, the route reconstruction is often a byproduct of map match-

ing process.

Quddus et al. [2] categorize map matching approaches into four categories:

∙ geometric analysis

∙ topological analysis

∙ probabilistic algorithm

∙ other advanced methods

Geometric methods focus only on the geometry of the road map, and ignore connectiv-

ity. Bernstein and Kornhauser [3] define three sub-types of geometric methods: point-to-point

matching, point-to-curve matching and curve-to-curve matching. In point-to-point matching, a

point received by the GNSS is matched to the closest point of the road geometry (the road net-

work is represented as a bag of points, not curves or line segments). This process is very simple

and fast, but does not provide accurate results. In point-to-curve matching, a point received by
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the GNSS is matched to the closest curve of the road geometry. This is a useful approach if only

a single point of a vehicle trajectory is available. In curve-to-curve matching, short segments

of vehicle trajectory are matched to the closest curves of the road geometry. White et al. [4]

present matching algorithms that rely on both the point-to-curve and curve-to-curve approaches.

Phuyal [5] uses a curve-to-curve approach in a matching system that combines GNSS and dead

reckoning sensors.

Topological map matching methods take the road connectivity into consideration, as well as

geometry. Greenfeld [6] match the initial point to the nearest road segment. Subsequent points

are matched to the segment which best matches the distance and orientation, but only taking into

consideration road segments that are quickly reachable from the current segment. Blazquez and

Vonderhoe [7] present an approach that considers triples of subsequent points. For each of the

points, match candidates are collected in the road map neighborhood. Match candidates are

considered in turn until feasible shortest paths can be found between the candidates of the first

and the second, and second and third points. A shortest path is considered to be feasible if its

estimated average speed approximately matches the average speed between received points.

Probabilistic algorithms take the position confidence into consideration. Zhao [8] derives

the error region for each position from the error variances received by the GNSS sensor. Several

matching candidates are considered within the error region, and the best candidate is selected

by examining the distance from the point, the vehicle heading and the connectivity with the

previous point. Ochieng et al. [9] present an expert system based on empirical studies. It

takes into account the error sources associated with the positioning sensors, the heading and

speed information of the vehicle, the historical trajectory of the vehicle, road connectivity and

orientation. Similar to approach of Zhao [8], it also considers an error region, but only when

the vehicle travels through an intersection, which speeds up the process and reduces errors.

Advanced methods try to refine the matching candidate selection process by using bet-

ter, more complex models. Yang et al.[10] present an approach based on Dempster–Shafer’s

(D–S) theory of evidence using rule based logical inference systems. The vehicle positions are

smoothed with a Kalman filter. The matching candidates are selected and weighted according

to distance obtained by point-to-curve matching, which does not consider the road topology.

Syed and Cannon [11] present an approach based on a fuzzy logic model. They use a fuzzy

interface system (FIS) to match the vehicle points. The inputs are distance of road segment

from the reported point, orientation and distance from previous point. Fu et al. [12] present

another approach based on fuzzy logic. The inputs to the FIS of their system are the distance

between the road segment and reported point and direction of the road segment. The output is

the possibility of matching to that road segment. Newson and Krumm [13] present an approach

based on a hidden Markov model (HMM). The HMM states are road segments, and state mea-

surements are the noisy points received from GNSS. Their system matches the points in batch,
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after they have all been collected. Another approach based on HMM is presented by Mohamed

et al. [14]. Their system is designed to provide map matching for cellular-based positioning.

It works in a context of very low input frequency and precision, and assumes the vehicle is

driving exclusively on major roads. They use three consecutive filters: speed filter, α-trimmed

mean filter and direction filter to detect noisy transitions. Griffin et al. [15] present a system

that identifies key waypoints in the vehicle trajectory using a modified Peucker curve reduc-

tion algorithm. A driving directions service is then used to find a route containing all of the

waypoints. The route is further improved using a filter-and-refine approach to identify incorrect

portions of the route and eliminate the waypoints that lead to incorrect matching. Atia et al. [16]

develop a lane determination system that fuses accelerometers, gyroscopes and GNSS using an

extended Kalman filter. A curve-to-curve matching is done using a HMM by a least-square re-

gression step that estimates the lane. The success rate of achieved lane determination is 97.14%.

Taguchi et al. [17] present a system that eliminates the latency inherent in HMM approaches by

using a novel probabilistic route prediction model to estimate future GNSS points. The predic-

tion model is trained on historical trajectory data. They achieve equal or greater accuracy than

previous HMM models, without any latency.

The author is not aware of any prior work that relies on image categorization specifically to

improve the map matching or route reconstruction process.

2.2 Image categorization

Image categorization is the main focus of this thesis. Relevant topics are hand-crafted ap-

proaches derived from the bag-of-visual-words idea, deep learning in general, traffic scene

classification, transfer and unsupervised learning, and short image descriptors.

2.2.1 Bag-of-visual-words

Before the advent of deep learning methods, most successful image classification approaches

have been based on the seminal bag-of-visual words method [18]. The method is inspired

by the bag-of-words classification approach in text mining, in which a textual document is

represented as a histogram of the words it contains. This approach involves agreeing on a word

normalization method (e.g. lemmatisation), and a dictionary which ideally contains all words

that might appear in a corpus of documents. For each document, all words are normalized, and

number of occurrences of each dictionary word in that document is counted, thus producing the

histogram. The histogram is regarded as a feature vector, a representation of that document that

can be classified by a general purpose classifier. Note that this approach discards all information

about the locations of words inside a document: both absolute word position, as well as relative
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word order are completely disregarded.

To adapt the bag-of-words approach to the visual domain, Csurka et al. introduce the concept

of visual words [18]. First, random sampling of local images patches is performed on all images

in the dataset, and their descriptors are calculated. Next, a patch distance measure is defined

(e.g. Euclidean, Mahalanobis), and the local image patches are clustered based on closeness.

The resulting clusters are termed visual words, and thus the dictionary of visual words is formed.

Each local patch descriptor is represented by a single visual word: the cluster in which it resides.

The image descriptor is obtained by calculating the histogram of visual words. This approach

is called bag-of-visual-words. Note that the exact distance of a local patch from the cluster

centroid is ignored, as well as the location of visual words inside the image.

The key step in the bag-of-visual-words framework is the calculation of descriptors of local

image patches, also know as local features. A number of methods have been proposed, such as

Scale-invariant feature transform (SIFT) [19, 20], Local binary patterns (LBP) [21], Maximally

stable extremal regions (MSER) [22], Speeded up robust features (SURF) [23], Binary robust

invariant scalable keypoints (BRISK) [24] and Fast retina keypoint (FREAK) [25]. They were

designed with different goals in mind (e.g. blob detection, viewpoint change detection, object

tracking, etc.) and as such have different properties (e.g. rotational or scale invariance, resis-

tance to noise or illumination changes, etc.). The SIFT patch descriptor in particular is invariant

to scaling, translation and rotation, and partially invariant to illumination changes and affine or

3D projection, and as such is often utilized in bag-of-visual-words approaches.

Since spatial layout of visual words inside an image carries a lot of information for many

classes of images, various extensions and modifications of the original bag-of-visual-words

method have been proposed over the years [26]. One of the approaches defines a fixed layout

of image regions, applying the complete bag-of-visual-words calculation on each region, and

concatenating the results. One example of this approach is spatial pyramid matching [27],

which uses a layout of quad tree. Other approaches use more precise models to describe the

local patch spatial distribution. For example, spatial Fisher vectors [28] aggregate locations of

visual words by leveraging a spatial generative model expressed as a mixture of Gaussians.

An overview of the general bag-of-visual-words descriptor pipeline is shown in Figure 2.1.

An image is transformed to a more compact and meaningful representation through a series of

steps. The obtained image vector can then be classified using a general-purpose classifier, such

as support vector machine (SVM) [29].

2.2.2 Deep learning

The bag-of-visual words classification framework can be regarded as a composition of three

non-linear stages: i) extraction of patch descriptors, ii) aggregation of local features, with pos-

sible encoding of spatial layout and iii) classification (e.g. using an SVM classifier). Stage i)
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Figure 2.1: The bag-of-visual-words pipeline. Image patches are sampled and described. The patch
descriptors are then coded, and the obtained set of patch codes is spatially pooled to produce the image
descriptor.

is hard-coded, while the parameters of stages ii) and iii) are learned sequentially. In contrast

to the bag-of-visual-words approach, the deep learning models train all stages jointly. In fact,

there is no clear separation between the stages, as deep learning models gradually transform the

image representation from low-level features to high-level representations through a series of

non-linear transformations.

These transformations are often called layers, as each one is computed by a non-linear layer

of a deep neural network. The front and middle layers usually perform either convolutional

mappings followed by a non-linear activation, or aggregation of precedent features through

pooling. In the earlier architectures several of the latter layers were fully-connected, while in

modern architectures only the last layer is fully-connected, and typically outputs the probability

scores for each class label. Gradients of all parameters of the resulting compositional model are

determined with the backpropagation algorithm, while the training is usually performed with

some variant of the stochastic gradient descent.

A brief history of neural networks

The term neural network is used because they were inspired by biological systems, in which

a basic processing unit is a neuron. A neuron in artificial neural networks simply computes a

weighted sum of its inputs, followed by an activation function (also known as a nonlinearity).

Neural networks with multiple non-linear layers exist since the early 1960’s [30], and they

were always capable of modeling very complex mappings, at least in theory. The main problem

back then was the same one that remained unsolved for several decades: how to find the best

weight parameters of neurons. In theory, the more parameters the network has, the more power-

ful it is in terms of learning capacity, and is expected to be able to perform better than a simpler

network. However, adding more layers to a network actually led to worse performance, as the

parameter learning algorithms completely failed to find any parameters that solved the problem

at hand [31].

Gradient backpropagation algorithm was proposed in 1986 [32]. It is a mathematically

sound way to calculate the gradients of network parameters in the gradient descent step. Though
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it is simple and fast, the algorithm by itself is not enough to enable learning of arbitrary net-

works. Popular neuron activation functions of that time were sigmoid and tanh, which lead to

networks that suffered from problems of saturated (dead) neurons, and of vanishing gradient

[31]. Dead neurons are the ones for which the gradient becomes very near zero for all samples

during training, so it becomes very hard or impossible to change their state in further training

iterations. Neurons are effectively dead, stuck in the same state. The problem of vanishing

gradient was identified by Hochreiter [33] in 1991 as a prime obstacle in successful application

of backpropagation to many-layered neural networks of the time. Sigmoid and tanh functions

have gradients in range (0, 1), which are often very small numbers. The backpropagation algo-

rithm uses the chain rule to calculate the gradient of all layers. Each additional layer implies

one additional multiplication by a small number, which means the gradient of the front layers

is very low (it decreases exponentially with respect to the number of layers). This means it is

very hard to successfully learn the correct parameters for the front layers of deep networks, as

the learning time rises exponentially [31] with the number of layers.

Despite these problems, neural networks were still able to successfully solve some classi-

fication tasks in image processing [32, 34, 35, 36]. LeCun et al. [34] introduced convolutional

neural networks (CNN) in 1989. They used a network with three hidden layers to classify zip

code digits represented as images of resolution 16×16 pixels. The first two layers were convo-

lutional, and used weight sharing as proposed by [32]. The last hidden layer and output layer

were fully connected. Rowley et al. [35] used CNNs with two and three hidden layers and 4

types of receptive fields in a face-detection framework. The networks detected the presence

of a face in a 20× 20 image window with low false-positive rate. In 1998, LeCun et al. [36]

presented the network called LeNet-5. It consisted of seven layers, three of which were con-

volutional. The entire network structure is shown in Figure 2.2. The activation function was

sigmoid. It was very successful in recognizing hand-written digits of resolution 32×32 pixels,

and was used to read several million bank cheques daily [36].

!

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
84

Full connection
Full connection

Gaussian connections

OUTPUT
10

Figure 2.2: Structure of LeNet-5. A 32×32 input is transformed into 1×10 output through 7 different
layers. Layers 1, 3 and 5 are convolutional. Layers 2 and 4 perform subsampling (pooling). Layer 6 is
fully connected, while the layer 7 is output layer. Figure reproduced from [36].
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Deep learning terminology

Before continuing with the overview of deep learning architectures, basic terminology must be

defined. A convolutional neural network consists of layers. Each layer transforms an input

volume into an output volume. The input and output volumes are tensors with width, height

and depth. The width and height are also called spatial dimensions, while depth is also called

the number of channels or activation/feature maps. In the context of computer vision, the input

volume to the first layer of the network is a tensor W ×H ×C, where W and H are the width

and height of the input image, and C is the number of image channels (C = 3 in case or RGB

color images). The input to subsequent layers is the the output of their preceding layer.

A convolutional (conv) layer consists of a set of learnable filters (also called kernels). Each

filter has a small receptive field, but extends through the full depth of the input volume. The

receptive field slides over the spatial dimensions and applies weighted sum of its inputs followed

by a nonlinear activation function, thus producing a single activation or feature map. The stride

parameter controls how a receptive field slides over the spatial dimensions. A stride vale of k

means the field is applied for each k-th input in each k-th row. When an input volume of W1 ×
H1×C1 is fed through a convolutional layer with C2 filters with perceptive fields of dimensions

M ×M and stride k, then the output volume is a tensor W/k ×H/k ×C2. The total number

of input weightings (multiplications) is W/k ·H/k ·M2 ·C1 ·C2. The total number of weight

parameter in the layer is M2 ·C1 ·C2.

A pooling (pool) layer is a form of non-linear downsampling. A receptive field slides over

each feature map of the input volume, and a pooling function is calculated on all inputs in the

receptive field. The sliding over the spatial dimensions may be regulated by a stride parameter

(which is typically greater than 1), or the pooling may be global (in which case the receptive

field covers the entire feature map). Common pooling functions are maximum (max-pooling)

and average (avg-pooling). The output has the same depth and lower spatial dimensions. If

a W ×H ×C input is pooled by a receptive field of any size and stride k, then the output is a

volume W/k×H/k×C.

A fully-connected (FC) layer consists of N neurons, and outputs a vector of size N. Each

neuron is connected to every input, and calculates the weighted sum followed by an activation

function (usually a simple bias offset).

Common activation functions

A rectifier is an activation function given as:

f (x) = max(0,x) (2.1)
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It was first used by Hahnloser et al. [37] in 2000, with biological motivation (it is one-sided,

instead of anti-symmetrical). A unit which employs this activation function is called rectified

linear unit (ReLU). It is very easy to compute, leads to sparse activation of neurons, and enables

efficient gradient propagation. It is a popular choice in modern deep learning frameworks. One

potential problem is that is non-differentiable at zero. If necessary, this can be solved by using

a differentiable approximation called a softplus function:

f (x) = log(1+ ex) (2.2)

Rectifier activation alleviates the problem of dead neurons, as the positive side of the func-

tion is linear. However, it is still possible to end up with a large number of dead neurons, as the

negative side of the function is constant zero. If the learning rate is too high, neurons can easily

enter a state in which they are zero for all possible inputs. This can be mitigated by use of leaky

ReLU units:

f (x) =

x if x > 0

ax,0 < a < 1 otherwise
(2.3)

AlexNet

In 2012 Krizhevsky et al. [38] presented the AlexNet: the first successful deep convolutional

neural network applied to image classification. The AlexNet consists of eight layers: first five

are convolutional, while the last three are fully-connected (Figure 2.3). Several key improve-

ments over earlier network architectures made successful training possible. They used the rec-

tifier activation function, which is very resilient to the problem of dead neurons, as it can only

be saturated from one side. They used local response normalization (LRN) to improve gener-

alization. They used a dropout trick[39], which enhances generalization by randomly omitting

half of the feature detectors on each training case. The learning algorithm was implemented

to run in parallel on powerful GPU hardware, which greatly shortened the learning time. The

network was split into two parts (streams), so that each part fits into memory of a single GPU.

It was trained using a mini-batch stochastic gradient descent on the dataset of 2012 ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) [40]. The dataset was very large for that

time, containing 1000 classes across over a million images, which was large enough to provide

sufficient data to learn the network parameters. Additionally, they used data augmentation to

reduce overfitting: the dataset was enlarged by label-preserving transformations such as trans-

lations, reflections and pixel intensity alterations. All these improvements together enabled the
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Figure 2.3: Structure of AlexNet. The 224× 224 input is transformed into 1× 1000 output by passing
through eight layers. The first five layers are convolutional, while the last three are fully-connected. The
top part of the figure shows the layer parts that run on one GPU, while the other GPU runs the layer-parts
at the bottom part of the figure. Figure reproduced from [38].

AlexNet to outperform all contemporaneous approaches and win the 2012 ImageNet ILSVRC

by a large margin. They achieved best results with an ensemble of 7 networks.

Incremental network structure improvement

After the success of AlexNet, many researchers strive to reproduce its success, to understand the

reasons behind its classification performance and to improve the network structure and optimize

the learning algorithm.

Zeiler and Fergus [41] devise a scheme for visualization of the inner workings of convolu-

tional networks. They use a multi-layered transposed convolution network to project the feature

activations back to the input space (i.e. pixel space). They also occlude portions of the input

image to measure the sensitivity of the classifier output to find the parts of images important

for classification. These visualizations lead to better understanding of convolutional networks,

and discover some issues with existing models, such as presence of aliasing artifacts caused by

large stride in first layer convolutions. Using the visualizations to debug found issues lead to a

more successful architecture, with better classification performance than previous models.

Sermanet et al. [42] improve the AlexNet structure in the same manner as Zeiler and Fergus:

by reducing the stride and size of receptive window in the first layer. Additionally, they adapt it

for object detection and localization. Their network is termed Overfeat and it outputs not only

object labels but boundaries as well, which are then aggregated to increase detection confidence.

Simonyan and Zisserman present the VGG network [43]. They improve the classification

performance of neural networks by increasing their depth while reducing the convolution filter

size (3× 3 in all layers). During training, the only pre-processing done on the images is sub-

traction of mean RGB value (computed on the entire training dataset) from each pixel. Unlike

[38], they do not use local response normalization. They present several VGG network con-

figurations, referred to by letters A to E. The configurations differ only in their depth: VGG-A
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network has 11 layers (8 convolutional and 3 fully-connected), while VGG-E network has 19

layers (16 convolutional and 3 fully-connected). Each of the configurations B to E was created

by adding layers to its fully-trained predecessor. Each configuration inherited a set of learned

weight parameters from its predecessor, so the convergence of the learning process was faster

to achieve than it would be if all the layers were randomly initialized.

Szegedy et al. present the Inception network in 2015 [44]. It is 22 layers deep and uses

inception modules, which are stacked upon each other at higher layers. In the inception modules

the 1× 1, 3× 3 and 5× 5 convolutional features are concatenated, together with a 3× 3 max

pooling layer. Additional 1×1 convolutions are added to reduce the dimensionality and prevent

explosion of number of parameters. The architecture is more sparse than previous models,

which results in reduced number of parameters and enables the training of deeper network

structure, with better classification performance.

Batch normalization

Ioffe and Szegedy[45] introduce the process of batch normalization, in which network activa-

tions are normalized to have zero mean and unit variance for each layer in each mini batch in

a training iteration. Such normalization eliminates the need for low learning rates and careful

parameter initialization[45] (no need to carefully scale the initial parameters with respect to

number of inputs and layer depth). Since the batch means and variances fluctuate, this process

lowers the risk of overfitting the network, reducing the need for dropout regularization. Batch

normalization significantly simplifies and speeds up the learning process, while simultaneously

improving generalization properties as well. This approach is adopted and used in many future

architectures.

For a d-dimensional input x = (x(1)...x(d)) each input dimension is normalized as follows:

x̂(k) =
x(k)−E[x(k)]√

Var[x(k)]
(2.4)

To preserve the representation power of a layer, parameters γ(k) and β (k) are added to enable

scaling and shifting, respectively:

y(k) = γ
(k)x̂(k)+β

(k) (2.5)

These parameters are learned by back-propagation. During training, expectation and vari-

ance are computed separately for each batch of samples from the training dataset. Once the

network has been trained, the expectation and variance are computed on the entire population.
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Highway networks

Srivastava et al. introduce Highway Networks in 2015 [46]. The highway network architecture

allows unimpeded flow of information across several layers on information highways, and the

regulation of information flow is done by learned gating mechanisms. Such architecture reduces

the problem of vanishing gradient to such a degree that is becomes possible to train hundreds of

layers by stochastic gradient descent. The gating mechanisms enable the existence of very long

paths through which information can flow without attenuation across several layers of neural

network.

A single layer of a highway network transforms an input x to the output y as follows:

y = H(x,WH) ·T (x,WT )+x ·C(x,WC) (2.6)

The transformation H is an affine transform followed by a non-linear activation function

(same as in plain feed-forward networks). The transformation T is the transform gate, and C is

the carry gate. The T and C transformations express how much of the output is produced by

transforming the input and carrying it, respectively. Authors simplify this expression by setting

C = 1/T , giving:

y = H(x,WH) ·T (x,WT )+x · (1−T (x,WC)) (2.7)

Thus if T (x,WT ) = 0, then the output is equal to the input, while for T (x,WT ) = 1 Eq. 2.7

gives a plain feed-forward network layer. By varying the value of T (x,WT ) between 0 and 1,

the behavior of a layer is smoothly varied between that which simply passes the input and that

which transforms it by transform function H. Note that for the Equation 2.7 to be valid, the

dimensionality of x, y and H(x,WH) must be equal. The change of the size of intermediate

representations can be achieved by sub-sampling or zero-padding as necessary, or by using a

plain layer (which is what authors chose).

Convolutional layers of a highway network use weight-sharing and local receptive fields for

both H and T transforms. The transform gate is defined as T (x) = σ(W⊤
T x+bT ).

Residual networks

He et al. [47] introduce ResNet approach in 2015. A ResNet neural network architecture can

be considered a special case of Highway networks, in which the transfer and carry transforms

are not adaptable, but fixed. Flow of information from front to back layers of the network is

preserved explicitly by introduction of shortcut connections, which perform identity mapping.
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This identity mapping is then element-wise summed with the output of one or more previous

layers. An example building block is shown in Figure 2.4 (a). The entire network consists of

such building blocks, and the reduction of dimensionality between blocks (if necessary) is done

by a linear projection on the shortcut connections to match the dimensions.

The authors consider this simplification relative to the Highway networks to be an advan-

tage, as they add neither extra parameters nor computational complexity. The authors note that

by adding a single randomly initialized layer in the middle of a trained network its classifica-

tion performance is crippled until parameters are re-learned. A lot of iterations of the learning

algorithm are required just to achieve performance that is not worse than before the extra layer

was added. Even learning an identity mapping (which would produce identical results as before

the layer was added) is not simple, and takes many iterations. Authors reason that by making

the identity mapping explicit, the adding of new layers does not immediately decrease perfor-

mance, and any additional learning can only be beneficial. In addition to identity mappings,

authors also use bottleneck design in their network architecture, which reduces the dimension-

ality of intermediate representations. For each residual function they use a 1×1 convolutional

layer, then a 3× 3 convolutional layer, then the 1× 1 layer again. The 1× 1 layers reduce

dimensionality before 3×3 convolution, and then restore it.

In their later work [48], authors evaluate various orderings of layers within a residual block,

as shown in Figure 2.4. They find that best results are achieved with full pre-activation ordering,

shown in Figure 2.4 (e). The ResNet-110 network achieves classification error of 6.61% on the

CIFAR-10 [49] dataset if the original ordering is used, and 6.37% if full pre-activation ordering

is used.

Authors achieve state-of-the-art results on various classification challenges, with fast learn-

ing and better performance per same number of parameters than networks which simply stack

layers. They claim the increased depth of the network is responsible for the increase of perfor-

mance.

Further research disproves the idea that the depth of residual networks is the reason for

increased performance. Veit et al. [50] rewrite residual networks as an explicit collection of

paths of various depth. They regard the unraveled representation of residual blocks (Fig. 2.5),

and perform lesion study. They delete individual layers at test time, they delete several modules

at test time and they reorder modules at test time. They find that paths do not strongly depend on

each other. More importantly, they find that longer paths do not contribute almost any gradient,

and that most of the gradient in the residual network comes from paths of short to medium

length. For example, for a network with 110 layers, they find most of the gradient comes from

paths that are between 10 and 32 layers deep. They conclude the residual network does not

behave as a single very deep network, but more as an ensemble of short networks.

Huang et al. [51] use stochastic depth during training of deep networks. For each mini batch
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Figure 2.4: Various types of residual blocks. All blocks have the same components, but their ordering
is different. The best results are achieved with configuration (e), dubbed full pre-activation. Figure
reproduced from [48].

=
Figure 2.5: Figure on the left shows a conventional representation of a part of residual network. Figure
on the right shows an unraveled view of the same part of network. Circles represent additions. Figures
reproduced from [50].
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they randomly exclude some layers of the residual network and replace them with identity

connections. They find this achieves better information and gradient flow, acts as a form of

regularization, and speeds up the learning process.

DenseNet

The research of Huang et al. [51] indicates that some layers of residual networks contribute

very little new information, and mostly forward almost unchanged data. This insight leads

Huang et al. [52] to propose the DenseNet architecture. The DenseNet architecture achieves

preservation of information flow across layers in a very different way from ResNet and Highway

networks. Instead of adding shortcut connections, or allowing single layers to preserve a portion

of input information as-is, DenseNet consists of dense building blocks, in which the output of

a single layer is directly provided as input to all subsequent layers in the same block. This is

illustrated in Figure 2.6. Instead of element-wise summation, the features are combined via

concatenation. Bottleneck layers are used to reduce the number of parameters. Each block is

connected to the next one through a transition layer, which adapts the dimensionality of the

block output to the input of the next block. The transition layer can also reduce the number of

feature maps to further reduce the number of parameters. The dense connectivity of this network

promotes feature reuse, simplifies the information flow between layers, and enables training of

very deep structures. The DenseNet architecture achieves better classification accuracy than

previous approaches with same number of parameters, including ResNet approach.

x0

x1
H1

x2
H2

H3

H4

x3

x4

Figure 2.6: A 5-layer dense block. Figure reproduced from [52].

MobileNet

Howard et al. [53] present a CNN designed for computational efficiency called MobileNet.

They use depthwise separable convolutions (Figure 2.7 (a)) as basic building blocks to reduce
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the number of parameters and computational requirements. The depthwise separable convolu-

tion is a factorization of a standard convolution into a depthwise convolution and a pointwise

(1× 1) convolution. Depthwise convolution applies a single 3× 3 filter to each input channel,

followed by a batch normalization and ReLU activation, while pointwise convolution combines

the output channels of the depthwise convolution, followed by batch normalization and ReLU.

The first layer of MobileNet is a full convolution, which is followed by 13 depthwise separable

convolutions and concluded by global average pooling and a fully connected layer. Downsam-

pling is done by strided convolutions in the first layer and depthwise layers. This architecture

achieves accuracy of 70.6% on ImageNet ILSVRC [40] with 4.2 million parameters.

Sandler et al. [54] present MobileNetV2, which expands on MobileNet ideas by incorporat-

ing residual blocks [51]. It achieves slightly better classification accuracy with fewer parame-

ters. The network contains a total of 19 residual bottleneck layers (Figure 2.7 (b)). The residual

bottleneck layer calculates the residual as follows: it expands an activation tensor to a high-

dimensional space by a 1×1 convolution, then filters it with a 3×3 depthwise convolution, and

finally projects it back to a low-dimensional space with a linear 1× 1 convolution. A shortcut

connection is added directly between the bottleneck layers (i.e. between linear convolutions).

Downsampling is performed by using a stride 2, in which case a shortcut connection is not

added. As in previous MobileNet model, the first layer is fully convolutional. They use ReLU6

[55] activation function because of its robustness when used with low-precision computation

[53].

input

Dwise 3x3,
stride=s, Relu6

conv 1x1, Relu6

(a) Depthwise sepa-
rable convolution

Conv 1x1, Relu6

Dwise 3x3, Relu6

input

conv 1x1, Linear

Add

Conv 1x1, Relu6

Dwise 3x3,
stride=2, Relu6

input

conv 1x1, Linear

Stride=1 block Stride=2 block

(b) Residual bottleneck blocks

Figure 2.7: Building blocks of MobileNet (on the left) and MobileNetV2 (on the right). Figure repro-
duced from [54].
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Comparison of deep convolutional models used in this thesis

This thesis considers VGG-19, ResNet-121, DenseNet-50, and MobileNetV2 architectures in

the experimental section. The overview and comparison of these architectures is given in Table

2.1. The table lists the total number of network parameters as well as the number of multiply-

add operations required to process an RGB image of resolution 640× 480. Finally, the table

lists the top-1 and top-5 errors reported on the ImageNet1000 validation dataset.

Table 2.1: Comparison of deep convolutional architectures used in this thesis. The number of multiply-
add operations assumes an input RGB image of resolution 640×480.

number of multiply-adds top-1 error top-5 error

architecture parameters (640×480 input) (ImageNet valid.) (ImageNet valid.)

VGG-19 20 ·106 120 ·109 24.4 % 7.1 %

ResNet-50 30 ·106 25 ·109 20.7 % 5.2 %

DenseNet-121 6 ·106 15 ·109 23.6 % 6.7 %

MobileNetV2 1.2 ·106 2 ·109 28.1 % 9.5 %

Traffic scene categorization

A number of related works deal with traffic scene categorization specifically, which is of spe-

cial interest in the context of fleet management. Oeljeklaus et al. [56] present a deep neural

network that simultaneously performs traffic scene recognition and segmentation. Not counting

the fully connected layer, their network has less than six million parameters, and is computa-

tionally efficient. To facilitate the segmentation task, they introduce the Hadamard layer which

performs element-wise multiplication of input feature maps with a weight matrix of equal di-

mension. Di et al. [57, 58] research the impact of weather conditions on the classification of

traffic scenes. They classify traffic scenes from images taken from the same location, but under

different weather or illumination conditions. Their proposed classifier is based on cross-domain

dense correspondence, and works by extracting the fine-tuned CNN features and transferring the

annotations from the retrieved best matching image. Hussain et al. [59] explore the impact of

image resolution on the ability of CNNs to detect and categorize vehicles in traffic scenes. They

achieve adequate results even with vehicle regions as small as 90× 90 pixels, and find that no

significant improvement is achieved when much higher image resolutions are used.

2.2.3 Transfer learning

Convolutional networks have a huge number of parameters, so they usually require a large

amount of training data to properly learn those parameters. Unfortunately, not every application
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has a readily available training dataset as large as ImageNet. In many such cases it is possible

to use some form of transfer learning, i.e. to apply knowledge of one dataset, called source

dataset, to another, called target dataset.

Oquab et al. [60] present a method for learning and transferring mid-level image representa-

tions from a dataset with a lot of annotated samples to another with a limited amount of training

data. They reuse layers of AlexNet (trained on the images of ImageNet dataset) to compute

mid-level image representations for the images in the PASCAL VOC [61] dataset. To solve

the problem of different labels (different classes between datasets), they remove the last fully

connected layer of AlexNet, i.e. the output layer, and add two fully-connected layers termed

adaptation layers. They keep the parameters of all the original layers fixed, and only train the

two adaptation layers on the PASCAL VOC dataset. Since the images of the PASCAL VOC

dataset may contain multiple labeled objects, they employ a sliding window technique to extract

around 500 square patches from each image, and classify each patch separately, assigning it a

single class label. Patches are spaced at eight different scales, with at least 50% overlap, and

each patch is rescaled to 224× 224 pixels prior to classification. They assign ground truth la-

bels to patches by examining the patch overlap with ground-truth object locations. They assign

a positive class label to a patch if a sufficient area is overlapped (at least 20% of patch area con-

tains the object and at least 60% of the object is contained in the patch), and if the patch does

not overlap with other objects. As most patches contain the background class, they re-balance

the dataset by sampling 10% of the background patches during mini-batch selection in training.

Barat and Ducottet [62] improve classification performance of CNN systems by adding

structural representations on top of pretrained CNN features. They represent images as strings

of CNN features which are classified by an SVM. To express kernel encoding similarity between

pairs of images, they introduce two new edit distance variants.

Cimpoi et al. [63] extract features from deep convolutional layers and use them as filter

banks. They aggregate them with a Fisher vector framework to obtain the FV-CNN descriptor,

which achieves state-of-the-art performance in texture recognition and classification.

Many other researches obtain image representations by extracting features from layers of

various depths from pre-trained CNNs. Gong et al. [64] extract the features from the seventh

(fully connected) layer for different scales of the input image and use pooling to obtain an image

descriptor which is more robust to geometric variations of the input image. He et al. [65] use

the outputs of the final layer of various CNNs in the spatial pyramid pooling scheme to produce

an image representation of fixed length regardless of the input image size and scale. Girshick

et al. [66] extract features from five convolutional layers and two fully connected layers in a

detection scheme which achieves state-of-the-art results on the PASCAL VOC 2012 detection

challenge. Athiwaratkun and Kang [67] extract lower-layer features and classify them using

Random Forests and an SVM classifier to obtain competitive classification results.
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Garcia-Gasulla et al. [68] perform a thourough evaluation of the behavior of different CNN

features in transfer learning, for the purpose of feature extraction. They use a VGG16 network

(Simonyan and Zisserman [43]) pretrained on a large dataset (ImageNet [40]) to build image

representations for eleven alternative datasets. They study the behavior of individual features

in all layers in the domain of each target dataset. For each class in a dataset, they evaluate how

characteristic each feature in the embedding is in contrast to evaluating the descriptive power

of entire groups of features. They use several statistical measures to examine the difference in

responses of a single feature for images of a certain class versus the responses for images of

other classes. They reach several important conclusions, some of which are listed here:

1. Both presence as well as absence of a feature can be a characteristic of a class.

2. Features from the last convolutional layer and fully connected layers are very specific.

They are either characteristic for a class or irrelevant

3. Features from low-level layers are more general and discriminant, and could possibly be

used in unsupervised learning.

4. Low and middle level features have a very similar behavior for the dataset they were

trained for (source dataset), as for the other target datasets. These features could be used

for many datasets without fine-tuning.

5. Features from fully-connected layers are more relevant for target datasets with high sim-

ilarity to the source, and with a wide variety of classes.

6. If a target dataset has no intersection with the source dataset, then the distribution of

Kolmogorov-Smirnov statistic for features from fully-connected layers is similar to that

of convolutional features. Both sets of features could be used for knowledge transfer in

similar way.

7. They found discriminant features for all classes on all layers.

Nanni et al. [69] build a generic image classification system by combining handcrafted

features with features learned by deep convolutional neural networks. They explore three ap-

proaches of using learned features: i) remapping the output layer of CNN to classify a different

problem, ii) using the output of the penultimate layer of CNN as a feature vector and iii) merging

the output of some deep layers, reducing the dimensionality of the merged output, and using

that as a feature vector. Besides different deep learning transfer methods, they use Principal

Component Analysis Network and Compact Binary Descriptor methods as well. They com-

bine the learned features with several state-of-the-art hand-crafted features. They find that both

hand-crafted and learned feature paradigms are capable of extracting the information that the

other paradigm ignored.
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Catastrophic interference

One of the problems related to transfer learning and neural networks is the problem of catas-

trophic interference (also called catastrophic forgetting), first identified by McCloskey and Co-

hen [70] in 1989. It is described as the tendency of a neural network to rapidly lose most

knowledge of the learned dataset during learning of another dataset. This is inconvenient for

applications in which the target dataset grows over time, e.g. because new classes are being

added. It would be ideal to just learn the additional classes, instead of re-learning the network

on the entire dataset each time a new class is added. It is a problem which affects many types of

neural networks, including many modern CNN architectures. When a pre-trained CNN starts

learning a different dataset, it will typically un-learn the source dataset in just a few iterations

of training. The backpropagation algorithm will change many CNN parameters rapidly and

indiscriminately, not knowing which of the active neurons were important for performing the

old task. Some methods commonly employed in CNN architectures that help with this problem

are max pooling, dropout and using ReLU activation functions, as all these methods result in

slightly reduced number of active neurons [71, 72].

Srivastava et al. [71] introduce the local winner-take-all (LWTA) architecture, in which

neurons are split into a number of blocks which are then organized into layers. The neurons in

a single block compete, and only the winning neurons contribute any information to the next

layer. The authors use the simplest competition function: the maximum function, meaning the

neuron with the highest activation value wins. They use the identity activation function, and

non-linearity in a layer is achieved by turning off the activations of non-winning neurons. Since

only winning neurons contribute, they are the only ones which are corrected by backpropagation

algorithm during training, and this approach results in reduced catastrophic interference. The

LWTA layer is similar to a max-pooling layer, but without the downsampling (the number of

features is not reduced, but made more sparse.

Hinton et al. [73] develop a useful technique of knowledge distillation in CNN frameworks.

It is a technique for transferring knowledge from a trained complex model (e.g. an ensemble

of CNNs) to a simpler model which has fewer parameters. Their key observation is that the

objective function usually only deals with exact class labels, and that it does not know which

classes are easily confused, and which are easy to differentiate. For example, a car is similar to

a truck, but not to an apple, but this information is not usually present in the training data. After

a complex model is trained, soft probability distribution over classes provided by its softmax

layer is used to train the distilled model on the transfer set. More precisely, for a class i with the

logit zi, the class probability qi is calculated by the softmax output layer of a complex model as:

qi =
exp zi

T

∑ j exp z j
T

(2.8)
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where T is a temperature parameter, usually set to 1. Using a higher value of T = 10 authors

produce softer probability distributions over classes. A smaller model is then trained using a

cross entropy objective function with the soft targets. If the correct labels are also known for

some or all of the transfer set, the cross entropy with the correct labels is also used, and the

weighted average of the two is used as the objective function. The smaller model is also trained

using a high temperature parameter T = 10, but the temperature is reduced back to T = 1 during

testing phase. The method produces small models that generalize and perform well. While it

does not deal with the problem of catastrophic interference directly, it proved to be useful in

future frameworks [74, 75] that do address that problem.

Li and Hoiem [74] combine the ideas of knowledge distillation and fine-tuning in their

learning without forgetting approach. Given a network which was trained to solve a specific

task, they introduce additional parameters to enable the network to solve a new task as well. The

network parameters are split into three sets: the shared parameters θs, the parameters specific for

the old task θo, and the parameters specific to the new task θn. The sets of parameters θo and θn

belong to nodes of the output layer, while all other parameters are shared. Therefore, the added

set of parameters θn is relatively small. First they record all outputs yo of the original network

on the new data. They then train the network to minimize the loss on the new task. In the first

stage of training they freeze the θs and θo, and train θn to convergence. In the second stage they

train all the parameters jointly. The Figure 2.8 shows the network structure, and illustrates the

learning process for new tasks. The orange part of the network contains the parameters θn that

will learn to solve the new tasks. The blue parts of output layer contain the parameters θo that

solve the old tasks, while the remaining parts of the network contain the shared parameters θs.

While learning the new tasks, they use the distillation loss [73] with temperature parameter set

to T = 2 to encourage the output probabilities for each image to be close the the pre-recorded

output probabilities for old tasks.

…

…

new task
ground truth

new task
image

model (a)’s
response for

old tasks

Input: Target:

Figure 2.8: Learning a new task in Learning without forgetting framework. The orange block contains
the parameters that learn to solve the new task. The target is composed of pre-recorded responses of
original model on old tasks and of new task ground truth. Figure reproduced from [74].

Shmelkov et al. [75] take a slightly different approach. They propose a framework for
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learning new object detectors which consists of two networks, referred to as networks A and B.

Network A is the original object detector, trained on the old task, and it remains frozen during

training of the new classes. It is used to select proposals corresponding to the old classes, and to

compute the distillation loss. Network B is the detector which is adapted for new classes.

It is obtained by increasing the number of outputs in the original network, so the network

contains outputs for both the old and the new classes. After training, network B is able to

perform both old and new detection tasks. During training a diverse set of samples is selected

among all samples of the new training dataset by the network A, favoring non-background

samples. The responses to those are recorded and used to compute a distillation loss to measure

the discrepancy between the two networks during the training of network B, to keep it from

catastrophically forgetting the old classes. Authors show the framework can be used to add a

single class, multiple classes simultaneously, or even sequentially without significant losses of

performance.

2.2.4 Unsupervised learning

Even though unsupervised learning methods cannot compete with supervised methods in terms

of classification performance, they offer some other potential benefits that make them worth

considering. They can be used to obtain image representations that are input to a stand-alone

classifier, which is useful in scenarios where the set of class labels is changing frequently. The

cumbersome process of training a feature extractor needs to be done only once, and only the

classifier needs to be retrained if the set of classes changes.

Dosovitskiy et al. [76] present an unsupervised CNN framework which aims to facilitate

learning on relatively small datasets. They sample a number of 32×32 patches from each input

image, in regions with considerable gradients. Each of the patches is considered to be a separate

class, and is assigned its own class label. Next, they apply a composition of elementary trans-

formations (e.g. geometric and color transformations) multiple times to each patch, and each

transformed version of a patch is assigned the same class label as the original. This increases the

size of the dataset and also improves regularization. This dataset of labeled patches is then used

to train a CNN. The CNN can then be used to produce image representations for classification

by spatially pooling concatenations of features from all network layers (except the final soft-

max layer). Authors report competitive results: 84% classification accuracy on CIFAR-10 [49]

dataset, and 87% classification accuracy on Caltech-101 [77] dataset while using 1884 features.

Goodfellow et al. [78] present generative adversarial networks (GANs). It is an unsuper-

vised learning framework in which two parametric functions (called a generator and a discrim-

inator) are competing in a min-max game. The generator G(z) is modeled by a CNN with

ReLU and sigmoid activations, and it maps noisy input z to data space. The discriminator D(x)
is modeled by a CNN with maxout [79] activations, and it outputs the estimated probability of
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image data x being sampled from real data (instead of generated by generator). The objective

function of the min-max game is:

LGAN(G,D) = Ex∼pdata(x)(logD(x))

+Ez∼pz(z)(log(1−D(G(z)))) . (2.9)

The convergence in min-max objective can be interpreted as minimizing the Jensen Shannon

(JS) divergence. After convergence is achieved, the generator network is able to produce artifi-

cial images which the discriminator cannot differentiate from the source images. One drawback

of this method is the possibility of occurrence of mode collapse: generator can learn to generate

a very limited set of images (e.g. a single class).

Radford and Metz [80] propose a set of guidelines and constraints on the GAN architec-

ture that make them more stable to train, such as using strided convolutions in the discrimina-

tor and fractional-strided convolutions in the generator, using the batch normalization in both,

and changing activation functions to ReLU and tanh in the generator and LeakyReLU in the

discriminator. They name the improved architecture deep convolutional generative adversarial

networks (DCGANs). Authors demonstrate that concatenation of spatially pooled convolutional

features of the discriminator network serves as an image representation which is very successful

in the context of image classification. They achieve a classification accuracy of 82.8% on the

CIFAR-10 [] dataset using an SVM classifier. Even though this is lower than the results ob-

tained by [76], the adversarial networks were trained on a different dataset (ImageNet), which

demonstrates good generalization properties.

Arjovsky et al. [81] present a solution to mode collapse problems in the form of Wasserstein

generative adversarial networks (WGANs). They demonstrate that in the context of GANs,

Wasserstein’s probability distance (also known as earth-mover’s distance) is a measure prefer-

able to other probability distance and divergence measures, such as total variation distance,

Kullback-Leibler divergence and Jensen-Shannon divergence. They propose some adaptations

of the network structure, and a learning algorithm which ensures the convergence of the min-

max objective corresponds to minimizing the Wasserstein’s distance. This results in simplified

learning of adversarial networks with meaningful interpretations of learning curves, and without

any mode-collapse problems noticed by the authors.

2.2.5 Short image descriptors

Generic image classification systems typically do not prioritize shortness of image descriptors.

Most methods for producing very short image representations are motivated by image storage

and retrieval systems. Short image representation has a low memory footprint and is used for

very fast retrieval of images (e.g. retrieval of images that are visually similar to the query image).
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Such representations must capture the visual attributes of the image, but do not necessarily

perform well in image classification tasks.

Oliva and Torralba [82, 83] develop the GIST descriptor for scene recognition. It is a very

low dimensional representation of the scene that captures perceptual features meaningful to a

human observer, such as naturalness, openness, roughness, etc. It is calculated by first subdi-

viding the image into a 4×4 grid, and then concatenating the average energies of responses of 8

orientation filters on 4 scales for each cell. Torralba et al. [84] convert the GIST [82] descriptor

to a compact binary code that represents an image with a few hundred bits. This descriptor can

be used to perform fast image searches within millions of images on a single personal computer

using an approximate nearest neighbor approach, with Hamming distance measure. They use

boosting [85] and restricted Boltzmann machines [86] to learn the minimum number of bits

necessary for the Hamming distance to still express visual similarity between images.

Torresani et al. [87] introduce a descriptor aimed at object category recognition. It consists

of quantized outputs of weakly trained classifiers of various objects, termed classemes. They

use a two-stage approach: once-only classeme learning; followed by object category-related

learning tasks. The stages use distinct training sets. They do not aim for the classifiers to

semantically encode meaningful categories (e.g. “water”), but rather measure simple properties

(e.g. the presence of a water-like texture in the scene) that add up to describe a more complex

scene (e.g. a person swimming). They demonstrate adequate performance can be obtained with

small descriptor sizes (as small as 200 bytes).

Bergamo et al. extend the idea of classemes in their PiCoDes [88] and meta-class [89]

descriptors. The purpose of both descriptors is efficient image indexing in large databases.

PiCoDes size ranges from 16 to 256 Bytes, while meta-class are less than 2 kB.

Instead of crafting a very short descriptor from scratch, it is possible to start with an existing

long descriptor and apply dimensionality reduction techniques to find the minimum descriptor

size which still offers good descriptive properties. Principal Component Analysis (PCA) [90,

91] is one popular dimensionality reduction method. Product Quantization (PQ) [92, 93] is a

more recent method with good results. It decomposes the feature space into a Cartesian product

of low-dimensional subspaces, which are then quantized separately. Both approaches are able

to identify parts of image representation that are not activated for a particular target dataset [68].

Babenko et al. [94] show that outputs of several high-level layers of CNNs can be used

in image retrieval applications, even if the CNNs were trained on an unrelated classification

dataset. They also show the PCA can successfully be used in such a scenario to reduce the

image representation size, down to 256 components with hardly any degradation.

Zhao et al. [95] connect a hash-function layer to the FCa and FCb layers of [96], and use

multi-label image data to learn the parameters of the added layer in a supervised way. This

results in a compact image representation suitable for image retrieval systems with multilevel
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semantic similarity.

Lin et al. [97] add a hidden layer with sigmoid activation functions to a CNN pre-trained

on ImageNet, and then fine-tune the network to target dataset. The outputs of the added layer

are binary-like, and can be easily quantized to bits, to obtain a compact image representation

suitable for image retrieval.

Liu et al. [98] present the deep supervised hashing (DSH) method for producing very short

image descriptors with emphasis on preserving similarity. They design a CNN structure that

takes pairs of images during training and tries to learn the parameters that would result in dis-

crete values on output (e.g. +1/−1). They use supervised information of image pair similarity

(obtained from e.g. image labels) in the loss function to maximize the discriminability of the

output space. The output consists of 12 to 48 bits, and is suitable for fast image retrieval tasks.

Preliminary research for this thesis [99, 100] explores methods for reducing the size of state-

of-the-art hand-crafted image descriptors. The impact of size reduction to the performance of

traffic scene classification is measured. A short image descriptor that combines compacted spa-

tial Fisher vectors and GIST descriptor in a lossy encoding scheme is proposed. Classification

performance is retained for the descriptor size as low as 48 bytes per image.

The author of this thesis is not aware of any previous work that proposes and evaluates very

short image descriptors for classification of traffic scenes.
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Chapter 3

Improving fleet management with
computer vision

In the broadest sense, fleet management systems are a combination of various hardware and

software components which enable the tracking and managing of a fleet of vehicles. Manage-

ment can include a range of features, such as vehicle telematics, maintenance and financing,

driver management, route planning and scheduling, fuel management, cost analysis, driver per-

formance analysis and risk prediction. It usually includes real-time tracking of vehicles using

a global navigation satellite system (GNSS). It can also include real-time threat detection and

alarming, as well as historical data analysis. It can help reduce a wide variety of risks and im-

prove efficiency. Some fleet management systems only monitor vehicles of a single company,

while others manage vehicles of multiple companies, as well as any number of personal ve-

hicles. In some countries (e.g. China, India) GNSS tracking is mandatory for certain classes

of commercial vehicles [101, 102, 103]. Some toll road payment systems (e.g. HU-GO E-toll

system in Hungary [104]) have open interfaces through which fleet management systems can

deliver proof of traveled distance, for automated distance-based payment. A screenshot of an

exemplar fleet management system user interface is shown in Figure 3.1, illustrating the use

of real-time tracking and historical data analysis features. This chapter will briefly discuss

the hardware and software architecture of fleet management systems, as well as present some

improvements which can be achieved by introducing a computer vision subsystem.

3.1 Fleet management architecture

The fleet management systems have a client-server architecture, the clients being the tracked

vehicles, and the server being a single computer or a cluster of computers behind a common

access point.
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Figure 3.1: A screenshot of a fleet management user interface. The right pane contains a filterable list of
vehicles with the addresses of their current locations, speed, and other status information. The locations,
speeds and orientations of the vehicles from the list are displayed on the map in real time. The historical
data for a selected vehicle is shown on the bottom pane, and the map-matched positions for the same
vehicle are shown on the map as well, in the form of blue-green arrows. All vehicle plate numbers have
been blurred for privacy.
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3.1.1 Clients

Each tracked vehicle is equipped with a device connected to a variety of sensors which collects

the relevant data and transmits it to the central server for processing. The collected data almost

always includes the vehicle position, velocity and course (bearing), as determined by a global

navigation satellite system. It can also include a variety of other information: status of ignition,

battery voltage, current fuel level, total fuel consumption, accelerometer readings, multiple

temperature sensor readings, current engine RPM, state of acceleration and breaking pedals,

driver sign-ins and sign-offs. Some data is obtained from sensors embedded in the device, some

from in-car computer (e.g. via CAN bus or OBD), and some from external sensors. Devices

installed into specialized vehicles can also include the state of their equipment, such as taxi

meter in taxis, plow level and salt dispenser width in snow plows, ambulance siren and lights

status in ambulances, etc. Most of data is transmitted as-is to the central server, but some

is processed on the device prior sending. For example, the accelerometer sensor is typically

polled many times per second, so it is prudent to interpret this data on the device and only

send the interpretations (e.g. harsh cornering detected) to conserve the bandwidth. Depending

on the device configuration, the data collection can occur in fixed time intervals (e.g. once

per minute), as well as when certain thresholds are met (e.g. a vehicle traveled 100 meters,

vehicle course changed more than 30 degrees, vehicle ignition was turned off or on). The data

is typically transmitted over a cheap low-bandwidth channel, such as GPRS. If the data can not

be transmitted (e.g. server down for maintenance, vehicle is in an underground garage), then the

data needs to be stored in the permanent memory of the device, to be transmitted at a later time.

This behavior is also used if data transmission is prohibitively expensive due to vehicle being

in international roaming. The vehicle tracking hardware is typically inexpensive (depending

on the size and value of the fleet). It usually draws power from the vehicle battery, so power-

efficiency is important, especially while the engine is turned off. The tracking device software

is easy to configure and ideally does not require frequent updates, as updates increase data costs.

Software updates are also cumbersome to install, as some vehicles might be in locations with

no data connection (e.g. underground garages) for long periods of time (e.g. weeks or months).

3.1.2 Server

The data is collected, processed, analyzed and stored in a centralized system. The centralized

system can be single server (suitable for smaller fleets of vehicles, up to several thousand), or

a cluster of computers. The software suite consists of data receivers, streaming data analyz-

ers, storage subsystems (persistency, replication, indexing), business analytics engine, real-time

monitoring and alarming subsystems. The cost of the hardware components is typically not an

issue, the hardware can be as powerful as it needs to be. Compared to the client software, server
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software is much easier to update, modify and reconfigure. If necessary, server can easily com-

municate with many different types and versions of client protocols, and server software often

implements workarounds for various client bugs and design flaws. The amount of persistent

storage required for the server depends on factors such as the number of the monitored clients,

the length of the required data keeping time period and the average frequency of client data

sampling. Typically it is in the order of magnitude of several megabytes per vehicle per month.

3.2 Proposed vision-based improvements

The proposal of this thesis is to use inexpensive dashboard-mounted cameras as additional

sensors attached to the vehicle tracking device. Note that popularity of consumer dashboard-

mounted cameras has increased in recent years [105], as they are being used to prevent fraud-

ulent claims after traffic accidents. Additionally, front-facing cameras are standard equipment

in some vehicles with advanced driver assistance systems. The visual information can be used

to improve several aspects of fleet management systems, as will be discussed shortly. The pro-

posal of this thesis is to use image categorization to determine the type of traffic environment

the vehicle is currently in, as well as to detect interesting events and traffic scenarios. Such a

feature would enable the improvement of the fleet management systems as follows:

∙ The position filtering, map-matching and route reconstruction could be improved by giv-

ing a prior on the road type.

∙ The position filtering, map-matching and route reconstruction could be improved by giv-

ing an additional prior on the GNSS accuracy.

∙ The real-time monitoring, alarming and historical data reporting could be improved by

detecting some important events or traffic scenarios that are hard to detect without use of

vision.

3.2.1 Improving position filtering, map-matching and route reconstruc-
tion

The map-matching and route reconstruction can not always be done in an unambiguous way.

Sometimes the received coordinates are such that several almost equally plausible explanations

exist. The usage of visual information can help in those cases, by giving additional priors to

type of road the vehicle is thought to be on. Additionally, sometimes the received GNSS data

is in direct conflict with the known map data, and there are no plausible explanations. This

can happen because of incorrect map data, because of GNSS errors, or because of violation

of traffic rules, such as driving the wrong way in a one-way street. The use of visual cues

can help in two ways to resolve such cases. Firstly, it can provide priors on the type of the
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matched road. Secondly, it can provide priors on the probability of GNSS errors. The typical

GNSS sensor already provides some information about its perceived precision and reliability,

such as the HDOP value (horizontal dilution of precision), and the number of visible satellites.

Unfortunately, in some cases the sensor can report perfect accuracy with great number of vis-

ible satellites, while still delivering incorrect coordinates. One example of such errors is the

multipath error [106], in which the GNSS signal does not travel directly from the satellite to

the received, but is instead bounced off of objects in local environment. This often happens

near tall objects (e.g. buildings), or if the receiver is under objects such as overpasses, tunnels,

toll booths. Consider the example in Figure 3.2. The Figure 3.2a shows the set of raw GNSS

readings. Note that it appears the vehicle has driven through a forest. Figure 3.2b shows the

map-matched set of coordinates for the same vehicle, after most of the incorrect readings have

been excluded by a heuristic designed to detect multipath errors. If the incorrect positions were

positioned on an existing road, then the heuristic would fail to detect them, and the vehicle

owner would be automatically notified that the vehicle is being towed away.

(a) The readings as received by a GNSS sensor. (b) After heuristic filtering and map matching.

Figure 3.2: A series of vehicle positions and orientations is shown on a map as a series of blue arrows
connected by a dashed line. The figure on the left shows the original readings, as received by a GNSS
sensor. Note that many readings fall outside of known street network, and it appears the vehicle moved
through a forest. A heuristic algorithm guesses which positions are incorrect GNSS readings, and filters
them out. The figure on the right shows the positions which remain after map-matching and filtering
have been performed.

A potential use of visual cues is providing priors to the type of vehicle environment, es-

pecially the type of the road, which helps GNSS map matching disambiguation and improves

vehicle route reconstruction quality. One of more frequent problems is determining which of

the two parallel roads the vehicle traveled: fast one or a slow one, as illustrated in Figure 3.3. In

this case the differentiation between a fast road and a slow road should be useful. Less frequent

are other types of ambiguities, but they do exist. For example, in the Croatian city or Rijeka

there are several parallel roads located on a mountain slope. Several tunnels on those roads often
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Figure 3.3: Ambiguous route reconstruction due to poor GNSS precision. GNSS readings are marked
with circled X-marks. It is equally plausible that the vehicle traveled the fast road (in dashed blue) and
the slow road (in solid red).

cause the loss of GNSS signal and cause poor GNSS accuracy upon exiting the tunnels. That

confuses the map matching algorithm, which could benefit from knowing whether the vehicle

is still in the tunnel, near the tunnel exit, or outside the tunnel.

Another way to improve the map matching and route reconstruction is by providing priors

on the probability of GNSS accuracy loss. The vehicle being in a tunnel indicates a very high

probability of loss of the GNSS precision, and often causes a complete loss of GNSS signal.

The vehicle being near the tunnel exit predicts the return of lost GNSS signal, followed by a pe-

riod of low GNSS precision, as it takes some time to re-establish the GNSS fix. The presence of

an overpass and toll booths indicate a moderate probability of GNSS accuracy loss, due to pos-

sibility of multipath errors. The vehicle being on an open road indicates a very low probability

of multipath errors. The vehicle being in a settlement indicates neither low nor high probability

of multipath errors, since there is a possibility of being near tall objects (e.g. buildings), but they

are not necessarily in the field of view of a dashboard camera.

Map-matching

One of the features of quality fleet management systems is the automatic map-matching, i.e. the

aligning of coordinates received from a tracking device onto a road map. The coordinates

received by a tracking device are rarely perfectly accurate, and aligning them with known road

geometry can increase the accuracy of measured distance, and the correctness of addresses

obtained by reverse geo-coding. This can be very useful for vehicles that do not often engage in

off-road activities. Most tracking devices report some measure of accuracy of sent coordinates

(e.g. rms, CEP, SEP, R95), which can be used to estimate the coordinate probability distribution.

By assuming the vehicle is located on a road, a more likely vehicle position can be determined.

Consider the example shown in Figure 3.4: the coordinates received by the tracking device

(Fig. 3.4a) are actually mean values of the probability distributions, and are misaligned from

the road network. A map-matching algorithm examines more likely candidates for each received
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(a) Before map matching. (b) After map matching.

Figure 3.4: A series of vehicle positions and orientations is shown on a map as a series of blue arrows
connected by a dashed line. The figure on the left shows the original readings, as received by a GNSS
sensor. Note the positions do not align with the streets. The figure on the right shows the corrected
positions, obtained by applying a map-matching algorithm.

position, and obtains a more convincing reconstruction of vehicle movement, shown in Figure

3.4b.

A simple map-matching algorithm is the one that only considers and matches a single GNSS

reading, disregarding the previous readings. It examines the nearby road network, finds all

plausible position candidates, calculates their likelihoods and picks the most likely one. The

assumption is that the actual vehicle coordinates lie on the road, and that the vehicle course

approximately matches the orientation of the road. Consider the example in Figure 3.5. The

coordinates and course received by a tracking device are labeled as reading. The dotted cir-

cumference indicates the 99% confidence radius for this reading. Each road is approximated

by a series of line segments, called road segments. The road segments lying within the 99%

confidence radius are labeled as s1 to s10, in the order of increasing distance from the mean. The

point on the road segment closest to the mean is a good candidate for the map-matched value.

Since the course needs to be taken into account, each road segment contributes up to two can-

didates: one candidate for each permitted travel direction. The candidates are scored according

to the distance from the mean and the difference in course, and the one with the highest score is

the output of the map-matching algorithm. In more advanced systems, several candidates with

high enough scores are the output, and the subsequent route reconstruction algorithm decides

which candidate results in the most plausible route.

There are many ways to score the candidates, but the basic idea is simple. Let status =

(xs,ys,cs,vs,accs) be a status information sent by the tracking device, where (xs,ys) are the

mean coordinates, cs is the course, vs is the speed, and accs is the accuracy measure. Let

candidate = (xc,yc,cc) be a map-matching candidate, where (xc,yc) are its coordinates and cs
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Figure 3.5: Map-matching a single GNSS reading. A total of 10 nearby road segments have been
collected, marked with labels from s1 to s10 in the order of increasing distance from the GNSS reading.
The dotted circumference depicts the road segment collection radius. For each collected segment, the
point closest to the GNSS reading is considered, and one map-matching candidate is contributed for each
of the permitted traffic directions of that segment. A total of 19 candidates are considered in this example,
labeled from c1 to c19. Candidates c2k−1 and c2k are contributed by segment sk. For example, candidates
c3 and c4 are contributed by segment s2, while candidates c7 and c8 are contributed by segment s4. Note
that segment s10 only permits one-way traffic, so it only contributes one candidate, c19. Even though the
candidates c1 and c2 are the closest to the GNSS reading, the best candidate in this example is c3, due to
much better course match.
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is the course. A simple scoring function pc is given by the Equation 3.1.

pc(candidate,status) =
pdist + pcdiff · pcc

1+ pcc
(3.1)

Where pdist is the candidate score based on the distance from the mean, pcdiff is the candidate

score based on the course difference, and pcc is the probability of course information being

correct. Although this scoring function is a very simple ad-hoc formula, it is easy to compute

and works well in practice. The distance based score pdist is usually calculated by assuming

a multivariate normal distribution, and depends on the distance from the mean, as well as on

the accuracy measure accs. The course difference score pcdiff depends on the cs and cc only.

The pcc value depends on both vs and accs values, as the course information is derived from

successive GNSS readings. This means it is less accurate the slower the vehicle is moving.

The visual-based improvements can be achieved if the status message is extended to con-

tain visual information, and if additional road attributes are considered when scoring the map-

matching candidates. Let status = (xs,ys,cs,vs,accs,cls, ps
clc) be the extended status, where cls

is a class label assigned to image captured by a dashboard camera, and ps
clc is the probabil-

ity of class label being correct (given by the classifier). The probability of correctness of the

class label can be determined a posteriori (it can be estimated by classifying a dataset with

known ground truths). Detection of out-of-distribution classifier input [107] can be used to

prevent overly optimistic estimates of ps
clc. Let candidate = (xc,yc,cc,rac) be the extended

map-matching candidate, where rac is the set of candidate road attributes, such as road type,

speed limit, etc. Let perr(cls) be a function that assigns the probabilities of multipath errors to

class labels. Then a simple way to calculate the score of GNSS reading reliability is given by

the Equation 3.2.

ppc = 1− perr(cls) · ps
clc (3.2)

The improved candidate scoring is given by the Equation 3.3.

pcv(candidate,status) =
pdist · ppc + pcdiff · pcc · ppc + prt · ps

clc
ppc + pcc · ppc + ps

clc
(3.3)

Where prt is the score based on the matching of road attributes with the visual evidence, and

depends on the road attributes rac and status class label cls.

Improving route reconstruction

A route reconstruction is a process of reconstructing or guessing the exact route the vehicle

traveled, as evidenced by all available sensor inputs. It heavily depends on the quality of map-

matching algorithm, so using vision to improve map-matching already improves the route re-
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construction quality. But there is an additional way in which visual information can be useful.

Route reconstruction implies the reconstruction of parts of route between each two consecutive

GNSS readings. This can be done in a variety of ways, e.g. by assuming the fastest path, or by

finding several plausible routes and choosing the one that best matches the time duration be-

tween the points. This is easy when the distance between readings is small, but becomes harder

as the distance increases. The most interesting cases are the ones where the loss of GNSS signal

occurs for prolonged periods of time. Two examples of GNSS signal losses in the Croatian city

of Rijeka are shown in Figure 3.6. The first example, in Figure 3.6a, shows a case in which the

GNSS signal is lost upon tunnel entry, and fix was quickly re-established after each tunnel exit.

That case can be easily solved, provided the improved map matching ensures the low-accuracy

coordinates upon tunnel exit are properly matched. The second example, in Figure 3.6b, shows

a more serious case, in which the loss of GNSS signal lasted for 10 minutes.

(a) Intermittent loss of GNSS fix, caused by driving
through tunnels.

(b) GNSS fix lost for ten minutes, cause unknown.

Figure 3.6: A series of vehicle positions and orientations is shown on a map as a series of blue arrows
connected by a dashed line. The figure on the left shows the case in which an intermittent loss of GNSS
fix is caused by driving through four tunnels. The locations of the tunnels are marked by red ellipses.
The figure on the right shows a case in which a GNSS fix is lost due to an unknown cause, and then
re-established 10 minutes later.

If the vehicle tracking device continues to send status reports even though the GNSS is not

available, then the visual information can be used to more precisely select between the several

plausible route reconstruction candidates. Let R be a route reconstruction candidate for a set

of vehicle statuses S, and let s(R,S) be a route candidate scoring function which does not use

visual information. Additionally, let ps
ra be a score of a match between road attributes at time of

status s with class label of status s and let ps
clc be the probability of class label of status s being

correct. Then a simple route candidate scoring function sv, which uses visual information, is

given by Equation 3.4.

sv(R,S) =
1

1+α

(
s(R,S)+α · ∑s∈S ps

rt · ps
clc

∑s∈S ps
clc

)
(3.4)

Where α is score weighting factor used to regulate the degree to which visual information
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impacts the route scoring.

3.2.2 Improving the real-time monitoring, alarming, and historical data
reporting

Besides improving the quality of vehicle route reconstruction, the visual information can be

used to detect some interesting events, or to better explain them. For example, a human operator

monitoring the fleet of vehicles in real-time sees a list of vehicles which have lost the GNSS

signal, and wants to investigate the reasons behind GNSS signal disappearance for each of

those vehicles. It might be useful to indicate which of these vehicles have entered a tunnel,

so the operator can focus on other cases. The operator also sees the current velocity of each

vehicle. If a vehicle has stopped outside of settlement, or if the current vehicle speed is much

lower than the speed limit for the current road, this might indicate a problem. Using visual

cues to identify dense traffic scenarios can help the operator more easily identify the reason

behind sudden vehicle stopping or slow driving. Other explanation of sudden stopping could be

encountering a toll booth.

The set of interesting events and traffic scenarios partially depends on the types of monitored

vehicles and businesses they are conducting. For example, a highway maintenance crew might

want to know which of their vehicles are currently driving on shoulder lanes, which can be done

by visual scene categorization. The driving on the shoulder lane would be very hard to detect

by relying on GNSS and map data only, as neither consumer GNSS nor map data are typically

precise enough to do this reliably. A taxi company might want to detect if their vehicles are

stopping on forbidden locations, such as municipal bus stops. A transport company might want

to measure how often their trucks are driving behind other vehicles, and how close. Some

companies might care about detecting gas stations, toll booths, railroad crossings and ferry

embarkations, others might not, and instead wish to know how often their vehicles get stuck in

dense traffic. It would be very hard to accurately predict all interesting traffic scene categories

ahead of time, so a useful feature of the proposed image categorization system would be to have

the set of classes remain open, and that it can be easily changed in the future.
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Chapter 4

Integrating an image categorization
component into the fleet management
architecture

This chapter outlines the practical implementation problems encountered when an image cate-

gorization framework is integrated into a fleet management system. The problems are illustrated

by analyzing two naive approaches before proposing the architecture which solves all important

issues in a satisfactory way, and enables most desired features with little compromise.

4.1 Server-side classification

The simplest and most straightforward way to implement the image categorization subsystem is

to configure the mobile clients to simply send the entire image captured by a dashboard mounted

camera along with all other sensor readings. There are several issues with this approach. First

issue is that collecting and storing full images of traffic scenes raises potential privacy concerns.

Depending on the local laws of each country in which a fleet management is used, a special

effort might have to be made to limit the access to images and anonymize the privacy-sensitive

information. Another problem with sending entire images is the drastic increase in data traffic.

A single 640×480 full-color bitmap is around 900 kB in size. It can be compressed to around

200 to 300 kB by using a lossless PNG compression, or down to 20 to 50 kB by using a lossy

JPEG compression. A typical data packet containing sensor readings is around 100 B in size,

which is at least two orders of magnitude smaller than a compressed image. If a tracking device

sends one image every 60 seconds, it will transmit between 30 MB and 300 MB of data daily,

instead of the usual 150 kB, which may significantly increase the costs of data traffic. The third

problem is the increase in storage capacity. While the tracking device is not able to connect

to the fleet server, it needs to store all unsent data. During a week long international trip with
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no data roaming, the device would need an extra 385 MB for storing 640× 480 JPEG images

once per minute, or extra 140 GB for storing 640×480 PNG images once per second. Once the

central server receives the images, it may wish to store them for long periods of time, so that

it can re-evaluate the data if new image categories are added, or if a better classifier is trained.

Storing the images of resolution 640× 480 for a fleet of 10000 vehicles would require extra

storage starting from 5 TB up to 30 PB per year, depending on the compression rate and the

frequency of image collection.

A tabular overview of the required yearly storage for 1000 vehicles, depending on the format

of the transmitted image and the frequency of status updates is given in Table 4.1. Note the

realistic average update intervals are between 2 and 60 seconds, while those of 10 minutes

are extreme and are included in the table for completeness. Also note that there no reason

to ever use a bitmap format, as PNG format is much smaller with equal (lossless) quality. The

images of resolution of 160×120 could be considered to be too small for the human to properly

discern some important details of the scene. However, they were also included in the table, to

illustrate that even images with small resolution and strong lossy compression would still have

a significant impact on the storage requirements.

One benefit from the approach in which images are stored on the server would be that the

collection of traffic scene images would be steadily increasing. An annotator could periodically

label the new images and thus produce a larger training dataset. With bigger datasets it is

often possible to construct and train better performing image classifiers, especially for rarely

occurring image classes. It would be possible to periodically retrain the existing classifier using

the new image data, and then even re-evaluate the historic data.

4.2 Client-side classification

A different approach would be to perform the classification on the client tracking devices, and

only send the class labels to the server. This would solve all bandwidth and storage issues,

but would introduce different problems. The first problem is that the re-examination of historic

data becomes impossible: the images are lost, and it is not possible to re-classify them after

new class labels are added, or if a better version of a classifier is trained. The second problem is

that after every addition of new class labels it becomes necessary to update every client in order

to make them aware of the new labels. This will not only increase the data transfer costs, but

can also cause the set of classes across clients to be out of sync while the update is being rolled

out. Some clients might be in areas with no data connection for weeks (e.g. international trips).

Until they connect to the server and receive the update, they will continue to use the obsolete set

of labels, which will then be sent to the server. The synchronization issues could be somewhat

alleviated by introducing a significant delay before the downloaded update becomes active, so
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Table 4.1: Approximate data traffic generated by a 1000 tracking devices in a single year, depending on
the format of transmitted image and the frequency of status updates.

average time between status updates

image included in the status packet 2 seconds 10 seconds 1 minute 10 minutes

640×480 bitmap 12 PB 2 PB 440 TB 44 TB

640×480 PNG 3 PB 717 TB 119 TB 11 TB

640×480 high quality JPEG 1 PB 329 TB 54 TB 5 TB

640×480 medium quality JPEG 574 TB 114 TB 19 TB 1 TB

640×480 low quality JPEG 144 TB 28 TB 4 TB 491 GB

160×120 bitmap 826 TB 165 TB 27 TB 2 TB

160×120 PNG 473 TB 94 TB 15 TB 1 TB

160×120 high quality JPEG 215 TB 43 TB 7 TB 736 GB

160×120 medium quality JPEG 86 TB 17 TB 2 TB 296 GB

160×120 low quality JPEG 43 TB 8 TB 1 TB 149 GB

no image 734 GB 146 GB 24 GB 2 GB

that all clients start using the same set of labels at a preset time in the future. Another way to

handle the syncing problems it is to allow the clients to send both the new and old set of labels

until server confirms that all the clients have been updated. In any case, the addition of new

class labels in this setup is an expensive, slow and complicated process.

4.3 Proposed framework

To summarize: the server-side classification approach suffers from bandwidth and storage lim-

itations, while the client-side classification approach is too rigid, it complicates and delays the

future improvements while also preventing the reevaluation of historical data. The framework

proposed by this work solves all of the problems above. The proposal is that the clients calculate

and transmit very short image representations, called descriptors, which can then be classified

and stored on the server side. The overview of the framework is shown in Figure 4.1.

4.3.1 Desirable descriptor properties

The desirable properties of the descriptor are: descriptiveness, compactness and computational

simplicity.

Descriptiveness is the most important property of the descriptor. The descriptor needs to cap-
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Server

analyzing the descriptors

Thin clients

limited processing capabilities

computing short scene descriptors

Limited bandwidth

periodically transmitting descriptors

Database

limited storage capacity

storing the descriptors 

Figure 4.1: The architecture of the proposed image classification framework. A number of thin clients
periodically calculate a compact image descriptor and transmit it over a limited bandwidth channel to the
central server. The server then classifies the descriptors to determine the set of class labels belonging to
each described image.

ture the difference between the images of various classes well, so that good classification

accuracy can be achieved by the classifier used on the central server. The descriptiveness

can be experimentally estimated by measuring the classification accuracy, or other clas-

sification performance measure. In the experimental section of this thesis the classifier

mean average precision will be used as a proxy for descriptiveness, as will be discussed

later. If the classifier is not able to classify images adequately, the whole classification

subsystem becomes worthless. The better the classification performance, the greater the

contribution to the overall quality of fleet management will be made by the visual subsys-

tem. All other descriptor properties only influence the costs of the bandwidth, storage, and

computational hardware. That being said, small compromises are acceptable, a 1% drop

in classification accuracy might be acceptable trade-off for 10× reduction in descriptor

size.

Compactness is the property of the descriptor to be expressible using a low number of bits.

The descriptor needs to be compact not only to reduce the data transmission costs, but

also to limit the impact to both the client and server storage requirements. There are

several approaches to achieving compactness, which can be used independently:

∙ Using a method that was designed with compactness in mind.

∙ Starting with a large descriptor, and reducing its dimensionality (e.g. PCA).

∙ Using an efficient quantization, or other compression scheme.

Computational simplicity is not as important as descriptiveness or compactness, but is still

very desirable. The computation of the descriptor must be simple enough to run on re-

alistic client hardware, and not to waste too much power. Expensive mobile devices

are often equipped with dedicated neural processing units (NPUs). The computational

power of NPUs in mobile devices often exceeds 500 GFLOPs, and for some it exceeds 3

TFLOPs [108]. Movidius Myriad 2 chip is capable of processing up to two trillion 16-bit

operations per second while using only 500 mW of power [109, 110], and is available in

the form of a USB stick at a retail price under 80 USD [111]. Note that proposed fleet
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management visual framework does not require real-time image analysis, processing a

single image every several seconds is sufficient. However, if the descriptor computation

is fast and does not require expensive hardware, then a wider range of consumer mobile

devices can be used, which may significantly reduce the cost of the entire system.

Note that there is no requirement for the ability to reconstruct the original image from the

descriptor. This suggest that even shorter representations should be achieved than what is of-

fered by many state-of-the-art image and video compression schemes. Many image retrieval

systems offer very short image representations, but require the representations to adhere to a

distance metric so that the distances between descriptors of visually similar images are low.

Such a requirement is not useful in the scenario of traffic scene classification, so it is better to

trade it off in favor of better image descriptiveness.

4.3.2 Descriptor training restrictions

Many descriptor algorithms have parameters that must be learned. Once learned and deployed

to the clients, it would be cumbersome to update them at a later time. Ideally, once trained, the

descriptor should not need to be re-trained as more data becomes available. An ideal descriptor

would not have any parameters and no learning process involved, but such descriptors usually

do not achieve high descriptiveness. Some descriptors require the knowledge of the target

images dataset, as well as the class labels. Since the set of class labels needs to remain open,

such descriptors are highly undesirable. Some descriptors might require only the image data,

without class labels. Such descriptors could be useful if they generalize well across different

image sets. If they do not generalize well, then they might need re-training if they are to be used

on images of traffic scenes from different parts of the world (that were not part of the original

training dataset). Thus the additional desirable properties of the descriptor are:

Simplicity of training. The training of the descriptor should not depend on the target class

labels, so that it does not need to be updated when the labels change.

Generalization. The descriptor should provide good descriptiveness on images of traffic scenes

from different geographical areas, even those that were not present in the training dataset.

4.3.3 Classifier

The classification happens on the central server, which is typically equipped with powerful

hardware, and can even be a distributed system consisting of many computers. Therefore, the

main requirement on the classifier is good classification accuracy. It should be able to handle

several thousand classifications per second, but that is typically not an issue. The training

process can be as computationally expensive as necessary. While it is still conceivable that the

descriptor algorithm would need to be updated in the future, in this proposed framework the
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updating of clients would not be as cumbersome as in the client-side classification setup. This

is because during the client update period the server can easily keep two copies of the classifier,

one for each version of the descriptor. The addition or removal of the class labels does not

necessarily require a client update, and can easily be done instantaneously for all clients by

simply changing the classifier.

4.3.4 Discussion

The proposed framework has two drawbacks in comparison to server-side and client-side clas-

sification approaches. First, it requires more data transmission and storage than the client-based

classification approach. This could be alleviated by making the size of the descriptor be con-

figurable and adaptive. If a client is nearing its storage capacity or data transmission quota, it

could sacrifice some descriptiveness and use a more compact image representation. A trivial

example of this would be to reduce the number of bits of precision for floating point numbers in

the descriptor encoding. Second, the collection of new images is not as simple as in server-side

classification approach, so it is harder to enlarge the training dataset if the need arises. This

could also be alleviated by using a scheme in which certain clients occasionally do send an

entire image, thus causing a slight increase in data transmission costs. In this scheme clients

would keep the last several images for which the descriptor was sent. The server would decide

if it requires the entire image to be sent, according to a series of flexible rules. For example,

an out-of-distribution input detector [107] could be used to find images that are unusual, and

would benefit the dataset. The images could also be requested from clients that are known to be

in previously unseen geographical locations. The costs could be managed if known data trans-

mission quotas are used, by only requesting images from devices that are not near the limit. If

a client company requires a development of a new fleet management functionality that relies on

recognizing a new type of traffic environment, then only their vehicles can be used to collect

the images of the new type of traffic environment.

The storage requirements of the proposed architecture depend on the size of the descriptor

and the average frequency of status updates. The size of the descriptor depends on the number

of vector components and the number of bits required to encode each component. Storage re-

quired by several plausible descriptor encodings with respect to frequency of status updates is

shown in Table 4.2. The realistic average time between status updates is between 2 and 60 sec-

onds, while the 10 minute intervals are included for completeness. Note that 32 bits is enough

to encode an IEEE 754 single precision floating point number, which should be a sufficiently

precise representation for components of any descriptor. Prior research [100] has shown that

some descriptors can be encoded with 4 bits per component without any loss in classification

performance. The impact on the required storage is still significant when compared to plain sta-

tus update packets with no image descriptors, but much less so than if entire images were to be
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transmitted. Additional descriptor compression algorithms might be applicable, depending on

the type of image descriptor. For example, if a descriptor is sparse, then it can be very efficiently

transmitted by using a sparse encoding scheme. General-purpose compression algorithms such

as Deflate [112], LZMA [113] or BZip2 [114] do not seem to be useful for compression of

a single descriptor, but might be useful for the purposes of compressing a large number of

descriptors during archiving and backup.

The feasibility of the proposed framework hinges on the existence of descriptor algorithms

which satisfy the desirable properties and training restrictions. Several such descriptors will

be presented in the next Chapter, along with all other methods which can be used to build the

proposed framework.

Table 4.2: Approximate data traffic generated by 1000 tracking devices in a single year, depending on
the size of transmitted descriptor and the frequency of status updates. Average size of the status packet
without visual information is assumed to be 50 bytes (shown in the last row).

average time between status updates

image descriptor encoding 2 seconds 10 seconds 1 minute 10 minutes

2048 32-bit components 118 TB 23 TB 3 TB 403 GB

2048 16-bit components 59 TB 11 TB 1 TB 202 GB

2048 4-bit components 15 TB 3 TB 525 GB 52 GB

256 32-bit components 15 TB 3 TB 525 GB 52 GB

256 16-bit components 8 TB 1 TB 275 GB 27 GB

256 4-bit components 2 TB 522 GB 87 GB 8 GB

32 32-bit components 2 TB 522 GB 87 GB 8 GB

32 16-bit components 1 TB 334 GB 55 GB 5 GB

32 4-bit components 969 GB 193 GB 32 GB 3 GB

no descriptor (status only) 734 GB 146 GB 24 GB 2 GB
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Chapter 5

Methods

This chapter details all methods required to build the proposed fleet management visual catego-

rization framework. While Chapter 2 already gives a general overview of the used methods, this

chapter focuses on specifics. It explains why the presented methods were chosen, what makes

them applicable in the proposed fleet management framework, and how they are expected to

perform.

The chapter starts with the presentation of several descriptor methods which satisfy all re-

quirements outlined in Chapter 4. The chapter continues with the presentation of several vector

quantization approaches, and is concluded by an overview of classification methods and perfor-

mance measures.

The descriptors to be used in the proposed fleet management framework need to be descrip-

tive, yet compact. They may not be overly computationally intensive, or require large amounts

of working memory. The descriptors should generalize well to unseen traffic images, or traffic

images from different areas of the world. Finally, if they have any trainable parameters, their

learning should not depend heavily on the target imagery and labels. The reason for the last

point is to avoid frequent client updates since the client update is an expensive and cumbersome

process, as explained in Chapter 4. If the parameters depend heavily on the target data, then

they need to be re-learned when new data becomes available. If instead they can be adequately

estimated from a small sample of target data, then the clients may, but do not have to be updated

as more data becomes available. Since the set of target labels is expected to change, and must

remain open-ended, none of the proposed descriptors use target labels during their training.

Some, but not all of the proposed descriptors use target imagery during training.

5.1 Descriptors based on spatial Fisher vector framework

Fisher vector [115] characterizes the samples X as a gradient vector ▽Θ ln p(X |Θ) where p is the

probability density function of samples given the parameters Θ of a suitable generative model
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of the data X. This gradient vector can be classified by a discriminative classifier. Besides being

able to handle variable-length signals, Fisher vectors are also useful in image classification

[28, 116].

Spatial Fisher vector (SFV) framework [28] is an extension of bag-of-words approach which

uses Fisher vector representation to encode both the appearance and spatial layout of image

patches with respect to visual words. It was an image descriptor method which enabled state-

of-the-art image classification results until it was overtaken by deep learning approaches. Fisher

vectors are still used in recent works [63, 117, 118] in combination with deep learning frame-

works.

Let us now overview the dimensionality of the spatial Fisher vector descriptors. In the plain

bag-of-words approach [18], each D-dimensional image patch descriptor is hard-assigned to its

nearest visual words (cluster centroid), which results in the K-dimensional histogram, where

K is the number of visual words. In the Fisher vector extension [116], the visual words are

represented as a Gaussian mixture model (GMM), and each patch is soft-assigned to its nearby

visual words (Gaussians). Additionally, the first and the second order moments of the patches

assigned to each visual word are stored as well, meaning that the dimension of the resulting

vector is K(1+2D). This extension by itself encodes the appearances of the patch descriptors,

but not their locations. Using a spatial encoding scheme such as spatial pyramid matching

(SPM) [27] with C cells would result in a vector of length CK(1+ 2D). The spatial Fisher

vector approach does not use the SPM, but instead uses the Fisher kernel principle to encode

the spatial information as well as appearance information. The location (in pixel space, not

in local feature space) of image regions assigned to visual words is modeled by a GMM with

C components. The location, first and second moment are stored, meaning that an additional

CK(1 + 2d) vector components are used to store spatial information, where d = 2 for a 2-

dimensional signal (an image). Thus the total SFV image descriptor is of length K(1+ 2D)+

KC(1+ 2d), which is significantly shorter than CK(1+ 2D) if d ≪ D. The dimensionality

thus depends on the number of appearance and spatial components, and the dimensionality of

the local patch descriptor. Compact descriptors can be obtained by carefully setting the hyper-

parameters, and/or by applying a dimensionality reduction technique (e.g. PCA).

Note that the GMM models can be learned in a supervised way [116], which is not done

here, as the requirement of the framework is to avoid any knowledge of the target class labels.

Two descriptors based on the SFV will now be presented. One is handcrafted, while the

other uses local features learned by a deep learning framework.

5.1.1 SIFT/SFV + GIST descriptor

This descriptor is handcrafted. It is a concatenation of two descriptors: the spatial Fisher vectors

(SFV) [28] and the GIST scene descriptor [82, 83]. The dense SIFT algorithm [19, 20] was
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used as a source of local features for the spatial Fisher vectors. Knowledge of target imagery

is required for the SFV descriptor, as it needs to learn a vocabulary of visual words. The GIST

scene descriptor is completely handcrafted, and has no training requirements. It was designed

for scene categorization, and by itself does not perform well for general purpose classification

tasks [82, 83]. However, appending the GIST descriptor to the SFV descriptor has shown to be

beneficial to the classification performance on traffic scenes, especially if the descriptors sizes

are very small. The sizes of both the SFV and GIST descriptors can be regulated by selecting

the appropriate hyper-parameters, such as number of spatial components or the dimensionality

of local features for the SFV descriptor, or the number of scales or grid size for the GIST

descriptor. If we consider a short M-dimensional SFV descriptor (e.g. 64 components, regulated

by SFV hyper-parameters K and C), then it is more beneficial to append a 64-dimensional GIST

descriptor than to modify the SFV hyper-parameters to produce a (M + 64)-dimensional SFV

descriptor. Another way to obtain short image representations is to produce a large descriptor

first, and then reduce the dimensionality by using Principal Component Analysis (PCA). This

descriptor can be made to be compact and is simple to compute. Its parameters are learned by

examining the target dataset imagery. It does not require knowledge of target class labels. If

the size regulation is achieved by using the PCA instead of hyper-parameter configuration, then

a sample of descriptors instances computed on the target dataset is needed in order to learn the

principal components.

5.1.2 VGG/SFV descriptor

This descriptor is very similar to the previously introduced one. It also relies on the spatial

Fisher vector framework (SFV), but it is not combined with the GIST descriptor. Instead of

SIFT features (which are hand-crafted), it uses the responses of a convolutional neural net-

work (which were obtained by end-to-end learning) as local features. More precisely, it uses

the responses of conv5_4 layer of VGG-19 [43] convolutional neural network, trained on the

ImageNet1000 dataset and not fine-tuned to the target dataset. Not fine-tuning was a deliberate

choice, which aims to improve the simplicity of training and generalization properties of this de-

scriptor. If the convolutional features are not learned on the particular set of traffic images, then

they are equally likely to generalize well to traffic images from different geographical areas.

The architecture of the relevant section of the network is shown in Table 5.1. The input sizes

listed in the table assume the resolution of input images is 640× 480, which is the resolution

of images of the dataset used in this research. A spatial padding of 1 pixel is used for the 3×3

convolutional layers so that the spatial resolution remains unchanged after the convolution. The

only preprocessing of the input is subtraction of the mean RGB value (calculated on ImageNet)

from each pixel. The used part of the network has around 20 million parameters, and produces

1200 features of size 512, which are used as a local feature input to the spatial Fisher vector
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framework. Approximately 120 billion multiply-add operations are required to feed an image

of resolution 640×480 through the used part of the network. The size of this descriptor can be

regulated by selecting appropriate SFV hyper-parameter values, or by using a PCA to compress

a longer feature vector. As the SFV framework learns the distribution of the local features on

the target dataset, this descriptor also requires access to the target imagery.

5.2 Descriptors based on supervised transfer learning

Recent convolutional architectures [47, 52, 54] use a simple global pooling in favor of fully con-

nected layers, which enables them to outperform the older approaches (such as VGG) despite

having fewer parameters. Their pooled features have a relatively low dimensionality, which

means they can be directly used as compact image descriptors. They are simple to compute. If

publicly available parameterizations are used (learned on the ImageNet), and no fine-tuning is

performed, then they require neither knowledge of target class labels nor target dataset imagery.

If they perform well without knowledge of the target dataset, then they are expected to general-

ize well, and minimum future updates are expected. In the pursuit of good generalization and

training simplification, the Fisher vector aggregations were not used with these features, even

though it might offer improved performance.

Three specific architectures have been selected for experimental evaluation in this research:

ResNet [47], DenseNet [52] and MobileNetV2 [54]. All three architectures have already been

discussed in Chapter 2. We now go into more detail, with more focus on the implementational

considerations. We specify the exact models that were used in this research, and examine them

with focus on the dimensionality of obtained features, the number of parameters and computa-

tional complexity.

5.2.1 ResNet descriptor

The ResNet-50 network architecture is used in the experimental section of this thesis. It has 50

layers, and the average-pooled responses of the layer conv5_9 are used as the image descriptor,

which is 2048-dimensional. The architecture of the network is shown in Table 5.2. The fully

connected and softmax layers are not included. A spatial padding is used as necessary for the

convolutional layers so that the spatial resolution remains unchanged after the convolution. The

only preprocessing of the input is subtraction of the mean RGB value (calculated on ImageNet)

from each pixel. Batch normalization is used after each convolution (except last), before acti-

vation. Note that we do not use pre-activation residual blocks presented in [48], as they did not

lead to noticeable improvements of classification accuracy on our dataset.

The architecture consists of 16 residual building blocks. In each block, immediately before
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Table 5.1: The used section of the VGG-19 architecture, starting from the input and ending with the
extracted features.

input size layer type parameters

480×640×3 3×3 conv. ReLU, stride 1, 64 channels 1728

480×640×64 3×3 conv. ReLU, stride 1, 64 channels 36864

480×640×64 2×2 max-pool, stride 2 0

240×320×64 3×3 conv. ReLU, stride 1, 128 channels 73728

240×320×128 3×3 conv. ReLU, stride 1, 128 channels 147456

240×320×128 2×2 max-pool, stride 2 0

120×160×128 3×3 conv. ReLU, stride 1, 256 channels 294912

120×160×256 3×3 conv. ReLU, stride 1, 256 channels 589824

120×160×256 3×3 conv. ReLU, stride 1, 256 channels 589824

120×160×256 3×3 conv. ReLU, stride 1, 256 channels 589824

120×160×256 2×2 max-pool, stride 2 0

60×80×256 3×3 conv. ReLU, stride 1, 512 channels 1179648

60×80×512 3×3 conv. ReLU, stride 1, 512 channels 2359296

60×80×512 3×3 conv. ReLU, stride 1, 512 channels 2359296

60×80×512 3×3 conv. ReLU, stride 1, 512 channels 2359296

60×80×512 2×2 max-pool, stride 2 0

30×40×512 3×3 conv. ReLU, stride 1, 512 channels 2359296

30×40×512 3×3 conv. ReLU, stride 1, 512 channels 2359296

30×40×512 3×3 conv. ReLU, stride 1, 512 channels 2359296

30×40×512 3×3 conv. ReLU, stride 1, 512 channels 2359296
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Table 5.2: The relevant part of ResNet-50 architecture, starting from the input and ending with the
extracted features. Residual blocks are shown in brackets. The factor beside the brackets indicates how
many times a building block is repeated (stacked). Batch normalization is used after each convolution,
before activation. Layers conv3_1, conv4_1 and conv5_1 perform downsampling with a stride of 2,
while other layers in residual blocks have a stride of 1.

layer name layer type output size

conv1 7×7 conv. ReLU, stride 2, 64 channels 320×240

conv2_1 3×3 max-pool, stride 2 160×120

conv2_x


1×1 conv. ReLU, 64 channels

3×3 conv. ReLU, 64 channels

1×1 conv. ReLU, 256 channels

×3 160×120

conv3_x


1×1 conv. ReLU, 128 channels

3×3 conv. ReLU, 128 channels

1×1 conv. ReLU, 512 channels

×4 80×60

conv4_x


1×1 conv. ReLU, 256 channels

3×3 conv. ReLU, 256 channels

1×1 conv. ReLU, 1024 channels

×6 40×30

conv5_x


1×1 conv. ReLU, 512 channels

3×3 conv. ReLU, 512 channels

1×1 conv. ReLU, 2048 channels

×3 20×15

output 20×15 global average pool 1×1

the last nonlinearity, an element-wise summation of linearly projected block inputs with the

output of the last weight layer is performed. Inputs are linearly projected using 1×1 convolu-

tions to match the number of feature maps. A stride of 2 is used when the size of output feature

maps is smaller than the size of input feature maps. If sizes and number of feature maps match,

then no linear projection is necessary, and the inputs are elementwise summed directly. The

network has around 30 million parameters. Approximately 25 billion multiply-add operations

are required to feed a 640×480 image through this network.

5.2.2 DenseNet descriptor

The DenseNet-BC-121 network architecture is used in the experimental section of this thesis.

It has 121 layers, and the average-pooled responses of the last convolutional layer are used as

the image descriptor, which is 1024-dimensional. The architecture of the network is shown in

Table 5.3. The fully connected and softmax layers are not included. A spatial padding is used as
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necessary for the convolutional layers so that the spatial resolution remains unchanged after the

convolution. The only preprocessing of the input is subtraction of the mean RGB value from

each pixel.

The architecture consists of four dense building blocks, connected by three transition layers.

Before entering the first dense block, a convolution with 64 output channels is performed on the

input images. Each layer in a dense block performs a batch normalization, followed by a ReLU

activation, followed by a convolution. The dense block consists of L pairs of layers. The l-th

pair receives the feature maps of all the preceding l − 1 pairs in the block as its input. The

feature maps produced by the l-th pair are then included into input of all successive L− l pairs

in the block. Growth rate is k = 32, meaning that each pair of layers produces k feature maps, so

that l-th pair has k0+k(l−1) input feature maps, where k0 is the number of feature maps in the

block input. The first layer in a pair serves as a bottleneck that reduces the number of feature

maps fed into the second layer to exactly 4k. The transition layers perform a 1×1 convolution

to halve the number of feature maps, followed by average pooling to reduce the feature map

size. The network has around 6 million parameters. Approximately 15 billion multiply-add

operations are required to feed a 640×480 image through this network.

5.2.3 MobileNetV2

The main feature of MobileNetV2 model is its reduced computational cost in comparison to

more powerful models such as ResNet and DenseNet. Authors provide a series of network

architectures pre-trained on the ImageNet dataset. The basic architecture is the same, the dif-

ference is in the hyper-parameter α , called a width multiplier. It changes the base network so

that each bottleneck block produces αC output channels instead of C channels. We use the

base network, i.e. α = 1. The relevant part of MobileNetV2 architecture is shown in Table 5.4.

The table assumes input images of resolution 640×480. The first layer is a 3×3 convolution,

after which follow 17 bottleneck residual blocks. A single bottleneck block with an expansion

factor k is composed of a 1×1 ReLU6 convolution that transforms an input tensor W ×H ×C

to W ×H × t ·C, followed by a 3× 3 depthwise ReLU6 convolution that does not change the

number of channels, followed by a 1× 1 linear convolution that changes the number of chan-

nels to a fixed value (as shown in the fourth column of Table 5.4). The input of each block is

element-wise summed to the output. Batch normalization is used in all layers except the last

layer of the block. The stride of depthwise convolutions is occasionally set to 2 to halve the

spatial resolution (as indicated in the sixth column of Table 5.4), otherwise is it set to one. Note

that the output of the discussed network section is 15×20×320. We add a global average pool-

ing layer to obtain a compact descriptor of length 320. Total number of parameters is around

1.2 million. Feeding a 640× 480 image through the network requires approximately 2.3 bil-

lion multiply-add operations, which can be computed in under a minute even without dedicated
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Table 5.3: The relevant part of DenseNet-BC-121 architecture, starting from the input and ending with
the extracted features. Dense blocks are constructed by stacking the layers inside brackets the indicated
number of times. Growth rate is k = 32.

layer name layer type output size

convolution 7×7 BN-ReLU-conv., stride 2 320×240

pooling 3×3 max-pool, stride 2 160×120

dense block 1

1×1 BN-ReLU-conv.

3×3 BN-ReLU-conv.

×6 160×120

transition layer 1
1×1 BN-ReLU-conv. 160×120

2×2 average pool, stride 2 80×60

dense block 2

1×1 BN-ReLU-conv.

3×3 BN-ReLU-conv.

×12 80×60

transition layer 2
1×1 BN-ReLU-conv. 80×60

2×2 average pool, stride 2 40×30

dense block 3

1×1 BN-ReLU-conv.

3×3 BN-ReLU-conv.

×24 40×30

transition layer 3
1×1 BN-ReLU-conv. 40×30

2×2 average pool, stride 2 20×15

dense block 4

1×1 conv. BN-ReLU-conv.

3×3 conv. BN-ReLU-conv.

×16 20×15

output 20×15 global average pool 1×1
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Table 5.4: Relevant section of MobileNetV2 network.

input size block type
expansion

factor
output

channels
blocks in
sequence

stride of
first block

480×640×3 conv2d 32 1 2

240×320×32 bottleneck 1 16 1 1

240×320×16 bottleneck 6 24 2 2

120×160×24 bottleneck 6 32 3 2

60×80×32 bottleneck 6 64 4 2

30×40×64 bottleneck 6 96 3 1

30×40×96 bottleneck 6 160 3 2

15×20×160 bottleneck 6 320 1 1

neural hardware. Depending on the CPU, it could be done in several seconds. For slower CPUs

the reduction of input image resolution is required. For example, only 576 million multiply-add

operations are required to feed an input image of resolution 320×240.

5.3 Descriptors based on unsupervised learning

Note that the VGG/SFV, DenseNet and ResNet descriptors are trained in a supervised way, us-

ing ImageNet images and class labels. Some ImageNet class labels are somewhat traffic-related

and might overlap with fleet management class labels (e.g. traffic light, fire truck, tractor).

It is possible that fleet management classes that do overlap or partially overlap with ImageNet

classes might be easier to classify than other fleet management classes. Conversely, it is possible

that at some point in the future a new class label would be introduced into the fleet management

visual categorization, and that it would not be easy to classify due to its large difference in ap-

pearance from all other ImageNet classes. One way to ensure the balance between the classes is

to use completely unsupervised training methods. Unsupervised methods do not rely on labeled

data during training, they learn from the data samples only.

5.3.1 DCGAN descriptor

The state-of-the-art unsupervised convolutional models are Generative Adversarial Networks

(GAN) [78], and their extensions Deep Convolutional GAN (DCGAN) [80] and Wasserstein

GAN (WGAN) [81]. They all consist of a pair of adversarial networks, the discriminator and

the generator, which are involved in a min-max game and trained jointly on a dataset of images.
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The generator tries to generate artificial images that match the distribution of images in the

dataset, while the discriminator tries to differentiate between the artificial images and images

that are actual members of the dataset. It was shown that the discriminator network learns

image representation hierarchies which can be used for image classification [80]. By max-

pooling the convolutional features from discriminator layers over a grid and concatenating the

responses it is possible to obtain an image representation that can be classifier by an SVM

classifier. This approach can even be used to successfully classify images from a completely

different dataset [80], which means the obtained descriptor generalizes well and achieves good

knowledge transfer. The descriptor presented in the original paper [80] is relatively long (28672

components), but the length can be reduced by using a smaller pooling grid.

5.4 Generalization potential

In total, this thesis examines six descriptor approaches that might be suitable for the fleet man-

agement target framework. In this thesis they are referred to as SIFT/SFV+GIST, VGG/SFV,

ResNet, DenseNet, MobileNet and DCGAN descriptors. They have been named after their core

components, in the interest of brevity.

The proposed descriptors differ in how much knowledge of the target dataset they require

in order to successfully learn their parameters. Some of them can learn the parameters on an

unrelated dataset and still be successfully applied via transfer learning. The ImageNet Large

Scale Visual Recognition Competition (ILSVRC) [40] dataset was used as an unrelated dataset

of choice, as it has a large number of images with wide variety of class labels, so it is likely many

useful image representations can be learned on this dataset. Finally, the learning process can

be supervised or unsupervised. The supervised approaches usually achieve better performance

at the risk of not generalizing well to unseen or unrelated classes. A complete overview of the

proposed descriptors with respect to data used to train their parameters is shown in Table 5.5.

Note that SIFT/SFV+GIST is the only descriptor that does not use the ImageNet data in any

way. The VGG/SFV descriptor is the only one that uses the knowledge of both the ImageNet

dataset as well as target dataset, as the VGG network was trained on the ImageNet1000, while

the spatial Fisher vector framework was trained on the target dataset imagery. No descriptors use

the target labels during training, and the DCGAN descriptor does not use any labels whatsoever.

5.5 Dimensionality reduction

In this research, Principal component analysis (PCA) [90, 91] is used to achieve dimensionality

reduction of image feature vectors (descriptors). PCA is an orthogonal linear transformation

that maps the input data to a new coordinate system such that the variance of the projection of
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Table 5.5: An overview of the proposed descriptors with respect to the extent of received training. More
training leads to better results but increases the risk of overfitting.

SIFT/SFV DenseNet, ResNet

proposed descriptor +GIST VGG/SFV and MobileNet DCGAN

has learnable parameters yes yes yes yes

trained using target imagery yes yes no no

trained using target labels no no no no

trained using ImageNet imagery no yes yes yes

trained using ImageNet labels no yes yes no

the data to the first coordinate axis is the greatest possible, the projection of the data to the next

coordinate axis is the next greatest possible, and so on. The coordinate axes are called principal

components.

Let X be a N ×D matrix of input data, N ≥ D, organized so that the rows represent the N

D-dimensional input data samples xi, and columns represent sample features. Let the mean of

all columns of X be zero. Then, the first principal component w1 is a unit vector such that the

variance of sample projections in that direction is maximized:

w1 = arg max
||w1||=1

{
N

∑
i=1

(xi ·x1)
2

}
= arg max

||w1||=1

{
wT

1 XT Xw1
}

(5.1)

Since w1 is a unit vector, this can be expressed as

w1 = arg max
{

wT
1 XT Xw1

wT
1 w1

}
= arg max

{
R(XT X,w1)

}
(5.2)

where R(M,w) is the Rayleigh quotient. For a positive semidefinite matrix XT X, Rayleigh

quotient achieves maximum value when w1 is equal to the eigenvector of XT X with the largest

eigenvalue. By subtracting the found principal components from X and repeating the same

analysis it follows that all other principal components are eigenvectors of XT X, and that their

order is in descending order of their corresponding eigenvalues.

After the principal components have been found, the sample vectors are projected using

only first d principal components, thus reducing the dimensionality from D to d.

5.6 Quantization

All descriptor methods described above generate image representations that are vectors of real

numbers, x ∈ RD, where D is the dimensionality of a vector. Since computers are machines
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with finite memory, they are not able to represent arbitrary real numbers with perfect accuracy.

Instead, computer programs typically use the IEEE 754 floating point format [119] to approxi-

mate real numbers. The two commonly used IEEE 754 floating point formats are binary32 and

binary64. The binary32 format, also known as single precision encodes numbers in 32 bits and

offers precision of 24 binary digits (or 7.22 decimal digits). The binary64 format, also known

as double precision encodes numbers in 64 bits and offers precision of 53 binary digits (or 15.95

decimal digits). Since most modern computational hardware provides optimized calculation of

commonly used arithmetic operations involving these two formats, they are widely adopted and

used in many machine learning systems.

In our proposed fleet management framework, however, minimizing the size of the trans-

mitted and stored descriptors is a priority. Encoding the numbers using 32 or 64 bits should

be avoided unless it is absolutely necessary. Instead, numbers should be encoded using the

minimum required precision for the classification to achieve adequate accuracy. The process

of mapping values from a large set (possibly even continuous set) to a smaller set (which must

be discrete) is called quantization. The quantization mapping is such that a range of input val-

ues is approximated by a single value (called a quantum value). An image descriptor should

be quantized before it is stored or transmitted. Several quantization approaches shall now be

discussed.

5.6.1 Component-independent quantization

Component-independent quantization (CQ) is an approach proposed by the author of this thesis

in prior research [100]. It quantizes each component of a D-dimensional descriptor x ∈ RD

independently. Value of i-th component xi is first clipped to the interval [li,ri]:

xc
i = min(ri,max(li,xi)) (5.3)

The interval [li,ri] is split into di = 2qi bins (intervals) of equal width, and all the values in

the same interval are approximated by the interval midpoint. The value xc
i is encoded as the

zero-indexed ordinal number of the bin it falls into, ci, thus using only qi bits. More precisely:

ci(xc
i ) =


⌊

di
xc

i −li
ri−li

⌋
if xc

i < ri

di −1 if xc
i = ri

(5.4)

The quantized value xq
i of a component xi can be calculated from its code ci as follows:

xq
i = li +(ci +0.5)

ri − li
di

(5.5)
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Finding the appropriate clipping intervals [li,ri], and adequate number of bits per component

qi is the only prerequisite of using this approach. A reasonable approach is using the clipping

intervals [µi−kσi,µi+kσi], where µi and σi are the estimated mean and variance of the compo-

nent i, and k is a parameter that scales the width of the interval. Another reasonable assumption

is that the same number of bits should be used to encode all components, qi = bpc, where bpc

stands for bits for component. Under these assumptions the equations 5.3, 5.4 and 5.5 assume

the form:

xc
i = min(µi + kσi,max(µi − kσi,xi)) (5.6)

ci(xc
i ) =


⌊

xc
i −µi+kσi

2kσi
2bpc

⌋
if xc

i < µi + kσi

2bpc −1 if xc
i = µi + kσi

(5.7)

xq
i = µi − kσi +(ci +0.5)

2kσi

2bpc (5.8)

Since µi and σi can be estimated by using a small sample of values, only the parameters k and

bpc need to be optimized experimentally.

5.6.2 Clustering quantization

A clustering scheme can be used to quantize a set of vectors. In order to encode a vector using n

bits, apply a clustering algorithm (e.g. k-means [120]) to find 2n clusters. Each vector can then

be approximated by its nearest cluster centroid. The cluster centroids are used as a codebook,

and each centroid is assigned a zero-based index. The code of a single vector is simply the

index of its nearest cluster centroid. The code size is thus n bits, as centroid indexes are from

the set {0, . . . ,2n − 1}. This method can be used even if only a sample of vectors from the set

is available, as long as the sample adequately represents the set distribution. A major drawback

of this approach is that it can only be used to quantize vectors into a very small number of bits,

as the number of clusters rises exponentially with the number of bits.

5.6.3 Product quantization

The Product quantization (PQ) [92, 93] is an extension of the clustering quantization approach.

It solves the exponential rise of the codebook size by subdividing the problem space into smaller

subspaces. It requires a representative sample of the vector set in order to build a codebook,

same as clustering quantization approach. The D-dimensional vectors x ∈ RD are regarded as

concatenations of M subvectors x = [x1, . . . ,xM]. Each subvector sample is quantized separately

into ni bits, using the clustering quantization approach. This is feasible if all ni are small enough.

The quantization of subvector samples results in M codebooks {Ci}, |Ci| = 2ni, i = 1, . . . ,M.
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The codebooks are used to produce subvector codes c1, . . . ,cM,ci ∈Ci. The produced codes are

then concatenated to obtain the code of the entire vector c(x) = [c1, . . . ,cM]. Note that since

c ∈C =C1 ×·· ·×CM, the Cartesian product of the subvector codebooks Ci can be considered

the codebook for the full vector. Although its size rises exponentially with M (assuming n1 =

· · · = nM and |x1| = · · · = |xM|), it only requires M times more memory and computation time

than a single subvector codebook Ci.

5.7 Classification

A number of works have demonstrated successful image categorization by using a support vec-

tor machine (SVM) [29] classifier. Preliminary research for this thesis [99, 100, 121] showed

that the SVM classifier outperformed the random forest [122] classifier in almost all cases.

5.7.1 The support vector machine classifier

The support vector machine (SVM) [29] is a binary classifier. Given a training dataset {(xi,yi)}
of N linearly separable samples xi with labels yi ∈ {−1,+1}, it finds a maximum-margin hy-

perplane w ·x−b = 0 that divides the samples with label −1 from the samples with label +1.

The maximum-margin means that the distance of the hyperplane from the nearest sample is

maximized. This is known as a hard-margin SVM.

If the samples are not completely linearly separable (e.g. if there are some outliers), then a

soft-margin variant is used instead. A hinge loss function is defined as:

l(x) = max(0,1− yi(w ·xi −b) (5.9)

The hinge loss function is equal to zero for samples xi which are correctly classified. For

incorrectly classified samples, it is proportional to the distance from the dividing hyperplane.

The soft-margin SVM minimizes the following cost function:

1
N

N

∑
i=1

l(xi)+C||w||2 (5.10)

The C is a parameter that determines the tradeoff between maximizing the size of the margin,

and maximizing the number of correctly classified samples.

Kernel function

In some cases the samples are not linearly separable at all. They might become linearly sepa-

rable if they are mapped into a higher-dimensional space by a carefully selected function φ(x).
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The explicit mapping into a higher dimensional space is not strictly necessary, if a kernel func-

tion k can be found such that k(x1,x2) = φ(x1) ·φ(x2). In this research a radial basis function

(RBF) is used as an SVM kernel function, defined as:

k(xi,x j) = e−γ||xi−xk||2,γ > 0 (5.11)

Label weighting

The hinge loss function 5.9 assigns equal importance to both the positive and negative samples.

As a result, the number of incorrectly classified positive and negative samples will likely be

roughly equal. If the number of positive and negative samples is not balanced, then the relative

ratios of positive and negative misclassified samples are also not balanced. This means that

the label with larger number of samples is more likely to be correctly classified, which can be

undesirable. To correct this, a label-dependent weighting factor can be introduced to the hinge

loss function, to make the misclassified samples with a certain label contribute more to the

overall loss, thus balancing the ratios of misclassified samples. A reasonable choice is using a

factor inversely proportional to the frequency of the label occurrences in the dataset.

5.7.2 Multi-label classification

The proposed classification system shall be multi-label, as it is expected that traffic scene im-

ages shall often simultaneously depict multiple categories of interest to fleet management. For

example, an image might depict a scene of dense traffic on a highway, and both highway and

dense traffic could be classes of interest in fleet management.

There are two common ways to implement a multi-label classifier using only binary classi-

fiers: label powerset method and binary relevance method.

Label powerset is a transformation method that trains one binary classifier for each combina-

tion of labels encountered in the dataset. One problem with this approach is that if the

labels are independent, then the number of their combinations can rise exponentially, with

maximum number of combinations of N labels being 2N . Another problem is that some

of the combinations might occur very rarely in the dataset, which would hinder training.

The benefit of this approach is that it is able to learn dependence between labels.

Binary relevance is an approach in which a single binary classifier is trained for each label.

The classifiers are trained independently, which means that this approach cannot learn

the dependence between labels. The benefit of this approach is its simplicity and low

computational cost.

Since the set of class labels needs to remain open, we use the binary relevance method. This

approach is very flexible, as removal and addition of class labels can be done in a way that does
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not interfere with other class labels. It is computationally feasible as long as the number of

classes is not very large. A different approach might be required if the number of class labels

exceeds several hundreds, but that scenario is not expected in this application.

5.8 Classification performance measures

Several classification performance measures will now be discussed. Before continuing, some

basic terms must be defined. Consider a set of labeled samples {(xi,yi)}, where xi ∈ X are the

samples, and yi ∈ {false, true} are the labels indicating whether a sample belongs to a certain

class or not. Also consider a binary classifier f : X → {false, true}. A classifier output for a

single sample f (xi) is called a prediction. The prediction true is also called a positive, while the

prediction false is also called a negative. If the prediction is equal to the sample label, then it is

called a true positive/negative, otherwise it is call a false positive/negative. This is overviewed

in Table 5.6.

5.8.1 Simple measures

Accuracy is defined as the proportion of correctly classified samples among all samples:

accuracy =
|{true positives}|+ |{true negatives}|

|X |
(5.12)

which is equal to 1 if all samples are correctly classified, or 0 if none of the samples are correctly

classified. It is a simple measure of classification performance that reasonably well describes

the quality of the classifier. Other measures can be used to better characterize the classifier.

Precision is a measure of classification performance defined as:

precision =
|{true positives}|

|{true positives}|+ |{false positives}|
(5.13)

Note that the sum in the denominator is equal to the total number of positives. The precision

measures the proportion of true positives among all predicted positives.

Table 5.6: Terminology of classifier predictions, with regard to their value and correctness.

label

prediction true false

true true positive false positive

false false negative true negative
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Recall is a measure of classification performance defined as:

recall =
|{true positives}|

|{true positives}|+ |{false negatives}|
(5.14)

Note that the sum in the denominator is equal to the total number of samples labeled true. The

recall measures the proportion of correctly classified samples labeled true. For this reason it is

also called true positive rate (TPR). The false positive rate (FPR) is defined as:

FPR =
|{false positives}|

|{false positives}|+ |{true negatives}|
(5.15)

Note that neither precision nor recall alone are adequate classification measures. It is pos-

sible for a useless classifier to achieve very high recall, or very high precision. For example, a

constant classifier f (x) = true achieves 100% recall. A classifier which only outputs one posi-

tive prediction, and happens to guess correctly would have a precision of 100%. Precision and

recall are often expressed together to describe a classifier performance. A good classifier must

have both recall and precision as close to 100% as possible. A simple way to encode both mea-

sures into a single number would be to use a F1 score, defined as a harmonic mean of precision

and recall:

F1 = 2
precision · recall
precision+ recall

(5.16)

If precision and recall are not equal, then the value of F1 score is closer to the min(precision, recall)

than to max(precision, recall).

5.8.2 Receiver operating characteristic curve

Some binary classifiers (such as SVM) do not map the samples directly to the predictions

{true, false}. Instead, they first calculate a score: s : X → R, and then use a selected thresh-

old t to determine the label:

f (x) =

true if s(x)≥ t

f alse if s(x)< t
(5.17)

Not all classification applications consider the true positive rate, false negative rate, and

other measures to be equally important. For example, a medical test for a rare disease, or

a forensic test should both have a very low probability of a false positive. By varying the

threshold t, it is possible to regulate the trade-off between the number of false positives and

false negatives. A receiver operating characteristic curve (ROC curve) is created by plotting

the true positive rate against the false positive rate at various threshold values.
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5.8.3 Average precision

An alternative to ROC curve is a precision-recall curve, which is the plot of precision against

the recall at various threshold values. Average precision (AP) is the area under this curve:

AP =
∫ 1

0
p(r)dr (5.18)

were p(r) is the precision expressed as a function of recall r. In practice this is calculated

differently: first, the N = |X | samples are sorted into a sequence in decreasing order of their

scores s(x). Then the average precision is calculated as:

AP =
N

∑
k=1

P(k)(R(k)−R(k−1)) (5.19)

where P(i) and R(i) are the precision and recall (respectively) achieved for threshold set to the

value of the score of i-th sample in ordered sequence if i > 0, and R(0) = 0.

It is possible for two classifiers to have the same accuracy (for the same threshold), but

different average precision. The classifiers for which the scores of the incorrectly classified

samples are relatively closer to the threshold (in relation to other samples) will measure the

higher AP value. In this regard the AP is superior to accuracy measure. When dealing with

binary classifiers on imbalanced datasets (which is the case in this thesis), the precision-recall

curve is more informative than the ROC curve [123, 124].

The mean average precision (mAP) is the mean of AP values for all classes in a dataset. The

AP and mAP are the classification performance measures most often used in this thesis. Since a

great number of classifiers will be examined in the experimental section, it would be unpractical

to include the ROC or precision-recall curves for all of them. It is much more convenient to

reduce the estimation of classification quality to a single number, and AP values are adequate

in this regard.
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Fleet Management Dataset

A novel dataset was compiled in order to experimentally evaluate the proposed methods. It is

called The Fleet Management Dataset, or FM dataset for short. It grew iteratively over the years

of research, and is currently in its third iteration, called the FM3 dataset[125]. The dataset aims

to accurately represent the set of traffic scenes that might be encountered in a fleet management

system.

The FM3 dataset contains 11448 labeled images of traffic scenes in Croatia. The images

are further split into two subsets. The first subset is called the main set, or FM3m for short,

and contains 6413 images captured in the good visibility conditions, with little or no visual

degradation of the scene caused by bad weather or poor illumination. The second subset is

called the appendix, or FM3a for short, and contains 5035 images with various types of visual

degradation caused by bad weather or illumination conditions.

6.1 Data acquisition

All images are of the resolution 640× 480, and were captured by a dashboard mounted in-car

camera, so that the traffic scene is seen from the perspective of the vehicle’s driver. A vast

majority of images (a total of 11243 of them) were obtained by capturing video while driving

over various locations in Croatia, and then selecting representative video frames. Additional

572 images were hand-picked from the on-line service Mapillary [126]. This brings the number

of images in the dataset to the total of 11448.

6.1.1 Videos captured by the author

These videos were acquired in various locations in Croatia at several different times of a year,

over the period of five years, from year 2013 to year 2018. The drives were filmed by a dash-

board mounted camera, resulting in more than forty videos of various lengths. All drives were
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done during daytime, from early morning until dusk (including twilight period). In the early

stages of data collection, a Samsung Galaxy S2 smartphone built-in camera was used, while in

the latter stages the built-in camera of an Apple iPhone 6 smartphone was used. The camera

setup and the exemplar captured video frame are shown in Figure 6.1. Note that most captured

images contain visual artefacts such as small parts of smartphone holder suction cup, parts of

vehicle interior (both directly visible and reflected off the windshield glass), as well as occa-

sional specks of dirt on the windshield glass.

1
4

3

2

Figure 6.1: Camera setup. The image on the left shows the location of the dashboard mounted camera,
in this case an integrated camera of a Samsung Galaxy S2 smartphone. The image on the right is an
example frame from a video captured by the camera, with annotated visual obstructions or artefacts.
Note the visibility of camera mount (annotation 1), parts of vehicle interior (annotation 2), the reflections
of vehicle interior (annotation 3), and the specks of dirt (annotation 4).

Video sampling method

The captured videos were sampled at a rate of one frame for every two seconds of video. As

previously discussed, vehicle tracking devices used in fleet management typically send a vehicle

state snapshot every 2 to 60 seconds, depending on the current speed of the vehicle. If a vehicle

is moving at a speed of 100 km/h, then it travels a distance of 55.6 meters in 2 seconds. It

is not likely that any important type of traffic scenario would be missed by this sampling rate.

The sampled images were then manually inspected to remove near-duplicate images, as well

as images that did not contain a visible traffic scene. Near-duplicate images are caused by

vehicle remaining stationary while the traffic scene remains constant (for example, waiting on

a traffic light at an empty intersection). The images that do not contain a visible traffic scene

usually happen directly after entering or exiting a tunnel, which can result in completely dark or

completely white (over-exposed) images due to sudden lighting changes. This image collection

criteria approximates the expected use case for fleet management systems well.
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6.1.2 Images downloaded from Mapillary

It quickly became apparent that the images obtained by sampling captured videos contain very

few samples of certain types of traffic scenes. To improve the number of samples of such

scenes, a total of 205 images were hand-picked and downloaded from the on-line street view

crowd-sourcing service Mapillary [126]. They were manually cropped and resized as necessary

to obtain an image from the approximately same point and field of view as other images in

the FM3 dataset. The resolution of images was 640× 480 after cropping and resizing. The

downloaded images were captured by many different cameras, and suffer from different kinds

of visual artefacts. Some show small parts of vehicle interior, others do not. Some images show

distortions that look like a consequence of a rolling-shutter effect of a wobbly camera, as shown

in Figure 6.2.

Figure 6.2: An example of distorted image obtained from Mapillary. Note the wobbly appearance of the
street lights.

6.2 Visual degradation

As was mentioned earlier, the FM3 dataset is split into two subsets of images. The first subset

is the main set, denoted as FM3m. It contains 6413 images with no significant visual degrada-

tion. Images from the FM3m set were captured during good weather, with occasional clouds

but no precipitation. The position of the sun was high enough in the sky that every type of

open environment was well illuminated. The second set of images is denoted as FM3a, and

contains 5035 visually degraded images. The images from FM3a set either have poor illumi-

nation conditions caused by the low sun angles, or were captured during bad weather, with at

least some precipitation. Three types of bad weather conditions were captured: rain, snow and

fog. Note that FM3m and FM3a sets were not separated by examining the visual evidence. The

FM3m images were collected by taking care to drive during clear weather and good visibility
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conditions. Conversely, the FM3a images were collected by deliberately driving during adverse

conditions and capturing the footage of the drives. If during any drive the adverse conditions

ceased (e.g. the rain stopped falling for a few minutes), the frames sampled during those periods

were manually excluded. This means that exact causes of each visual degradation are known,

not guessed.

6.2.1 Low sun

Several drives were made during low sun angles. The position of the sun was at least low

enough to cause serious illumination problems if the camera was pointed in the direction of

the sun. Some footage was captured during twilight, but no footage was captured after dusk.

Due to camera’s limited dynamic range, capturing footage while looking at the sun causes one

portion of the scene to be very bright, while other portions remain extremely dark. During early

pre-twilight period the scene appears normal whenever the camera is not pointed towards the

sun. Such portions of the captured footage were excluded manually, only visually degraded

images were collected. As the sun continues to set, the appearance of the entire scene becomes

darker, even if the camera is not pointed towards the sun. After the sun has set, there is still a

decent amount of sunlight during twilight, and the scene remains visible even without use of

headlights. The examples of traffic scenes degraded in appearance by low sun angles are shown

in Figure 6.3. Note that street lights are turned on in some scenes, but the scene would have

been visible even without them.

Figure 6.3: Examples of traffic scenes visually degraded by poor illumination conditions, captured
during pre-twilight and twilight.

6.2.2 Rain

Images captured during falling rain often contain raindrops on the windshield glass, which

may blur, distort or occlude parts of the scene. The camera occasionally focuses onto the
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raindrops on the windshield instead on the traffic scene, in which case the entire scene is slightly

blurred. The visibility is usually low and the illumination poorer. Portions of the scene are often

occluded by windshield wipers. The wet road may contain reflections. Some images of traffic

scenes captured during falling rain are shown in Figure 6.4.

Figure 6.4: Examples of traffic scenes captured during falling rain.

6.2.3 Snow

Images captured during falling snow often appear similar to images captured during rain: the

visibility is low and the illumination is poor. There are however, some differences. The most

obvious difference is that the objects beside the road are covered with snow, altering the appear-

ance of the scene. Snowflakes are less transparent than raindrops, so the scene appears more

noisy than distorted. The road contains fewer and less noticeable reflections, depending on how

fast the snow melts. The FM3a contains no footage of drives during very heavy snowfall. There

are no images in which snow covers large portions of the road surface. The road lane markings

are visible on all images in this category. The Figure 6.5 shows some examples of road scenes

captured while driving during falling snow.

6.2.4 Fog

The scenes captured while driving through fog have severely degraded visibility. Distant parts

of the scene are often completely covered in fog, leaving only nearby objects as visual evidence

about the type of the environment. The fog slowly condensates into water droplets on the

windshield glass, which cause the same issues as in case of rain: parts of the scene appear

blurred, distorted or occluded. Camera sometimes focuses on the water droplets covering the

windshield glass, instead on the traffic scene. The windshield wipers occasionally cover parts

of the scene. Some examples of images captured in fog are shown in Figure 6.6.
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Figure 6.5: Examples of traffic scenes captured during falling snow. The snow covers parts of the scene
beside the road, but the road surface is clearly visible.

Figure 6.6: Examples of traffic scenes captured while driving through fog.

6.2.5 Overview

The number of images captured for each major type of visual degradation is shown in Table

6.1. Note that there is some overlap between the categories: 12 images were captured during

both low sun and rain conditions. Windshield wipers occlude parts of the scene in a total of 785

images. The majority of visually degraded images were captured during low sun and falling rain

conditions, while there are far fewer samples of snow and fog. The low sun conditions occur

every day of the year, the rain occurs often throughout the year, and snow and fog are much

rarer events in comparison. Since snow and fog have a high impact on the traffic throughput

and safety, they are of great importance to fleet management systems. It would be worthwhile

to invest additional time to collect more samples of snow and fog traffic scenes in the future.
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Table 6.1: Distribution of visually degraded images in the FM3 dataset with respect to cause of degra-
dation.

type of degradation low sun rain snow fog

number of images 1990 2428 514 115

6.3 Class labels

After the images were collected, a set of eight classes of interest for fleet management was

identified: highway, road, tunnel, exit, settlement, overpass, booth and traffic. Each of them will

now be closely described and their importance in the context of fleet management discussed.

This will be followed by a brief overview and then continued by an explanation of the labeling

process and precise definition of the annotation criteria. Finally, the distribution of class labels

across subsets of the FM3 dataset will be presented and discussed.

6.3.1 Highway

The highway class represents traffic scenes of a fast, wide and open road. As was discussed in

Chapter 3, differentiating between different types of roads can help fleet management perform

higher quality map-matching and route reconstruction. By knowing that a vehicle is in an open

environment, the fleet management can infer a low probability of encountering GNSS errors,

meaning the GNSS data will be treated as very reliable. Additionally, high-speed travel is

expected, so sudden vehicle stops in such an environment should probably trigger an automatic

alarm. Examples of this class are shown in Figure 6.7. Most highway images are very similar

in appearance, as the scene is usually dominated by large asphalt surfaces and open sky.

Figure 6.7: Examples of traffic scenes labeled as highway.
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6.3.2 Road

The road class represents traffic scenes of an open road that is not a highway, meaning the road

is slower and less wide. It is useful for map-matching and route reconstruction augmentations,

as well as for indicating a low probability of encountering GNSS errors. Additionally, if a

vehicle is driving at very high speeds (e.g. 130 km/h), then it is probably violating the traffic

rules, which should be a cause for alarm. Example images for this class are shown in Figure 6.8.

The road images are more varied in appearance than highway images, as there are many types

of regional roads that fall into this category. Some of them have two lanes per direction, some

just one. Some are well maintained, some not. The objects beside the road are more varied as

well (e.g. tall trees could overhang over a narrow road, while the same is not possible in case of

highways).

Figure 6.8: Examples of traffic scenes labeled as road.

6.3.3 Tunnel

The tunnel class represents the scene directly before, on inside a tunnel, but not the very exit

of a tunnel. The reason is that the intended usage of tunnel entry and tunnel exit information

by fleet management is different. By entering a tunnel a loss of GNSS precision becomes

significant. Several consecutive images sent from a tunnel indicate almost certain complete loss

of GNSS signal. Encountering the tunnel exit signals the probable restoration of GNSS signal,

and for that reason the tunnel exit is considered a separate class in this context. Driving through

tunnels can potentially be dangerous, which is an additional reason to detect and report the

tunnel entry in a fleet management system. Some samples of this class are shown in Figure 6.9.

Most samples are dominated by orange hues caused by tunnel lighting, although some shorter

tunnels are poorly lit.
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Figure 6.9: Examples of traffic scenes labeled as tunnel.

6.3.4 Exit

The exit class represents the tunnel exit, which indicates a likely return of GNSS signal if it

was lost, or restoration of GNSS precision in case the signal was not completely lost (which is

possible in shorter tunnels). Since driving through tunnels can be more dangerous than driving

through open areas, exiting the tunnel is an interesting event which should be noted by a fleet

management system. Some samples of this class are shown in Figure 6.10. There are few

samples of this class, and many samples contain large blobs of bleeding white light caused by

overexposure and slow adaptation of camera to sudden illumination changes.

Figure 6.10: Examples of traffic scenes labeled as exit.

6.3.5 Settlement

The settlement class represents traffic scenes inside settlements. The loss of GNSS accuracy

is more likely than in case of open road, as there is a possibility of tall objects (e.g. buildings)

being near the vehicle. Since it is impossible to tell for sure whether or not a tall object is

near the vehicle, this class by itself does not contribute any information about the probability
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of encountering GNSS errors. It can, however, be used as a location prior, to improve the map-

matching. If a vehicle encounters a tunnel in a settlement, then the differentiation between the

tunnel scene and a settlement scene can improve the quality of map-matching upon exiting the

tunnel. Additionally, the settlement scene indicates that the speed limits are likely to be lower

than on open roads, and that complete vehicle stops are much more likely to happen. Examples

of this class are shown in Figure 6.11. There is a great variability in appearance of samples of

this class, much greater than for scenes of open roads or tunnels.

Figure 6.11: Examples of traffic scenes labeled as settlement.

6.3.6 Overpass

The overpass class represents a scene directly in front of, or under an overpass. Driving under an

overpass can cause undetected GNSS multipath errors, which is the main reason for including

this class. Detecting an overpass can serve as a GNSS error probability prior. It is also possible

it could be used as a location prior, if the map data is detailed enough to contain all types of

overpasses (road, railway, etc.). Some samples of this class are shown in Figure 6.12.

Figure 6.12: Examples of traffic scenes labeled as overpass.
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6.3.7 Booth

The booth class represents scenes directly in front of, or under a toll booth. Being under a toll

booth can cause undetected multipath errors, so this class provides not only a location prior, but

a GNSS error prior as well. More importantly, detecting toll booths is very useful for purposes

of reporting (e.g. for keeping track of monthly expenses), and for explaining the very slow

speeds and full stops that can precede the toll booth location. Although the locations of toll

booths are often present in the map data, they can be incorrectly placed, or missing. Coupled

with the fact that the GNSS errors are likely, it is beneficial to be able to detect them visually as

well. Some samples of this class are shown in Figure 6.13.

Figure 6.13: Examples of traffic scenes labeled as booth.

6.3.8 Traffic

The traffic class represents the scenes of dense traffic. Being in a dense traffic is mostly useful

for explaining the sudden vehicle stops, and to explain why the perceived vehicle speed is

unexpectedly low. A human operator monitoring the vehicle fleet in realtime would expect to be

automatically notified of any sudden vehicle stops on highways. It would be beneficial to offer

explanation of sudden stops if possible, which makes detecting dense traffic scenarios a very

useful feature. If a large vehicle is directly in front of the tracked vehicle, then it can completely

occlude the scene. Such a scene can not be assigned any other class label, so it is labeled as

traffic, to indicate the reason of scene occlusion. Complete scene occlusions by other vehicles

should only happen during very low vehicle speeds, as greater distance between vehicles should

be kept during high speeds. Samples of this class vary greatly in their appearance. Example

images for this class are shown in Figure 6.14.
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Figure 6.14: Examples of traffic scenes labeled as traffic.

6.3.9 Contributions to fleet management

Each of the described eight FM3 class labels has its own set of potential applications in fleet

management systems. Some of them represent the location of a vehicle, others describe an

important attribute of the scene. Some are mutually exclusive, while others may co-exist in

a single image. Four useful applications that are common across several classes have been

identified:

∙ location disambiguation

∙ estimating the probability of encountering GNSS errors

∙ estimating the range of expected speeds

∙ event reporting

The location disambiguation and the estimation of probability of encountering GNSS errors

can be used to improve map-matching and route reconstruction, as was discussed in Chapter 3.

Additional usefulness is the ability to explain the reason behind the loss of GNSS to the human

operator who might be wondering what’s wrong.

The estimation of likely vehicle speeds can be used to raise alarms when an unlikely vehicle

behavior is detected (e.g. a sudden stop on a highway, driving very fast through a settlement).

Although some maps may contain the information about the exact speed limit for each road

segment, a visual approach is still useful even in those cases. Consider a case of construction

works on a segment of a highway: maps are not aware of the road works and the reduced speed

limit, but a visual inspection could determine that the current scene is not of a typical open

highway.

Some classes represent interesting events, such as entering and exiting the tunnels, encoun-

tering and driving through dense traffic, and stopping at a toll booth. As such, they should be

detected by a fleet management system and presented to the human operator, either in real-time

monitoring or in monthly reports. The class booth is especially useful for this purpose, as it

helps monitor the expenses.
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Table 6.2: Usefulness of the FM3 class labels.

useful for

location estimating the probability estimating the range event

label disambiguation of encountering GNSS errors of expected speeds reporting

highway yes yes yes no

road yes yes yes no

tunnel yes yes yes yes

exit yes yes no yes

settlement yes no yes no

overpass yes yes no no

booth yes yes yes yes

traffic no no yes yes

The usefulness of each class label in these four described applications is listed in Table

6.2. Note that every class except traffic can be used for location disambiguation. The usage

of overpass labels for disambiguation relies on having detailed enough maps (e.g. the railroad

network must be known to detect railroad overpasses).

Of course, many other types of traffic scenes could potentially represent interesting classes,

but this depends on the type of business the monitored vehicles are conducting. Additionally, not

enough samples of such scenarios are present in the images of the FM3 dataset. For example,

detecting drives over a shoulder lane could be useful for vehicles of highway maintenance crew,

but there are no such samples in the FM3 dataset. Detecting ferry boardings, railroad crossings

or driving over a bus-only lane could also be interesting events, but there almost no samples of

such scenes in the FM3 dataset either. Detecting the weather conditions (e.g. fog) could also be

very useful, but it would require obtaining a large number of samples for each weather type in

each type of environment, which is outside the scope of this research.

6.3.10 Annotation process

The following criteria was used to assign class labels to images of the FM3 dataset:

Highway is assigned to images in which the vehicle is on a wide and open road. More precisely,

the road is not inside of a tunnel, and there is no definite evidence of vehicle being in a

settlement. The road must have at least two lanes and a shoulder lane, or at least three

lanes dedicated to the currently driven direction.

Road is assigned to images in which the vehicle is on an open road, outside of settlement, but
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not on a highway. The criteria is the same as for the label highway, except the number

of lanes dedicated to the currently driven direction is less than two, or exactly two but

without a shoulder lane.

Tunnel is assigned to images in which the vehicle is directly in front of, or inside a tunnel, but

not at the very exit from a tunnel.

Exit is assigned to images in which the vehicle at the very exit from a tunnel.

Settlement is assigned to images in which visible evidence of vehicle being in a settlement

is present. Evidence may include visible houses, skyscrapers, playgrounds, or any other

visual artifact that does not normally occur outside of settlements. The vehicle is not in a

tunnel.

Overpass is assigned to images in which a vehicle is directly in front of, or under an overpass.

Booth is assigned to images in which a vehicle is directly in front of, or at the toll booth. If this

label is assigned to an image, then no other labels may be assigned.

Traffic is assigned to images of very dense traffic, or images in which major parts of the scene

are occluded by another vehicle. The traffic must be dense in the currently traveled di-

rection, and there must not be a large gap in traffic in front of the vehicle (the currently

traveled lane must be occupied by other vehicles).

The above criteria were chosen in order to improve the consistency of the labeling process.

In reality, the highways are not defined in terms of number of lanes per direction, or by presence

of the shoulder lane, but by the lane width. Fast roads typically have wider lanes than slower

roads. The definition of a highway above is used so as to avoid possible inconsistencies that

might arise if the annotator was required to estimate the lane width in order to determine if a

road was a highway or a local road. Additionally, this also eliminates the cases in which the

annotator recognizes the road in question and uses non-visual knowledge to infer the type of the

road. Note that the ambiguous term “directly in front of” is used in definition of several labels.

The guideline was to allow for up to 30 meters of visually estimated distance from the annotated

object. That is, up to 30 meters away from the overpass, toll booth, tunnel entrance or tunnel

exit. An inspection of the images containing scenes with toll booths showed that there was a

great deal of inconsistency regarding other labels. For example, it is very hard to objectively

determine if the traffic at the toll booth is dense or not. Also, some buildings are frequently

present in these scenes, and it is hard to objectively determine if those buildings are an evidence

of a settlement, or a part of toll booth complex. For that reason the label booth is defined as

mutually exclusive with the other labels. If in fact the traffic is dense, and the vehicle is in a

settlement, it will become apparent after the toll booths are cleared, or was already apparent

even before the vehicle arrived to the toll booths.

Some images have multiple labels assigned. The classes highway, road, tunnel, exit, set-

tlement and booth describe a vehicle location, and are defined as mutually exclusive, while the
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Table 6.3: The distribution of class labels in the FM3 dataset and its subsets.

FM3 FM3m FM3a FM3a FM3a FM3a FM3a

class total total total (low sun) (rain) (snow) (fog)

highway 6459 4646 1813 1375 312 12 114

road 1020 390 630 79 401 150 0

tunnel 621 616 5 2 3 0 0

exit 80 73 6 4 1 0 1

settlement 3155 583 2572 525 1707 352 0

overpass 242 152 90 42 32 14 2

booth 106 101 5 5 0 0 0

traffic 483 132 351 56 257 38 0

total 11448 6413 5035 1990 2428 514 115

classes overpass and traffic describe an attribute of the scene, and can coexist with the other

labels. Thus the maximum number of labels an image can be assigned is three (e.g. road, over-

pass, traffic). In some countries it might be logical to allow simultaneous assignment of labels

settlement and highway, to detect highways going through large cities, but such a scheme would

not be very useful in Croatia. Note that in some cases another vehicle occludes major parts of

the scene, so it is possible that none of the six location labels (highway, road, tunnel, exit,

settlement and booth) will be assigned. In such cases, only the label traffic shall be assigned.

All images of the dataset were permuted, and then a single annotator assigned the class

labels relying on the described criteria. No outside knowledge of recognized locations was used

to infer the class labels.

The distribution of class labels across all subsets of FM3 dataset is shown in Table 6.3. It

is clear that by far the most represented classes are highway, settlement and road, which is of

no surprise as those environments are encountered far more frequently than tunnels, overpasses

and toll booths. Vehicles can spend a lot of time in slow traffic, but they do not usually cover

great distances through dense traffic, which explains the low number of samples of dense traf-

fic scenes. Although video frames were sampled once every two seconds, the near-duplicate

images that occur by vehicle standing still in traffic were removed manually from the dataset.

Note that the FM3a set of images has very few samples of classes tunnel, exit and booth

each. It is very dangerous, and also improbable to encounter bad weather conditions inside

tunnels, so the visually degraded scenes were only encountered upon tunnel entry and exit. The

class booth is a very rare event. Many samples of toll booth scenes were downloaded from

Mapillary [126], where images with bad visibility are not acceptable.
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Also note that some types of visual degradation have a very poor balance across classes.

Namely, there are very few highway images during falling snow, while images captured during

fog contain almost exclusively highway scenes. Severe class disbalance limits the usability of

such image subsets in many types of experimental evaluation frameworks, so this should be a

priority for improvement in future iterations of the dataset.
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Experiments

This chapter presents a detailed experimental evaluation of the methods described in Chapter 5

using the contributed dataset FM3, which was presented in Chapter 6. The classification setup

will be described first, as the same classifier is used to evaluate all descriptor methods. The

classifier parameters, data preprocessing steps, and the dataset split will be specified. After

that, the classification performance of each descriptor will be evaluated. The descriptor param-

eters will be discussed, and their achieved per-class classification performance will be presented

using the same performance measure for all descriptors. Next, the classification performance

will be explored as a function of descriptor length, to see which methods perform better under

restricted image representation sizes. This will be followed by evaluation of descriptor com-

pression methods, including two quantization methods: Component-independent quantization

(CQ) and Product quantization (PQ). Classification performance will be measured for a range

of quantization parameters to see how much information loss is an acceptable trade-off in fleet

management applications. A brief exploration of generic compression methods will also be pre-

sented. The chapter is concluded by an in-depth discussion of the results, and additional analysis

of the best performing descriptor, including the measurement of its resistance to various types

of visual degradation.

7.1 The classifier

The SVM classifier was selected, for reasons explained in Chapter 5. The LibSVM implemen-

tation [127] was used. The binary relevance problem transformation method was applied to

achieve multi-label classification. This means that one binary SVM classifier was trained for

each of the eight classes of the FM3 dataset. We counter class imbalance by weighing SVM

scores with inverse frequency of class samples in the training set. Both linear SVM and SVM

with RBF kernel function were tested. The RBF kernel offered better results, especially for very

small image representations.
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7.1.1 The dataset split

The FM3 dataset consists of two separate sets: FM3m, containing the images in good visibility

conditions, and the FM3a, containing visually degraded images. The FM3m set contains the

adequate number of instances for all eight classes of interest: highway, road, tunnel, exit, settle-

ment, overpass, booth and traffic. The FM3a only contains the adequate number of instances for

five classes of interest: highway, road, settlement, overpass and booth. Additionally, the FM3a

is poorly balanced across various types of visual degradation. For these reasons, the FM3m

set was used in the majority of the experiments, while the FM3a was only used to verify the

resistance of the best performing methods to visual degradation of the images.

The FM3m set was split into training, validation and testing subsets as follows. For each

class, 25% of instances were used for training, and another 25% of instances were used for

validation. The remaining 50% of class instances were used for testing. To find the optimal

SVM parameters, each binary classifier was trained on the training subset, and tested on the

validation subset. The SVM was then re-trained on the union of the training and validation

subsets, using parameters that showed best results on the validation subset. This re-trained

classifier was then evaluated on the testing subset, and the achieved results are reported. It is

important to note that the same dataset split was used in all experiments in this chapter.

7.1.2 Data preprocessing

Prior to classification, all columns of descriptor vectors were centered and normalized to have

zero mean and unit variance. The mean and the variance were estimated on the training subset.

In some experiments, PCA was used to reduce the descriptor dimensionality. The centering and

normalization step was done before PCA.

7.1.3 Performance measure

As discussed in Chapter 5, average precision is selected as a classification performance mea-

sure. The average precision for all classes is reported in some experiments, while in others only

the mean average precision (mAP) of all classes is reported, for brevity. The mAP is the cost

function for selection of all hyperparameters, e.g. the SVM parameters and the quantization

parameters.

7.2 SIFT/SFV + GIST descriptor

The SIFT/SFV+GIST descriptor is a concatenation of SIFT/SFV and GIST descriptors. Dense

SIFT features were projected down from 128 to D = 80 dimensions via PCA. In the SFV frame-

work 16 appearance components were used (K = 16) and 1 spatial component (C = 1), which
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produces a vector of length K(1+2D)+KC(1+2d) = 2656, where d = 2 for two-dimensional

signals (images). For GIST the implementation provided by the authors [83] was used, without

any modifications, which produces a vector of length 512. The final size of the descriptor is

thus 2656+512 = 3168. PCA was used to further compress the descriptor to lengths 1024, 512

and every other power of two, down to 16. The compressed descriptors were classified with an

SVM classifier with the RBF kernel, and the results are shown in Table 7.1.

Table 7.1: Average precision (%) of SIFT/SFV+GIST descriptor on FM3m dataset (SVM with RBF
kernel)

descriptor length

class 1024 512 256 128 64 32 16

highway 99.73 99.81 99.83 99.85 99.81 99.7 99.34

road 92.10 92.73 92.51 92.02 90.92 87.77 83.00

tunnel 99.92 99.90 99.84 99.65 99.60 99.54 99.83

exit 95.58 95.65 95.04 95.13 92.81 92.09 91.67

settlement 96.10 96.64 96.38 96.44 95.79 94.24 92.39

overpass 96.49 95.99 96.04 94.70 92.48 86.72 87.05

booth 86.43 87.04 85.76 86.51 84.69 78.56 69.67

traffic 82.69 82.42 82.55 81.56 77.53 75.41 63.15

mean 93.63 93.77 93.49 93.23 91.70 89.25 85.76

7.3 VGG/SFV descriptor

The VGG/SFV descriptor uses convolutional features of the VGG network instead of hand-

crafted SIFT features. More precisely, it uses the responses of conv5_4 layer of the VGG-19

[43] convolutional neural network. The network was pre-trained on the ImageNet dataset, and

was not additionally trained on the FM3 dataset. The resolution of images in the FM3 dataset

is 640×480, so the shape of local features is 30×40×512 (see Table 5.1). In total, there are

1200 features of size D = 512. PCA was not used to reduce dimensionality of these features.

As in SIFT/SFV+GIST descriptor, 16 appearance components were used (K = 16) and 1 spatial

component (C = 1), thus obtaining a vector of length K(1+2D+5) = 16480, which was then

reduced via PCA to lengths of power of two, from 1024 to 16. The compressed descriptors

were classified with an SVM classifier with the RBF kernel, and the results are shown in Table

7.2.

Even though the hand-crafted SIFT/SFV+GIST approach achieves decent results, the deep
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Table 7.2: Average precision (%) of VGG/SFV descriptor on FM3m dataset (SVM with RBF kernel)

descriptor length

class 1024 512 256 128 64 32 16

highway 99.78 99.76 99.75 99.75 99.69 99.6 99.52

road 91.99 91.30 91.44 90.73 89.28 87.31 85.96

tunnel 99.93 99.94 99.95 99.95 99.96 99.92 99.91

exit 96.74 96.85 97.00 96.41 96.46 95.44 94.17

settlem. 97.49 97.46 97.48 97.38 96.87 96.31 95.28

overpass 97.55 96.95 96.11 95.96 96.49 96.03 90.22

booth 99.58 99.31 98.68 99.17 98.60 97.10 89.77

traffic 85.03 84.63 85.60 84.47 82.87 77.97 74.22

mean 96.01 95.78 95.75 95.48 95.03 93.71 91.13

learning based approach VGG/SFV is clearly better. With only 64 components it outperforms

the hand-crafted descriptor of length 1024 (95.9% vs 94.94%).

7.4 ResNet, DenseNet and MobileNetV2 descriptors

Publicly available parameterizations [128, 129, 130] of ResNet-50 [47], DenseNet-BC-121 [52]

and MobileNetV2 [54] architectures were used. In case of ResNet and DenseNet, the activa-

tions in the second-to-last layer of both networks were extracted (see Tables 5.2 and 5.3), and

used as descriptors. In case of MobileNetV2, the globally average pooled outputs of the last

bottleneck layer were used (see Table 5.4). For brevity, these descriptors will be referred to as

simply ResNet, DenseNet and MobileNet descriptors. The networks were pre-trained on the

ImageNet ILSVRC dataset [40], and were not fine-tuned to the FM3 dataset. The input images

were neither cropped nor resized. Instead, the spatial dimensions of activation tensors were in-

creased as necessary to accommodate the input of resolution 640×480. In case of ResNet and

DenseNet, the second-to-last layer performs global pooling, so the descriptor length is equal to

the number of feature maps in that layer, which is 2048 for the ResNet-50 network, and 1024 for

the DenseNet-BC-121 network. In case of MobileNet, global average pool was added after the

output of the last bottleneck layer to make the descriptor length equal to the number of feature

maps in that layer, which is 320.

The descriptors were classified by an SVM classifier with the RBF kernel, and the results

are shown in Table 7.3. The classification results show that the DenseNet descriptor performs

slightly better than ResNet, despite being shorter. As the ResNet-50 performs better on Ima-

82



Experiments

Table 7.3: Average precision (%) of ResNet, DenseNet and MobileNet descriptors on FM3m dataset
(SVM with RBF kernel)

ResNet DenseNet MobileNet

class (length 2048) (length 1024) (length 320)

highway 99.84 93.68 99.41

road 91.13 99.97 84.50

tunnel 99.94 97.96 99.90

exit 97.70 98.33 96.47

settlement 98.33 97.86 96.28

overpass 97.15 98.81 91.81

booth 98.75 87.85 93.32

traffic 86.75 96.80 75.90

mean 96.20 96.41 92.20

geNet than DenseNet-BC-121 [52], this would suggest that the DenseNet-BC-121 achieves a

better knowledge transfer to our dataset. This was verified by fine-tuning both networks on the

FM3 dataset, after which ResNet-50 showed a better performance (98.0% vs 97.1%, using a

linear SVM classifier). MobileNet shows the least successful classification results, as was ex-

pected from a model that sacrifices classification accuracy in favor of computational efficiency.

7.5 The DCGAN descriptor

A public DCGAN [80] parameterization [131] was applied to input images downsampled to a

resolution of 32×32 pixels. In the first experiment, the convolutional features of the discrimi-

nator network were max-pooled over a 4×4 grid, and concatenated into a descriptor of length

28672. In the subsequent experiments, the descriptor was shortened by reducing the size of the

max-pooling grid to 1× 1, which results in descriptors of length 1792. Additionally, we also

extracted the features obtained by an untrained discriminator. This was done to test how much

knowledge transfer happens from ImageNet to FM3, and how much descriptiveness is due to

network structure itself. An untrained discriminator was randomly initialized 1000 times, and

mean results with standard deviations are reported. All these results are shown in Table 7.4.

Note that some performance is lost when 4× 4 max-pooling is replaced with 1× 1 max-

pooling. The reduction of descriptor size by a factor of 16 makes this performance drop an

acceptable trade-off in the context of usage in fleet management. Also note that the random-

initialized discriminator achieves a mAP of 85%. This suggests that much of the descriptiveness
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Table 7.4: Average precision (%) of descriptors based on DCGAN discriminator on FM3m dataset
(SVM classifier)

trained on ImageNet ImageNet ImageNet untrained

kernel linear RBF linear linear

max-pool grid 4×4 1×1 1×1 1×1

length 28672 1792 1792 1792

highway 99.71 99.86 99.37 99.47±0.11

road 93.63 92.10 81.32 84.79±1.72

tunnel 99.07 99.33 99.48 99.20±0.11

exit 98.53 93.67 98.14 97.73±0.61

settlement 96.74 95.43 92.91 89.31±1.33

overpass 81.67 83.85 83.08 78.44±3.56

booth 88.59 86.53 86.24 71.42±3.23

traffic 78.53 66.47 65.28 62.92±3.29

mean 92.06 89.66 88.23 85.41±0.81

comes from the convolutional structure itself.

7.6 Evaluation of performance with respect to length

This section evaluates the dependency of classification average precision on descriptor length.

Since not all descriptors discussed so far are of the same length, PCA was used to obtain the

descriptor variants of various lengths, as necessary. All evaluated descriptors lengths were pow-

ers of two, starting from 1024, down to 16. The SIFT/SFV+GIST and VGG/SFV descriptors

already use PCA as a part of their framework, and their full results are shown in Tables 7.1 and

7.2. PCA was applied to ResNet, DenseNet and DCGAN 4× 4 descriptors as well. Since the

full length of DenseNet descriptor is 1024, PCA was only used to produce its variants of lengths

from 512 to 16. Using PCA on vectors calculated on FM3 dataset means that all descriptors

obtained in this way have some knowledge of the FM3 image data. MobileNet is not included

in this experiment because its maximum length is only 320, and because both descriptors from

the same category (DenseNet and ResNet) outperform it.

To simplify further text, a numerical suffix N will be added to the name of the descriptor

method to refer to the version of that descriptor of length N. For example, a DenseNet descriptor

of length 128 will be referred to as DenseNet 128 descriptor.

All descriptor variants were classified with both the linear SVM classifier and the SVM with
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RBF kernel. The summary of the results is best seen in graph form, in Figure 7.1 (a, b), which

shows the mean average precision of all classes for each of the methods, with respect to the

length of the representation. The Figure 7.1 (a) shows the results obtained by a linear SVM

classifier, while the Figure 7.1 (b) shows the results for the SVM classifier with the RBF kernel.

The RBF kernel shows strictly better results, but it is not as noticeable for large representations

as it is for very small ones. This indicates that the RBF kernel is very advantageous when the

representations are very small. However, the linear SVM may prove the only applicable solution

for large training datasets.

Note that descriptor length reduction does not change the relative order of methods. The

DenseNet is a clear winner, followed by ResNet and VGG/SFV, followed by SIFT/SFV+GIST

(which relies on hand-crafted features) and finally the DCGAN 4× 4 (which is trained in an

unsupervised manner). Another thing to note is that the size reduction from 1024 down to 128

barely causes any changes in the mAP for most methods, if RBF kernel is used. The drop

becomes more noticeable for lengths 64 and 32, and is significant for length 16.

Average precision across all classes is arguably not the measure for which the system should

be optimized. Ideally, every class in the dataset should be classified at acceptable levels of error,

so perhaps the minimum AP across all classes is a better choice. Since all tested descriptors

perform the worst on the traffic class, the results for that class are also included, in Figure 7.2. A

considerable drop with respect to the mean performance can be observed for all representation

budgets. Note that AP axis starts from 50%.

7.7 Analysis at the class level

The results indicate that some classes of the FM3 dataset are much easier to classify than others.

The relative order of measured AP values for each class stays approximately the same across

different descriptors. The easiest class to classify was highway, which is the most represented

class in the dataset. Good results are also achieved with class tunnel, which is drastically differ-

ent in appearance from most other classes. Most of the tunnel images are dominated by black

and orange colors. Class exit is somewhat similar in appearance, and some instances of class

overpass are dominated by dark colors, but most other images are drastically different and can

easily be differentiated from tunnel images even with simpler descriptors. The hardest class is

traffic, which includes the scenes of dense traffic as well as images with major occlusions of

scene by other vehicles. Note that scenes of dense traffic can happen in any kind of location,

which increases the visual variability of this class. An interesting thing to note is that the class

booth is only hard to SIFT/SFV+GIST and DCGAN descriptors, while other methods have

excellent performance on this class.

DCGAN showed the worst results overall. However, it could probably be improved if
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(b) SVM with RBF kernel, all classes

Figure 7.1: Mean average precision (%) of selected descriptors on FM3m dataset with respect to rep-
resentation budget. Particular representations are obtained via PCA as necessary. Results for the linear
SVM classifier are shown on the left, while results for the SVM classifier with the RBF kernel are shown
on the right. Best viewed in colour.
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(a) SVM with RBF kernel, class traffic

Figure 7.2: Average precision (%) of selected descriptors for the class traffic in the FM3m dataset, with
respect to representation budget. Particular representations are obtained via PCA as necessary. An SVM
classifier with the RBF kernel was used. Best viewed in colour.

trained on traffic scene images acquired world-wide. Such training would not depend on the

class labels, which is a very desirable feature in the proposed fleet management framework.

The DenseNet descriptor showed the best results overall, even though it was only trained on the

ImageNet image data, and had knowledge of neither the FM3 image data nor the FM3 class la-

bels. The DenseNet 128 shows the classification performance almost equal to that of full-length

DenseNet (1024 components), while being 8 times more compact. Therefore, the DenseNet 128

is considered the be the strongest candidate for use in the proposed fleet management frame-

work.

7.8 Descriptor encoding

The exact size of the descriptor in computer memory depends not only on the number of the

vector components, but also on the vector encoding. In this section, two vector quantization

schemes presented in Chapter 5 will be evaluated: Component-independent quantization and

Product quantization [92, 93]. MobileNet and DCGAN descriptors will not be considered, as

they showed the worst performance.
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7.8.1 Component-independent quantization

A general form of the Component-independent quantization (CQ) approach has three param-

eters per descriptor component: the endpoints li and ri of the clipping interval [li,ri], and the

number of encoding bits qi, which determines the number of bins di = 2qi into which the interval

[li,ri] is split. To simplify the the evaluation, we assume the same number of bits should be used

for each component qi = bpc, and that optimal clipping intervals are [li,ri] = [µi−kσi,µi+kσi].

This means the simpler equations 5.3, 5.4 and 5.5 can be used. Additionally, since the mean

of the descriptors is known to be zero, the µi can be removed from the equations. The σi is

calculated from the corresponding xi values of the FM3m training set.

Thus only two parameters (bpc and k) are considered when quantizing each proposed de-

scriptor, and the size of the encoded (quantized) D-dimensional descriptor is D · bpc bits. The

classification experimental setup is nearly exactly the same as in section 7.6: the SVM clas-

sifier with RBF kernel is used to measure the performance on the FM3m dataset. The only

difference is that prior to SVM training and evaluation, the descriptor samples are encoded and

then decoded using the component-independent quantization scheme. The SIFT/SFV+GIST,

VGG/SFV, ResNet and DenseNet descriptors are considered, and they are reduced to lengths

of 16, 32, 64, 128, 256, 512 and 1024, using PCA as necessary. In cases where PCA is used,

it is applied prior to vector quantization step. All parameter combinations (bpc,k) from the set

{2,3,4,8}×{3,4,5,6,7} are tested, and the resulting classification mAP value is reported.

The entire set of experimental results is rather extensive, and is fully included in the Ap-

pendix. Some illustrative examples will now be presented and discussed.

The experimental results for the DenseNet 128 descriptor are shown in Table 7.5. Without

quantization, this descriptor achieved the classification mAP of 96.54%. If the descriptor is

component-independently quantized to 8 bits per component, then the performance drops to

mAP = 96.45%, a very minor decrease. The same holds true for all other descriptors: quan-

tization to 8 bits per component shows a very minor drop in classification performance. The

quantization to 4 bits per component results in a bit more noticeable drop in classification per-

formance: mAP = 96.00%, about half a percent. Further reduction to 3 and then 2 bits shows a

more steep drop in performance, and finally using only a single bit per component significantly

reduces the performance. The per-class performance is shown in the Table 7.6. Note that class

traffic seems to be the most sensitive to the loss of information caused by the quantization, while

classes highway and tunnel are barely affected, as one bit per component seems to be sufficient

for their discrimination.

The results indicate that there is little point in encoding descriptor components as IEEE-754

32-bit or 64-bit floating point numbers. For most purposes using 8 bits per component should be

sufficient, as they show very little loss in classification performance. Using 4, or even 3 bits per

component might be acceptable in systems with more severe bandwidth or storage limitations.
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Table 7.5: Classification performance (mAP values, %) of CQ quantized DenseNet 128 descriptor. SVM
with RBF kernel on the FM3m dataset. Without quantization, the mAP value of 96.54% is achieved. The
maximum values in each row are shown in bold font.

clipping interval

bpc ±3σ ±4σ ±5σ ±6σ ±7σ

1 88.22 89.00 86.81 85.14 83.87

2 94.08 93.73 91.90 91.25 90.15

3 94.98 95.31 94.57 94.93 94.37

4 95.23 96.00 95.73 95.92 95.71

8 95.41 96.32 96.06 96.19 96.45

Table 7.6: Impact of Component-independent quantization on per-class classification performance. Sev-
eral quantized descriptors are compared to their unquantized counterparts. In all examples 4 bits per
component (bpc=4) with clipping intervals of ±4σ (k = 4) were used. The average precision values (AP,
%) on the FM3m test dataset are reported, SVM classifier with RBF kernel.

DenseNet 128 VGG/SFV 64 ResNet 256

class original CQ original CQ original CQ

highway 99.87 99.85 99.69 99.68 99.82 99.82

road 93.88 93.41 89.28 89.09 90.65 89.85

tunnel 99.97 99.96 99.96 99.94 99.93 99.90

exit 97.62 96.66 96.46 96.46 97.62 96.10

settlement 98.27 98.10 96.87 95.99 98.23 97.96

overpass 97.28 96.53 96.49 95.13 96.96 96.32

booth 98.58 98.96 98.60 95.37 98.63 98.23

traffic 86.83 84.54 82.87 77.07 87.26 86.13

mean 96.54 96.00 95.03 93.59 96.14 95.54
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Table 7.7 show the best performing descriptors quantized to 128 bits. Table 7.8 lists the

single best performing CQ configuration for each of the four tested descriptors, for each of the

quantized sizes of 32, 64, 128, 256, 512, 1024 and 2048 bits. The DenseNet descriptor performs

the best, while the SIFT/SFV+GIST descriptor shows the worst performance, regardless of the

quantized descriptor size. The ResNet performs better than VGG/SFV at all sizes except at 32

and 128 bits.

Table 7.7: Best performing descriptors quantized to 128 bits using CQ method. Results are given in
descending average precision values (AP, %) on the FM3m dataset. Classification was performed by an
SVM classifier with RBF kernel.

descriptor components bpc clipping mAP (%)

DenseNet 32 4 ±4σ 94.53

DenseNet 16 8 ±4σ 93.22

DenseNet 64 2 ±3σ 93.15

VGG/SFV 64 2 ±4σ 92.03

ResNet 32 4 ±6σ 91.95

VGG/SFV 32 4 ±7σ 91.75

ResNet 64 2 ±4σ 91.18

VGG/SFV 16 8 ±6σ 89.95

ResNet 16 8 ±7σ 89.68

SIFT/SFV+GIST 32 4 ±6σ 88.41

SIFT/SFV+GIST 64 2 ±3σ 87.85

SIFT/SFV+GIST 16 8 ±7σ 86.43

7.8.2 Product quantization

An exemplar MATLAB implementation of product quantization (PQ) [92, 93] method is pro-

vided by the authors [132]. The source code was modified in three ways: i) the number of

iterations of k-means clustering algorithm was increased to 100 thousand, to insure conver-

gence, ii) the number of clusters was made variable, instead of constant 256 and iii) k-means is

done on the training subset of the FM3m set.

The DenseNet, ResNet, VGG/SFV and SIFT/SFV+GIST descriptors were reduced via PCA

as necessary to lengths of powers of two from 1024 down to 16, and then quantized. The

parameters of the PQ method are number of components per code, and number of clusters per

code. The number of components per code was set to values of powers of two starting from 1 to

descriptor length, while the number of clusters was set to values 16 and 256, thus requiring 4 and
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Table 7.8: Best performing CQ configuration for a given number of bits for each of the following
descriptor methods: DenseNet, ResNet, VGG/SFV and SIFT/SFV+GIST. Mean average precision (mAP,
%) on the FM3m dataset is reported, as achieved by the SVM classifier with RBF kernel.

descriptor total size (bits) components bpc clipping mAP (%)

DenseNet 2048 256 8 ±7σ 96.69

ResNet 2048 256 8 ±6σ 96.07

VGG/SFV 2048 512 4 ±6σ 95.54

SIFT/SFV+GIST 2048 256 8 ±6σ 93.59

DenseNet 1024 128 8 ±7σ 96.45

ResNet 1024 128 8 ±7σ 95.71

VGG/SFV 1024 256 4 ±6σ 95.08

SIFT/SFV+GIST 1024 256 4 ±6σ 93.33

DenseNet 512 64 8 ±7σ 96.09

ResNet 512 128 4 ±7σ 95.20

VGG/SFV 512 128 4 ±7σ 94.62

SIFT/SFV+GIST 512 128 4 ±7σ 93.00

DenseNet 256 64 4 ±4σ 95.56

ResNet 256 64 4 ±4σ 94.20

VGG/SFV 256 64 4 ±7σ 93.61

SIFT/SFV+GIST 256 64 4 ±6σ 91.25

DenseNet 128 32 4 ±4σ 94.53

VGG/SFV 128 64 2 ±4σ 92.03

ResNet 128 32 4 ±6σ 91.95

SIFT/SFV+GIST 128 32 4 ±6σ 88.41

DenseNet 64 16 4 ±6σ 91.82

ResNet 64 32 2 ±4σ 89.52

VGG/SFV 64 32 2 ±3σ 88.13

SIFT/SFV+GIST 64 16 4 ±4σ 84.57

DenseNet 32 16 2 ±3σ 85.42

VGG/SFV 32 16 2 ±3σ 80.34

ResNet 32 16 2 ±3σ 78.84

SIFT/SFV+GIST 32 16 2 ±3σ 74.13

91



Experiments

8 bits to encode, respectively. The quantized vectors were then classified using an SVM with

RBF kernel, and mean average precision (mAP) values are used as a measure of classification

performance.

The performance of all configurations resulting in descriptor sizes of 1024 bits is shown in

Table 7.9. The best performing quantized descriptors of size 64 bits are shown in Table 7.10. For

complete results, refer to the Appendix. For any fixed size of quantized descriptors, DenseNet

shows the best results, followed by ResNet, then VGG/SFV and finally SIFT/SFV+GIST.

Table 7.11 shows the best results obtained via CQ and PQ method for every fixed quantized

descriptor size from 32 to 2048 bits (powers of two only). For sizes of 32 and 64 bits, the PQ

with 256 clusters per code (i.e. 8-bit codes) shows noticeably better performance. For sizes

of 128 bits and larger, the CQ and PQ approaches show similar performance (regardless of

number of bits per single PQ code). Note that CQ sometimes slightly outperforms PQ method.

Since CQ bins the descriptor component values uniformly, while the PQ bins them according

to cluster centroids, this suggest that cluster centroids do not necessarily represent the most

discriminative values. Further research is necessary to determine if that is the case.

7.8.3 General-purpose compression

As discussed in Chapter 4, a general-purpose compression might be used to archive a large

number of descriptors, thus reducing the storage requirements. The FM3 dataset contains 11448

images, which would require 89 MB of memory if each image would be represented as an 1024-

dimensional vector of 64-bit floating point numbers. That number of descriptors could be sent

by a single vehicle in 8 days, or by a fleet of 1000 vehicles in 11 minutes, assuming a rate of

one status report per minute.

DenseNet representations of length 1024 were computed for all images in the FM3 dataset.

They were encoded as arrays of 64-bit and 32-bit floating point numbers, and also quantized

using CQ and PQ approaches. For CQ encoding 8 bits per component (bpc=8) and 4 bits per

component were used (bpc=4), resulting in representation sizes of 1024 B and 512 B. For PQ

encoding representation size was set to 128 B in two different ways: first by using 8 components

per code (cpc=8) and 8 bits per code (bpc=8), then by using 4 components per code (cpc=4) and

4 bits per code (bpc=4). For each encoding, the entire dataset was dumped to a binary file with

no headers, and no padding for alignment, so the file size is equal to the dataset representation

in memory. Each file was then compressed using 7Zip v16.04 software [133] using 7z archive

format, LZMA2 compression method, and maximum compression setting: compression level

ultra, dictionary size 1536 MB, word size 273, solid block.

The results are shown in Table 7.12. The least compressible encodings are the ones that are

also the most wasteful: the floating point arrays. Quantized descriptors can be compressed to

save an additional 20% to 38% of storage, depending on the quantization method.
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Table 7.9: Classification performance of descriptors reduced to 1024 bits via PQ. The SVM classifier
with RBF kernel was used, and mAP values on the FM3m dataset are reported, in descending order.

components components code size

descriptor total per code (bits) mAP (%)

DenseNet 128 1 8 96.41

DenseNet 1024 4 4 96.27

DenseNet 256 1 4 96.22

DenseNet 512 4 8 96.15

DenseNet 256 2 8 96.14

ResNet 256 1 4 96.08

ResNet 256 2 8 96.04

DenseNet 1024 8 8 95.99

ResNet 128 1 8 95.81

DenseNet 512 2 4 95.46

VGG/SFV 256 1 4 95.36

ResNet 512 4 8 95.27

VGG/SFV 512 2 4 95.24

ResNet 512 2 4 95.24

VGG/SFV 256 2 8 95.11

VGG/SFV 128 1 8 94.80

VGG/SFV 512 4 8 94.37

SIFT/SFV+GIST 256 2 8 93.37

SIFT/SFV+GIST 256 1 4 93.27

SIFT/SFV+GIST 128 1 8 93.20

SIFT/SFV+GIST 512 4 8 92.98

VGG/SFV 1024 8 8 92.93

ResNet 1024 8 8 92.84

SIFT/SFV+GIST 512 2 4 92.56

VGG/SFV 1024 4 4 92.24

ResNet 1024 4 4 91.81

SIFT/SFV+GIST 1024 8 8 90.68

SIFT/SFV+GIST 1024 4 4 89.40
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Table 7.10: Classification performance of descriptors reduced to 64 bits via PQ. The SVM classifier with
RBF kernel was used, and mAP values on the FM3m dataset are reported, in descending order. Only
combinations achieving mAP greater than 90% are listed.

components components code size

descriptor total per code (bits) mAP (%)

DenseNet 32 4 8 93.28

DenseNet 128 16 8 91.96

DenseNet 64 8 8 91.95

DenseNet 32 2 4 91.85

ResNet 32 4 8 91.78

VGG/SFV 32 2 4 91.41

DenseNet 1024 128 8 91.40

DenseNet 16 1 4 91.02

DenseNet 16 2 8 90.94

VGG/SFV 64 8 8 90.83

ResNet 32 2 4 90.63

ResNet 64 8 8 90.61

VGG/SFV 32 4 8 90.18

Table 7.11: Mean average precision (mAP, %) of best performing CQ and PQ quantized descriptors for
several fixed sizes, as achieved by SVM classifier with RBF kernel on the FM3m dataset.

descriptor descriptor CQ PQ PQ

size (bits) method quantization (4-bit codes) (8-bit codes)

2048 DenseNet 96.69 96.68 96.66

1024 DenseNet 96.45 96.27 96.41

512 DenseNet 96.09 96.29 96.21

256 DenseNet 95.56 95.45 95.50

128 DenseNet 94.53 94.38 94.31

64 DenseNet 91.82 91.85 93.28

32 DenseNet 85.42 87.76 90.50
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7.9 Analysis of DenseNet 128 descriptor

The confusion matrix of the DenseNet 128 descriptor is shown in Table 7.13. Note that only six

classes that are defined as mutually exclusive are included. The ROC curves for all classes are

shown in Figure 7.3. Some examples of mispredicted classes are shown in Figure 7.4.
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Figure 7.3: ROC curves for the SVM classifier with RBF kernel trained on the DenseNet 128. Measured
on the FM3m dataset. Best viewed in color.

7.9.1 Resilience to visual degradation

All the experiments so far were done on clear images with good visibility and little or no visual

degradation. To test the resilience of the DenseNet 128 descriptor to various types of visual

degradation, we performed a series of experiments involving the FM3a set of images. The

first experiment uses the SVM classifier trained on FM3m train to classify the images from the

Table 7.12: Original and compressed sizes of FM3 dataset with images represented as various encodings
of the DenseNet 1024 descriptors

encoding original size compressed size space savings (%)

unquantized, 64-bit floating point 91584 kB 83781 kB 8.52

unquantized, 32-bit floating point 45792 kB 41015 kB 10.43

CQ, k=7, bpc=8 11448 kB 8252 kB 27.91

CQ, k=4, bpc=4 5724 kB 3532 kB 38.28

PQ, cpc=8, bpc=8 1431 kB 1133 kB 20.84

PQ, cpc=4, bpc=4 1431 kB 1035 kB 27.68
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Table 7.13: Confusion matrix for DenseNet 128 descriptor, SVM classifier with RBF kernel

predicted class

actual class highway road tunnel exit settl. booth

highway 2298 2 0 0 6 0

road 28 153 0 0 5 0

tunnel 0 0 302 3 0 0

exit 2 0 1 37 0 0

settlement 16 4 0 0 276 0

booth 1 0 0 0 0 44

(a) road as highway (b) road as highway (c) settlement as highway (d) road as settlement

(e) traffic false positive (f) traffic false negative (g) road as settlement
(rain)

(h) highway as road
(fog)

Figure 7.4: Examples of mispredictions for the SVM classifier with RBF kernel on DenseNet 128
descriptors. Examples (a) to (f) are from the FM3m testing set, while examples (g) and (h) are from the
FM3a set. In all examples the SVM was trained on the FM3m training set.
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FM3a set. In the second experiment, the classifier was trained on the training set of FM3m and

10% of FM3a images, and evaluated on the remaining 90% of the FM3a images. In the third

experiment, the classifier was trained on FM3m train and an additional 25% of FM3a images,

and evaluated on the remaining 75% of the FM3a images. The measured AP values for all three

experiments is shown in Table 7.14. Since only the classes highway, road, settlement, overpass

and traffic are adequately represented in the FM3a set, only results for those five classes are

listed. Note that even without any training on the degraded images, the system was able to

classify all the classes surprisingly well, except class road. In this case, the class road was most

frequently confused by classes settlement (93 times) and highway (82 times). Two examples

of these mispredictions are shown in Figure 7.4. After adding some degraded images to the

training set, the mean average precision quickly rises up to 94.46%, which is very close to

mean average precision value for the same set of classes on non-degraded images (which is

95.22%). The ROC curves for the five evaluated classes across all three experiments are shown

in Figure 7.5. Note that in Figure 7.5 (a) the ROC curves for classes settlement, overpass and

traffic are visibly better than the ROC curve for the class highway, which is confused with the

worst-performing class road. In Figures 7.5 (b) and (c) the ROC curve for the class highway is

better than ROC curves of other classes. The ROC curve for the class road is still the worst, but

it is much less noticeable, as in Figure 7.5 (c) all curves look similar.

Table 7.14: Average precision (%) of the DenseNet 128 descriptor trained on increasing portions of the
FM3a dataset (SVM with RBF kernel)

not trained on trained on 10% trained on 25%

class FM3a images of FM3a images of FM3a images

highway 85.25 98.42 99.55

road 18.87 83.52 90.30

settlement 95.73 98.04 98.85

overpass 72.08 76.97 90.07

traffic 71.70 86.96 93.53

mean 68.73 88.78 94.46
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Figure 7.5: ROC curves for the SVM classifier with RBF kernel trained on the DenseNet 128 descriptor.
Training data contains 50% of FM3m samples, and incrementally increasing amounts of FM3a samples.
Tested on the rest of FM3a images. Best viewed in color.
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Chapter 8

Conclusion and outlook

This thesis demonstrates that it is possible to build an image categorization system that is ap-

plicable (and useful) in fleet management. A typical fleet management system consists of thou-

sands of clients and the central server. The clients capture the images, while the central server

determines image categories (and exploits them) to deliver added value to the customers. This

thesis identifies the following requirements: i) the bandwidth should be used sparingly in order

to reduce the costs, and ii) the set of image categories has to be open (i.e. not known by clients)

in order to support flexibility of the business logic. This thesis satisfies the requirements by

calculating compact image representations on the clients, and performing the classification on

the server.

The proposed solution achieves the compact image representation by applying an efficient

(possibly lossy) coding scheme to a short image descriptor. Several coding schemes and short

image descriptors are studied. To ensure that the set of image categories remains open, we

consider only image descriptors that can be trained without the knowledge of the categories.

This restriction has an added benefit of reducing the risk of overfitting. To further reduce the risk

of overfitting to target dataset, this thesis also studies the descriptors that can be trained without

an application specific dataset. Here we consider several general purpose descriptors trained on

ImageNet. Our experiments show that these descriptors can deliver very useful classification

performance in scenes which are specific to fleet management even without fine tuning. Finally,

a completely unsupervised learning approach is also explored, in order to evaluate the feasibility

of training on extremely large unlabeled datasets.

The evaluated descriptors include handcrafted gradient histograms (GIST, SIFT), non-linear

embeddings with respect to placement and appearance distribution of local image features (spa-

tial Fisher vectors), and convolutional representations trained in an end-to-end fashion (VGG,

DenseNet, ResNet, MobileNetV2 and DCGAN). The descriptors dimensionality was reduced

using PCA down to as low as 16 components. Subsequently, the descriptors were quantized by

product quantization (PQ) and its simpler variant which we call component-independent quan-
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tization (CQ). Finally, the descriptors are classified with SVM. The effect of general purpose

compression algorithms was considered as well.

This thesis introduces FM3–a novel traffic scene dataset containing 11448 images labeled

with eight classes of interest to fleet management* This dataset has been extensively used in

the experiments which perform experimental evaluation of all described methods in terms of

generalization accuracy at different representation budgets. Best performance is achieved by

two deep convolutional models trained in a supervised manner: DenseNet-121 and ResNet-

50. They achieve mean average classification precision (mAP) above 96% without using any

knowledge of the target dataset. Another way to achieve nearly the same classification per-

formance is by using target images to learn spatial Fisher vector embeddings of features ob-

tained by VGG trained on ImageNet. As expected from a model designed for computational

efficiency, the MobileNetV2 network trained on ImageNet achieves much lower classification

performance (mAP=92%), on par with performance shown by completely handcrafted model

based on SIFT and GIST (mAP=93%). Finally, the approach based on DCGAN shows the

worst results (mAP=89%), as was expected of completely unsupervised approach.

Experiments with PCA show that descriptors can be reduced to as few as 128 components

without sacrificing much classification performance. In some cases even descriptors reduced to

32 components might be considered useful. For such short image representations the best results

are obtained by using an SVM classifier with RBF kernel, while for longer image representa-

tions the linear SVM produces equally good results. Both PQ and CQ quantization approaches

prove to be useful for further reducing the image representations. Mean average classifica-

tion precision (mAP) above 96% has been achieved with image representations of only 512

bits, while mAP above 93% has been achieved with only 64 bits. The simpler CQ approach is

slightly better for representations of 128 bits and above, while PQ is better for representations

of 64 bits and shorter.

Experiments with general purpose compression show that further savings of between 20%

and 40% are possible, depending on the descriptor encoding. General purpose compression

typically involves a fixed space overhead, which makes it unsuitable for compressing a single

short descriptor. However, it can be used for compress large bulks of descriptors, for long-term

archiving.

The final set of experiments explores the sensitivity of the proposed pipeline to adverse

imaging conditions. In order to achieve that goal we have collected and labeled a dataset of

5035 traffic images with various types of severe visual degradation, caused by bad weather

and low sun angles. Experiments indicate that the best performing descriptor (DenseNet-121)

performs very well on such images, provided that some portion of them is added to the training

*In order to facilitate further research in the field, we release the FM3 dataset to the research community at the
address below:
http://www.zemris.fer.hr/~ssegvic/datasets/unizg-fer-fm3am.tar.gz
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data.

In conclusion, using a deep convolutional model trained in a supervised manner in combi-

nation with a lossy quantization scheme is sufficient to obtain very robust and short image rep-

resentations. These representations can later be categorized into an open set of classes, which

is useful for systems with limited bandwidth requirements, such as fleet management. Future

work should investigate whether this can be achieved in other domains as well, for datasets

unrelated to traffic scenes, and for more diverse sets of classes.

Future work should also include measuring the robustness of the system to yet unseen traffic

scenes. Ideally, encountering scenes not found in the dataset (e.g. underground garage, traffic

accident scene, camera malfunctions and severe scene occlusions) should not result in predict-

ing the wrong class. Instead, the system should not output any prediction at all.

Generalization capabilities of this approach should also be investigated, by testing the clas-

sifier on traffic images from different countries. Further increasing the number of classes and

the number and difficulty of degraded images would enable measuring the influence of the task

difficulty on the image representation size requirements. Another potentially interesting future

work would be further compression of convolutional descriptors by fine-tuning on ImageNet.

Besides models trained on the ImageNet dataset, semantic segmentation datasets (e.g. Vistas,

WildDash, CityScapes) could also be considered.

101



Additional experimental results

This appendix lists some experimental results that were too extensive to include directly into

the main text.

8.1 Quantization

This section lists the complete set of experimental results regarding the Component-independent

quantization and Product quantization. The results are grouped by the size of quantized descrip-

tor (expressed in bits), and sorted in the descending order of classification performance. For

each descriptor we include the values of optimal hyperparameters.

8.1.1 Component-independent quantization

size of quantized descriptor descriptor method number of components bits per component clipping interval mAP (%)

8192 bits

DenseNet 1024 8 ±7σ 96.79

ResNet 1024 8 ±7σ 96.10

VGG/SFV 1024 8 ±7σ 96.01

SIFT/SFV+GIST 1024 8 ±6σ 93.55

4096 bits

DenseNet 512 8 ±7σ 96.78

DenseNet 1024 4 ±4σ 96.49

ResNet 512 8 ±7σ 96.07

VGG/SFV 1024 4 ±6σ 95.96

ResNet 1024 4 ±7σ 95.77

VGG/SFV 512 8 ±7σ 95.76

SIFT/SFV+GIST 512 8 ±6σ 93.78

SIFT/SFV+GIST 1024 4 ±7σ 93.19

2048 bits

DenseNet 256 8 ±7σ 96.69

DenseNet 512 4 ±4σ 96.43

ResNet 256 8 ±6σ 96.07

ResNet 512 4 ±7σ 95.60

VGG/SFV 512 4 ±6σ 95.54

VGG/SFV 256 8 ±7σ 95.41

DenseNet 1024 2 ±3σ 94.96

VGG/SFV 1024 2 ±4σ 94.36
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SIFT/SFV+GIST 256 8 ±6σ 93.59

ResNet 1024 2 ±4σ 93.53

SIFT/SFV+GIST 512 4 ±7σ 93.51

SIFT/SFV+GIST 1024 2 ±4σ 90.92

1024 bits

DenseNet 128 8 ±7σ 96.45

DenseNet 256 4 ±4σ 96.35

ResNet 128 8 ±7σ 95.71

ResNet 256 4 ±7σ 95.60

VGG/SFV 256 4 ±6σ 95.08

VGG/SFV 128 8 ±5σ 94.84

DenseNet 512 2 ±3σ 94.83

VGG/SFV 512 2 ±4σ 94.28

SIFT/SFV+GIST 256 4 ±6σ 93.33

SIFT/SFV+GIST 128 8 ±6σ 93.21

ResNet 512 2 ±4σ 93.11

SIFT/SFV+GIST 512 2 ±4σ 91.31

512 bits

DenseNet 64 8 ±7σ 96.09

DenseNet 128 4 ±4σ 96.00

ResNet 128 4 ±7σ 95.20

DenseNet 256 2 ±4σ 94.77

ResNet 64 8 ±7σ 94.71

VGG/SFV 128 4 ±7σ 94.62

VGG/SFV 64 8 ±7σ 94.15

VGG/SFV 256 2 ±4σ 93.36

ResNet 256 2 ±4σ 93.05

SIFT/SFV+GIST 128 4 ±7σ 93.00

SIFT/SFV+GIST 64 8 ±6σ 92.00

SIFT/SFV+GIST 256 2 ±4σ 90.81

256 bits

DenseNet 64 4 ±4σ 95.56

DenseNet 32 8 ±4σ 94.95

ResNet 64 4 ±4σ 94.20

DenseNet 128 2 ±3σ 94.08

VGG/SFV 64 4 ±7σ 93.61

ResNet 32 8 ±6σ 92.85

ResNet 128 2 ±4σ 92.70

VGG/SFV 128 2 ±4σ 92.64

VGG/SFV 32 8 ±5σ 92.60

SIFT/SFV+GIST 64 4 ±6σ 91.25

SIFT/SFV+GIST 128 2 ±3σ 90.08

SIFT/SFV+GIST 32 8 ±6σ 89.31

128 bits

DenseNet 32 4 ±4σ 94.53

DenseNet 16 8 ±4σ 93.22

DenseNet 64 2 ±3σ 93.15

VGG/SFV 64 2 ±4σ 92.03

ResNet 32 4 ±6σ 91.95

VGG/SFV 32 4 ±7σ 91.75

ResNet 64 2 ±4σ 91.18
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VGG/SFV 16 8 ±6σ 89.95

ResNet 16 8 ±7σ 89.68

SIFT/SFV+GIST 32 4 ±6σ 88.41

SIFT/SFV+GIST 64 2 ±3σ 87.85

SIFT/SFV+GIST 16 8 ±7σ 86.43

64 bits

DenseNet 16 4 ±6σ 91.82

DenseNet 32 2 ±3σ 90.66

ResNet 32 2 ±4σ 89.52

VGG/SFV 32 2 ±3σ 88.13

VGG/SFV 16 4 ±4σ 88.07

ResNet 16 4 ±4σ 87.99

SIFT/SFV+GIST 16 4 ±4σ 84.57

SIFT/SFV+GIST 32 2 ±3σ 83.50

32 bits

DenseNet 16 2 ±3σ 85.42

VGG/SFV 16 2 ±3σ 80.34

ResNet 16 2 ±3σ 78.84

SIFT/SFV+GIST 16 2 ±3σ 74.13

8.1.2 Product quantization

size of quantized descriptor descriptor method components (total) components per code code size (bits) mAP (%)

2048 bits

DenseNet 512 1 4 96.68

DenseNet 1024 4 8 96.66

DenseNet 1024 2 4 96.50

DenseNet 512 2 8 96.36

DenseNet 256 1 8 96.28

ResNet 512 2 8 96.17

ResNet 256 1 8 96.14

ResNet 512 1 4 96.08

VGG/SFV 512 1 4 95.74

VGG/SFV 1024 2 4 95.70

VGG/SFV 512 2 8 95.61

ResNet 1024 4 8 95.46

VGG/SFV 256 1 8 95.28

VGG/SFV 1024 4 8 95.12

ResNet 1024 2 4 95.12

SIFT/SFV+GIST 512 2 8 93.82

SIFT/SFV+GIST 512 1 4 93.42

SIFT/SFV+GIST 256 1 8 93.33

SIFT/SFV+GIST 1024 2 4 91.77

SIFT/SFV+GIST 1024 4 8 91.76

1024 bits

DenseNet 128 1 8 96.41

DenseNet 1024 4 4 96.27

DenseNet 256 1 4 96.22

DenseNet 512 4 8 96.15

DenseNet 256 2 8 96.14
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ResNet 256 1 4 96.08

ResNet 256 2 8 96.04

DenseNet 1024 8 8 95.99

ResNet 128 1 8 95.81

DenseNet 512 2 4 95.46

VGG/SFV 256 1 4 95.36

ResNet 512 4 8 95.27

VGG/SFV 512 2 4 95.24

ResNet 512 2 4 95.24

VGG/SFV 256 2 8 95.11

VGG/SFV 128 1 8 94.80

VGG/SFV 512 4 8 94.37

SIFT/SFV+GIST 256 2 8 93.37

SIFT/SFV+GIST 256 1 4 93.27

SIFT/SFV+GIST 128 1 8 93.20

SIFT/SFV+GIST 512 4 8 92.98

VGG/SFV 1024 8 8 92.93

ResNet 1024 8 8 92.84

SIFT/SFV+GIST 512 2 4 92.56

VGG/SFV 1024 4 4 92.24

ResNet 1024 4 4 91.81

SIFT/SFV+GIST 1024 8 8 90.68

SIFT/SFV+GIST 1024 4 4 89.40

512 bits

DenseNet 128 1 4 96.29

DenseNet 128 2 8 96.21

ResNet 128 1 4 95.73

ResNet 128 2 8 95.65

DenseNet 64 1 8 95.47

ResNet 256 4 8 95.40

DenseNet 1024 16 8 95.25

DenseNet 256 4 8 95.13

DenseNet 256 2 4 95.02

ResNet 256 2 4 94.96

DenseNet 1024 8 4 94.82

ResNet 64 1 8 94.80

VGG/SFV 128 2 8 94.52

VGG/SFV 128 1 4 94.34

DenseNet 512 8 8 94.29

VGG/SFV 256 2 4 94.20

VGG/SFV 64 1 8 93.95

VGG/SFV 256 4 8 93.70

SIFT/SFV+GIST 128 2 8 93.25

SIFT/SFV+GIST 128 1 4 93.16

ResNet 512 8 8 93.16

DenseNet 512 4 4 92.95

SIFT/SFV+GIST 256 4 8 92.23

ResNet 512 4 4 92.09

VGG/SFV 512 4 4 92.04

SIFT/SFV+GIST 256 2 4 91.97

SIFT/SFV+GIST 64 1 8 91.80
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ResNet 1024 16 8 91.74

VGG/SFV 512 8 8 91.70

SIFT/SFV+GIST 512 8 8 90.77

VGG/SFV 1024 16 8 90.61

SIFT/SFV+GIST 512 4 4 88.87

VGG/SFV 1024 8 4 88.48

SIFT/SFV+GIST 1024 16 8 88.23

ResNet 1024 8 4 86.90

SIFT/SFV+GIST 1024 8 4 86.56

256 bits

DenseNet 128 4 8 95.50

DenseNet 64 1 4 95.45

DenseNet 64 2 8 95.01

VGG/SFV 128 2 4 94.81

DenseNet 1024 32 8 94.76

DenseNet 128 2 4 94.74

DenseNet 32 1 8 94.74

ResNet 64 2 8 94.67

ResNet 64 1 4 94.59

ResNet 128 4 8 94.31

ResNet 128 2 4 94.30

VGG/SFV 64 1 4 93.91

ResNet 256 8 8 93.88

VGG/SFV 64 2 8 93.86

DenseNet 256 8 8 93.52

VGG/SFV 128 4 8 93.51

DenseNet 1024 16 4 93.28

ResNet 32 1 8 92.89

VGG/SFV 32 1 8 92.75

ResNet 256 4 4 92.63

DenseNet 256 4 4 92.63

SIFT/SFV+GIST 128 2 4 92.25

DenseNet 512 16 8 92.03

SIFT/SFV+GIST 128 4 8 91.99

SIFT/SFV+GIST 64 2 8 91.81

SIFT/SFV+GIST 64 1 4 91.63

VGG/SFV 256 8 8 91.39

VGG/SFV 256 4 4 90.75

DenseNet 512 8 4 90.48

VGG/SFV 512 16 8 90.35

ResNet 512 16 8 89.50

SIFT/SFV+GIST 32 1 8 89.20

SIFT/SFV+GIST 256 4 4 89.12

SIFT/SFV+GIST 512 16 8 89.09

SIFT/SFV+GIST 256 8 8 88.97

VGG/SFV 1024 32 8 88.96

VGG/SFV 512 8 4 87.46

ResNet 1024 32 8 87.18

ResNet 512 8 4 87.14

SIFT/SFV+GIST 512 8 4 86.35

SIFT/SFV+GIST 1024 32 8 85.14
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VGG/SFV 1024 16 4 85.08

ResNet 1024 16 4 81.28

SIFT/SFV+GIST 1024 16 4 80.57

128 bits

DenseNet 32 1 4 94.38

DenseNet 32 2 8 94.31

DenseNet 128 8 8 94.03

DenseNet 64 4 8 94.03

DenseNet 1024 64 8 93.63

ResNet 32 2 8 93.29

ResNet 64 2 4 93.15

DenseNet 64 2 4 93.15

ResNet 32 1 4 92.65

VGG/SFV 64 4 8 92.60

VGG/SFV 64 2 4 92.40

ResNet 64 4 8 92.33

VGG/SFV 32 2 8 92.30

VGG/SFV 32 1 4 91.88

DenseNet 16 1 8 91.80

DenseNet 128 4 4 91.70

VGG/SFV 128 8 8 91.62

ResNet 128 8 8 91.58

ResNet 128 4 4 91.49

ResNet 256 16 8 91.05

SIFT/SFV+GIST 64 2 4 90.87

DenseNet 512 32 8 90.68

VGG/SFV 128 4 4 90.58

DenseNet 256 16 8 90.48

SIFT/SFV+GIST 64 4 8 90.29

VGG/SFV 16 1 8 90.02

SIFT/SFV+GIST 128 4 4 89.92

ResNet 16 1 8 89.50

DenseNet 256 8 4 89.30

SIFT/SFV+GIST 32 2 8 89.18

SIFT/SFV+GIST 32 1 4 89.09

SIFT/SFV+GIST 128 8 8 88.89

DenseNet 1024 32 4 88.88

VGG/SFV 256 16 8 88.21

ResNet 512 32 8 87.49

VGG/SFV 512 32 8 87.25

SIFT/SFV+GIST 256 16 8 87.01

VGG/SFV 256 8 4 86.89

ResNet 1024 64 8 86.25

SIFT/SFV+GIST 256 8 4 86.23

SIFT/SFV+GIST 16 1 8 86.21

ResNet 256 8 4 86.11

SIFT/SFV+GIST 512 32 8 85.27

VGG/SFV 1024 64 8 85.16

DenseNet 512 16 4 85.00

VGG/SFV 512 16 4 83.40

SIFT/SFV+GIST 512 16 4 82.88
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SIFT/SFV+GIST 1024 64 8 82.51

ResNet 512 16 4 80.74

VGG/SFV 1024 32 4 75.64

SIFT/SFV+GIST 1024 32 4 73.29

ResNet 1024 32 4 71.63

64 bits

DenseNet 32 4 8 93.28

DenseNet 128 16 8 91.96

DenseNet 64 8 8 91.95

DenseNet 32 2 4 91.85

ResNet 32 4 8 91.78

VGG/SFV 32 2 4 91.41

DenseNet 1024 128 8 91.40

DenseNet 16 1 4 91.02

DenseNet 16 2 8 90.94

VGG/SFV 64 8 8 90.83

ResNet 32 2 4 90.63

ResNet 64 8 8 90.61

VGG/SFV 32 4 8 90.18

DenseNet 64 4 4 89.95

VGG/SFV 16 2 8 89.91

ResNet 64 4 4 89.83

ResNet 128 16 8 89.76

ResNet 16 2 8 89.10

VGG/SFV 16 1 4 88.99

ResNet 16 1 4 88.95

VGG/SFV 64 4 4 88.67

DenseNet 256 32 8 88.38

ResNet 256 32 8 88.20

VGG/SFV 128 16 8 88.12

SIFT/SFV+GIST 32 4 8 87.90

SIFT/SFV+GIST 32 2 4 87.76

DenseNet 512 64 8 87.47

DenseNet 128 8 4 87.31

VGG/SFV 256 32 8 86.91

SIFT/SFV+GIST 64 8 8 86.84

SIFT/SFV+GIST 64 4 4 86.22

ResNet 512 64 8 86.03

ResNet 128 8 4 85.88

SIFT/SFV+GIST 16 2 8 85.72

SIFT/SFV+GIST 128 8 4 85.68

VGG/SFV 512 64 8 85.64

SIFT/SFV+GIST 128 16 8 85.45

VGG/SFV 128 8 4 85.18

SIFT/SFV+GIST 16 1 4 85.00

SIFT/SFV+GIST 256 32 8 84.77

DenseNet 256 16 4 84.77

ResNet 1024 128 8 83.51

DenseNet 512 32 4 83.26

DenseNet 1024 64 4 82.89

SIFT/SFV+GIST 512 64 8 79.91
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SIFT/SFV+GIST 256 16 4 79.86

VGG/SFV 256 16 4 79.53

ResNet 256 16 4 79.43

VGG/SFV 1024 128 8 79.40

SIFT/SFV+GIST 512 32 4 75.19

SIFT/SFV+GIST 1024 128 8 73.10

VGG/SFV 512 32 4 72.14

ResNet 512 32 4 67.33

ResNet 1024 64 4 60.34

VGG/SFV 1024 64 4 53.75

SIFT/SFV+GIST 1024 64 4 53.25

32 bits

DenseNet 64 16 8 90.50

DenseNet 32 8 8 88.77

DenseNet 1024 256 8 88.54

DenseNet 16 4 8 88.41

ResNet 32 8 8 88.13

VGG/SFV 32 8 8 87.89

DenseNet 16 2 4 87.76

DenseNet 32 4 4 87.50

ResNet 64 16 8 87.29

VGG/SFV 16 4 8 87.13

ResNet 16 4 8 86.90

ResNet 32 4 4 86.67

DenseNet 256 64 8 86.54

VGG/SFV 64 16 8 86.31

DenseNet 128 32 8 86.28

ResNet 256 64 8 86.00

ResNet 16 2 4 85.96

DenseNet 512 128 8 85.75

ResNet 128 32 8 85.42

VGG/SFV 64 8 4 85.08

VGG/SFV 32 4 4 84.83

DenseNet 128 16 4 84.74

DenseNet 64 8 4 84.44

VGG/SFV 16 2 4 84.37

VGG/SFV 128 32 8 83.53

ResNet 512 128 8 83.24

SIFT/SFV+GIST 32 4 4 83.06

VGG/SFV 256 64 8 82.98

ResNet 64 8 4 82.77

SIFT/SFV+GIST 16 4 8 82.15

SIFT/SFV+GIST 128 32 8 81.76

SIFT/SFV+GIST 64 8 4 81.09

SIFT/SFV+GIST 64 16 8 81.07

DenseNet 256 32 4 81.03

SIFT/SFV+GIST 16 2 4 79.86

SIFT/SFV+GIST 512 128 8 79.82

SIFT/SFV+GIST 32 8 8 79.29

ResNet 1024 256 8 78.90

SIFT/SFV+GIST 256 64 8 77.98
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DenseNet 1024 128 4 77.27

SIFT/SFV+GIST 128 16 4 76.65

VGG/SFV 512 128 8 76.57

VGG/SFV 128 16 4 75.84

ResNet 128 16 4 74.97

DenseNet 512 64 4 73.22

VGG/SFV 1024 256 8 71.96

VGG/SFV 256 32 4 70.29

SIFT/SFV+GIST 1024 256 8 69.51

ResNet 256 32 4 68.41

SIFT/SFV+GIST 256 32 4 64.74

ResNet 512 64 4 60.54

SIFT/SFV+GIST 512 64 4 56.72

ResNet 1024 128 4 55.07

VGG/SFV 512 64 4 52.67

VGG/SFV 1024 128 4 51.71

SIFT/SFV+GIST 1024 128 4 46.95
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a Gimnaziju Franje Petrića u Zadru. U sklopu srednjoškolskog obrazovanja sudjeluje na med̄u-

narodnim olimpijadama iz informatike i matematike, gdje je osvojio ukupno jednu brončanu
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nih znanstvenih skupova. Njegovi stručni i znanstveni interesi uključuju računalni vid, sustave

za upravljanje voznim parkom, navigaciju i inteligentne transportne sustave.
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