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Abstract

The capability of a mobile robot to determine its position in the environment (self-localization) is

a prerequisite for achieving autonomous navigation. An approach is proposed for determining the

absolute orientation of an autonomous robot in a system of corridors, based on the projective geom-

etry and active computer vision. In the proposed approach, the common direction of longitudinal

corridor edges is inferred by detecting the vanishing point of the corresponding straight line segments

in the image. It is assumed that the knowledge about the vertical direction in the scene is available,

so that the image coordinates of these vanishing points are considerably constrained. However, lon-

gitudinal corridor edges are not visible in images acquired for many viewing directions, so that the

processing in a localization procedure has to be performed on a sequence of images acquired from

the given position, for regularly arranged orientations of the camera. Extensive experimentation was

performed on real scenes and the obtained results are provided.
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1 Introduction

The field of autonomous navigation studies sensing and control strategies supporting the purposive

movement of a physical mobile agent without human intervention. The capability of the agent to

determine its position in the environment (self-localization) is the first and essential step towards

achieving that objective. However, despite numerous approaches described in the literature, there is

no satisfactory, truly elegant and flexible solution for the problem [Borenstein96]. This is particu-

larly true if an unmodified environment is considered, i.e. an environment which was not specifically

engineered in order to simplify the navigation. It seems that machine vision is potentially the most

flexible and powerful source of information for such a task, specially in environments designed for

humans who also use vision to support navigation.

The problem of vision based localization in unmodified indoor environments has recently been

addressed by many researchers, due to to many potential applications of autonomous navigation

in large buildings. Many of these applications involve intelligent mobile agents such as delivery

robots for offices and factories [Kosaka95], robot guides at museums and exhibitions [Burgard98],

domestic housekeeping robots, or maintenance robots in harmful or hazardous environments. Several

years ago, a new promising technology of wearable computer devices appeared, allowing for new

possibilities such as systems for assisting visually impaired persons and wearable personal computers

capable of making context-aware decisions [Aoki99]. However, most of the known designs require

that a model of the environment is known and use vision only to improve the accuracy of the

position obtained by odometry, i.e. by measuring the displacement after the last accurate localization

[Kosaka95, Burgard98].

A different approach was recently proposed in [Sim98] and [Davison98], in which many assump-

tions about the particular environment can be avoided. In the proposed designs, input images are

searched for distinctive features, such as homogeneous rectangular patches with high gradient against
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the background. Self-location is consequently determined by triangulation, under assumption that

most features can be recognized from many different positions in the environment. Despite the at-

tractiveness, such approach could difficultly be applied in highly structured environments such as

corridors where most of distinctive features are visible from only a small subset of all locations in the

navigation area. Additionally, the possible set of moving directions in these environments is strongly

constrained, so that it seems appropriate to design special navigation algorithms which would exploit

such a property. A design following that approach was proposed by Schuster et al. [Schuster93] who

described a procedure for steering a robot along the corridor by detecting rectangular elements of

the ceiling structure. An another version of that approach was proposed by Dulimarta and Jain

[Dulimarta97] who described an implementation of the complete navigation procedure based on the

detection of ceiling lights and doorplate numbers.

We propose a procedure for determining the orientation of an autonomous robot in a generic

corridor — an abstraction representing the most distinguished traits of real corridors including the

orthogonal trihedral structure and the oblong shape. The former trait implies that object boundaries

are flat surfaces having one of the three mutually orthogonal directions, while the latter stresses that

one dimension of the environment is considerably larger than the others. A suitable referential

coordinate system of the world in such an environment is the Cartesian coordinate system centered

at a distinct point O, with X, Y and Z axes corresponding to transversal, longitudinal and vertical

corridor directions, respectively, as shown in Fig.1(a). An important fact is that the knowledge

about the vertical direction in the environment is implicitly available since the flat horizontal floor

supports the frame of the robot. Alternatively, if the floor of the corridor is uneven, the vertical

direction can be determined as the local orientation of the gravitational field, by a measurement

device called dual-axis inclinometer or tilt sensor. These devices are sold as low cost “off-the-shelf”

components, while their use is discussed in [Barshan95] and reported in [Matijevic98]. It has been

shown that analogous devices are also “used” by many animals and that there are strong connections
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between the perceived vertical direction and the interpretation of the visual stimulus [Lebegue93].

Thus, vertical directions in coordinate systems of the world and the robot coincide, as depicted in

Fig.1(a), while the full localization implies determining the origin of the robot centered coordinate

system o and its orientation ϕ in the world coordinates. It is assumed that the robot is equipped

with a controllable camera with known intrinsic parameters [Mohr96]. The camera has two degrees

of freedom: pan angle (γp) and tilt angle (γt) — Fig.1(b). These angles determine the orientation

of the camera (viewing direction) in the robot coordinates. The camera is attached to the robot in

such a way that, for pan and tilt angles of 0◦, the optical axis coincides with the y axis of the robot

centered coordinate system.

The proposed procedure is based on the analysis of a special perspective effect called vanishing

point, and is performed in two stages. The first stage consists of detecting hypothetical vanishing

points corresponding to horizontal corridor edges, in a sequence of images acquired from the given

location, for a set of regularly arranged viewing directions. In the second stage, the obtained points

are clustered in the coordinate system of the robot, and the strongest clusters are used for inferring

directions of longitudinal corridor axes. The determined knowledge of the robot orientation can

be used either for inferring the possible directions of advancement [Schuster93], or for enhancing

further analysis of the scene [Shakunaga92, Lebegue93, Parodi96], or in correcting large lateral errors

which are intrinsic to the odometry as the most widely used localization technique [Borenstein96].

Unlike previous approaches [Schuster93, Dulimarta97] who detect features which are present only

in particular corridors, the procedure relies on long longitudinal edges as a feature present in all

corridors. Consequently, we expect that our approach will be applicable in a broader class of real

corridors. However, in order to obtain best results, a full-fledged industrial robot could enforce the

results obtained by the proposed generic localization procedure with a number of specific procedures

applicable to the particular corridor.

The following section describes the assumed model of image formation and discusses the use of
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vanishing points for interpreting perspective images of the considered environment in view of the

obtained preprocessing results. Section 3 describes a method for detecting hypothetical vanishing

points of the horizontal edges of the scene, while the proposed localization procedure is explained in

section 4. The results of extensive experimentation are provided.

2 Assumptions

2.1 Projective geometry

The image formation in an ideal camera can be modeled as a perspective projection of 3D space

onto the image plane. Due to straightforward visualization, the image plane π is often represented

as Euclidian plane R2, as shown in Fig.2. However, in the context of 3D machine vision, a projec-

tive view of the image plane is more convenient since it allows for numerous simplifications such as

describing the perspective transformation by linear equations and avoiding the possibility of singu-

larities in formulas for manipulating points and lines [Mohr96]. Points of projective plane P 2 are

represented by 3D vectors [X, Y, Z]> in which at least one coordinate is different from zero. These

vectors are defined up to a constant which means that [X, Y, Z]> and [k · X, k · Y, k · Z]> refer to

the same point in P2, for each k 6= 0. There is a simple connection between 3D points in coordinate

system of the camera (see Fig.2) and elements of P2, since the coordinates of each 3D point denote a

vector referring to the element of P2 to which the given point maps to. In other words, the set of all

vectors referring to an element of P2 corresponds to a 3D line which consists of all points mapping

to that element. The points [X, Y, 0]> ∈ P2, X 6= 0 ∨ Y 6= 0 are called ideal points since they arise

as intersections of parallel lines in P2. Consequently, they do not have an interpretation in R2 and

the projective plane can be thought of as a union of ideal points and the usual Euclidian plane R2.
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The isomorphical mapping from R2 to P2 is described by the standard injection:

(x, y) 7→ [x, y, 1]>, (1)

while the inverse mapping is given by:

[X, Y, Z]> 7→ (
X

Z
,
Y

Z
), Z 6= 0, (2)

A fundamental property of P2 is that there exists a duality between points and lines such that

for every statement there exists a corresponding dual statement in which the roles of points and lines

are interchanged. The basic relations between points and lines in P2 are described by the following

equations [Kanatani91]:

A line l consists of points p satisfying the equation1:

(l,p) = 0. (3)

A line l intersects points p1 and p2 iff:

l = p1 × p2, (4)

Two lines l1 and l2 intersect in the point p iff:

p = l1 × l2. (5)

2.2 Vanishing points

It is well known that perspective projection maps each set of parallel lines from 3D space into the set

of half lines in the projective plane with a common endpoint called a vanishing point [Shakunaga92,

Schuster93, Lutton94, McLean95, Shufelt99]. There is a one-to-one correspondence between the

points of the projective plane (vanishing points) and directions (sets of parallel lines) in 3D space.

Thus, finding vanishing points which are associated with main directions in the scene becomes an

1(a,b) and a× b denote scalar and vector products of vectors a and b, respectively.
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attractive goal because it allows drawing conclusions about its 3D structure. Similar considerations

apply to sets of parallel planes which, in a perspective image of the scene, appear as converging to the

vanishing line corresponding to their 3D orientation. The position of vanishing points corresponding

to lines which are situated on a certain plane is constrained to its vanishing line and each point of

the vanishing line is a vanishing point for one set of parallel lines in that plane.

In an image of a scene with orthogonal trihedral structure, the set of all extracted lines can

be partitioned into three subsets so that lines from each subset correspond to a different subset of

parallel edges in the scene and intersect the associated vanishing point [Lebegue93]. The locations

of the three vanishing points in these scenes are mutually dependent. Particularly, if the vertical

direction in the scene is known (see Fig.3), the corresponding vanishing point VPV can be determined

directly, together with the horizon which is the vanishing line for horizontal planes of the scene. The

remaining two vanishing points, VPH1 and VPH2 in Fig.3, are situated on the horizon and are still

mutually dependent.

2.3 Generic corridor scenes

An intrinsic property of a generic corridor is that its length is considerably greater than its width

and its height. The analyzed class of generic corridor scenes is therefore described as the subset

of orthogonal trihedral scenes in which longitudinal edges are considerably longer than all other

edges and, in particular, more numerous than transversal ones. For many viewing directions, it

can therefore be expected that line segments corresponding to longitudinal edges should also be

more numerous than the segments corresponding to transversal edges. In images obtained for these

viewing directions, the vanishing point for longitudinal directions of the scene can be determined as

the dominant vanishing point of all horizontal directions, i.e. the vanishing point determined by the

greatest number of most unambiguous line segments (see Fig.3).
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2.4 Preprocessing

Because of the regular structure of the considered environment, each acquired image is described

in terms of straight line segments before further processing. The chosen representation is a trade-

off between the capability of reliable description and the possibility of devising efficient algorithms.

Line drawing is one of the most common ways of human communication (e.g. technical drawings,

comics) so that its expressive power is probably more than sufficient. On the other hand, the count of

individual straight lines in images of the considered environment is often less than the count of pixels

in source images for several orders of magnitude (typically, 50 vs. 50000). Therefore, algorithms for

processing line drawings are regularly less complex than algorithms for image processing.

The description of the original image in terms of weighted line segments is obtained in two stages:

edge detection and edge linking. The employed edge detection algorithm is a modification of the

known Canny edge detector [Canny83, Heath96], in which each edge element is assigned a weight

equal to the local intensity of the gradient in the image. Line segments are extracted by an iterative

detection of collinear edge elements based on the modified Hough Transform [Illingworth88, Lie90].

The weight of each segment is calculated on the basis of its length and the sum of weights of the

constituting edge elements. An attempt has been made to design these procedures in a flexible

manner so that many parameters (e.g. thresholds in edge detection, for detecting local maxima

in parameter space, for filtering the extracted line segments etc.) are dynamically determined by

heuristic algorithms, depending on statistical properties of the input. Nevertheless, the subjective

quality of the technique strongly depends on the image being analyzed. Best results are obtained

on images of scenes with controlled illumination with few straight edges which are relatively long

compared to image dimensions. Unfortunately, the preprocessing results obtained on scenes with

uncontrolled illumination does not guarantee the success in applying the known object recognition

techniques. Real corridor scenes tend to be illuminated “sufficiently” from the human point of
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view but badly and unevenly in the context of image acquisition. Moreover, the navigation implies

activity over considerable space and time so that it can not be expected that the conditions for image

acquisition will be uniform, particularly in unknown environments. On the other hand, human

interventions such as specifying parameters for edge detection or telling the robot where to look

next are not acceptable so that it may seem that, at present, machine vision can hardly be used in

uncontrolled environments.

Lebegue and Aggarwal [Lebegue93] however state that the results of techniques for retrieving

the description of the image in terms of line segments can substantially improve if the 3D directions

of corresponding edges are known. Parodi and Piccioli [Parodi96] have assumed that the locations

of vanishing points corresponding to main structural axes of the scene are known à priori and thus

simplified the problem of the 3D reconstruction of the scene. Shakunaga [Shakunaga92] argues that a

“general” approach to object recognition is not adequate when the appearance of the object strongly

depends on the viewing direction. He therefore proposes the determining of an object centered

coordinate system as the first step in the analysis of an indoor scene.

3 The detection of vanishing points

In many applications of machine vision, the internal parameters of the camera are known so that 3D

direction of parallel edges in the scene can be determined from the vanishing point of the correspond-

ing line segments in the image [Shufelt99]. Such inferring of the 3D structure is particularly convenient

in environments with many parallel edges having relatively few 3D directions. Indoor scenes are often

good representatives of such an environment [McLean95], but also urban outdoor scenes [Lutton94]

and scenes associated with automated steering of vehicles in urban [Parodi96] and extra-urban roads

[Liou87]. The achieved knowledge about the main structural directions of the scene can substantively

improve the conditions for further understanding of the scene [Shakunaga92, Lebegue93, Parodi96].
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3.1 Approaches to the detection of vanishing points

The key assumption in the context of detection of vanishing points in perspective images is that

groups of parallel edges in the scene correspond to the most numerous groups of converging line

segments in the projective plane. The known methods can be classified in two basic approaches

regarding the required preprocessing procedure.

A method for detecting vanishing points which performs processing directly on the set of edge

elements was applied to the task of automated vehicle steering [Liou87]. In that work, it was assumed

that the road is locally flat and straight (which allows determining the vanishing line corresponding to

the road plane) and that the vanishing point is situated within image boundaries. These assumptions

allowed the reduction of the search space for the vanishing point corresponding to the road boundaries

from the whole image plane to a single line segment in the image. The obtained search space is

partitioned into short sectors and a voting process on the set of edge elements of the analyzed image

is used to find the sector which most likely contains the vanishing point.

However, most methods assume that a description of the analyzed image in terms of line segments

has already been determined by a generic preprocessing procedure. These methods try to find groups

of line segments intersecting the common point of the projective plane and can be further classified

with respect to the clustering approach.

3.1.1 Clustering based on the Hough Transform

In this approach, a Hough transform (HT) is applied to the set of extracted line segments in or-

der to obtain its representation in parameter space which would hopefully allow for easier detection

of vanishing points. Each point of the parameter space should represent one vanishing point or,

equivalently, one direction in 3D space. A good choice for parameter space, therefore, is the unit

sphere centered at the origin (Gaussian sphere) since it is finite and complete. The approach implies

forming the adequate partition of the parameter space and assigning an unique accumulator to each

9



member of that partition. Consequently, contributions of single line segments [Lutton94, Shufelt99]

(or of pairs of line segments [Schuster93]) to relevant accumulators are determined. The approximate

positions of vanishing points are finally detected by searching for local maxima on the set of accu-

mulators. This approach is used by most of the existing methods since it formalizes the clustering

process.

3.1.2 Explicit clustering

In the other clustering approach, for each pair of line segments a hypothesis is made that it cor-

responds to a pair of parallel edges in the scene. The resulting hypothetical vanishing points are

subjected to an explicit clustering procedure, either on their projections to the Gaussian sphere

[Shakunaga92], or in the image plane itself [McLean95]. The centers of the obtained clusters are

finally proclaimed as probable vanishing points. While the classic methods for detecting vanishing

points using the HT offer a sound general approach, they may not be the best option for each partic-

ular task. McLean and Kotturi [McLean95] emphasize that the difficulties in finding local maxima

in parameter space lead to a procedure which requires à priori knowledge about their approximate

position. They further argue that the accuracy of obtained results is limited by the resolution of the

parameter space and may not achieve the limit imposed by the accuracy of the input data.

3.2 The proposed method

Based on specific properties of the considered environment, while taking into account the results

of previous research, we chose an approach to the detection of vanishing points based on explicit

clustering. On the first sight, such approach does not seem to be attractive since the purpose of the

HT in the first place is to formalize the clustering procedure and reduce its complexity. Nevertheless,

explicit clustering can be adequate when the count and locations of vanishing points are heavily

constrained, which is exactly the case in images of the considered environment. The fact that the
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knowledge about the vertical direction in the scene is available additionally simplifies the task, since

it makes it possible to determine the vanishing point for vertical edges in the scene [Lebegue93] and

the horizon [Liou87] directly. These constraints can diminish the count of hypothetical vanishing

points for several orders of magnitude so that the complexity of the clustering stage may become

neglectable.

On input, the proposed method requires the list of weighted line segments extracted from the

analyzed image. On output, the method produces a list of weighted clusters of vanishing points for

horizontal directions in the scene. The dominant cluster (i.e. the cluster with the greatest weight) is

expected to reflect the vanishing point corresponding to the longitudinal direction. The method is

performed in four stages which are described in the following paragraphs.

3.2.1 Electing consistent line segments

In this stage, line segments for further consideration are selected from the set obtained in the pre-

processing stage. Line segments which intersect the horizon are discarded first, since they can not

correspond to horizontal edges in the scene and are not relevant in this context. Short line segments

have an inherent large direction uncertainty [Shufelt99]. Fortunately, all object boundaries in the

considered environment are straight edges so that the analysis can be limited only to relatively long

line segments. Thus, line segments which are shorter than 1/20 of the shorter dimension of the image

are also discarded (the factor 1/20 was determined experimentally). Finally, it is also possible to

discard line segments intersecting the vanishing point for the vertical direction in the scene, since it

is very likely that they correspond to vertical edges. This operation significantly simplifies further

processing, since, in images of the considered environment obtained for prevalently horizontal viewing

directions, most of extracted line segments correspond to vertical edges.
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3.2.2 Determining homogeneous line equations

For each elected line segment, the homogeneous line equation (3) is determined in two steps. First, the

homogeneous representations of the two endpoints of a line segment are determined by injection (1).

Then, the homogeneous equation of the line passing through the obtained endpoints is determined,

according to (4).

3.2.3 Determining hypothetical vanishing points

For each pair of elected line segments, a hypothetical vanishing point is calculated according to (5),

under the assumption that the corresponding edges are parallel and horizontal — Fig.4. If the position

of the hypothetical vanishing point is inside one of segments, line segments can not correspond to

parallel edges and the point is discarded. Moreover, the point is also discarded if it is considerably

distant from the horizon, since that also contradicts the assumption. Each remaining hypothetical

vanishing point is assigned the weight equal to the product of weights of the corresponding segments.

3.2.4 Clustering of hypothetical vanishing points

The clustering procedure is performed on the Gaussian sphere since the chosen metric (the squared

Euclidian distance) is more uniform on the sphere than in the projective plane. Hypothetical vanish-

ing points from the obtained set are therefore projected to the sphere and are subsequently subjected

to the unsupervised clustering using the “maximin” algorithm [Tou74]. Each obtained cluster is as-

signed the weight being equal to the sum of weights of its elements. Finally, the centroid of the cluster

with the greatest weight is proclaimed as the dominant vanishing point for horizontal directions in

the scene.
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3.3 Experimental results

The described method for detecting vanishing points was tested both on real corridor images and on

sets of generated pseudorandom line segments. Real images were acquired under both day-time and

night-time conditions, for different orientations of the camera. The primary objective was to test the

correct functionality of the method on images containing many longitudinal edges. However, correct

behavior of the method was also tested on images not satisfying the requirements for a successful

determination of the longitudinal vanishing point.

3.3.1 A preliminary experiment

An example of an image containing enough information for a correct determination of the longitudinal

vanishing point is shown in Fig.5(a). Fig.5(b) shows the description of the acquired image in terms of

straight line segments, determined by the preprocessing procedure. The width of segments designates

their weights while an additional dashed line over a segment indicates that it was elected as a segment

which might correspond to a longitudinal corridor edge (see the previous subsection). The results are

shown in Fig.5(c) as the representations of hypothetical vanishing points (crosses) and of centroids

of obtained clusters (squares) in Euclidian plane R2. Fig.5(c) also shows the segments which support

the dominant cluster (thick lines), other elected segments (dashed lines), and the horizon (dashed

horizontal line). The quantitative processing summary is shown in Fig.5(d) as the set of relevant

camera parameters, counts of line segments at various processing stages, properties of the dominant

cluster, as well as the timing profile. The camera parameters include pan and tilt angles (see Fig.1),

together with horizontal and vertical fields of view, measured in degrees. The properties of the

dominant cluster include the Euclidian coordinates of its centroid, the corresponding direction of the

longitudinal corridor axis as the final processing result, the count of hypothetical vanishing points,

and finally the weight of the cluster. The timing profile shows the execution times of the following

execution stages: Gaussian smoothing, the rest of Canny edge detection, the procedure for finding
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lines and finally the procedure for detecting vanishing points which regularly took less than the system

timing resolution. The experiment was performed on a computer with the integer performance of

9.8 SPECint95, while the dimension of the input image were 320× 240 pixels.

The set of elected line segments shown in Fig.5(b) includes two segments which do not reflect the

structure of the environment. These segments are caused by a combination of shadows and reflections

on the corridor floor due to the excessive illumination through the fire-exit door. The first of the

two segments is located near the horizon and is directed towards the neighborhood of the dominant

cluster. Consequently, it participates in the process of determining the cluster centroid and therefore

increases the uncertainty of the output. The other segment is located in the bottom of the image and

is directed far enough from the dominant cluster. The resulting two hypothetical vanishing points

are assigned to a separate cluster which is later rejected since its weight is much smaller than the

weight of the dominant cluster.

3.3.2 The reliability of the method

Despite the significant design effort, the preprocessing stage turned out to be the limiting factor

for the reliability of the proposed method. The position and, particularly, the direction of detected

line segments sometimes quite differed from the projection of the corresponding edges to the image

plane. This effect is mainly due to the statistical nature of the Hough transform which makes a

quantitative error analysis extremely difficult [Palmer97]. The effect is particularly strong for short

image segments but can also affect the longer ones, particularly in the vicinity of an illumination

discontinuity — e.g. the larger segment corresponding to the lower-left longitudinal corridor edge

in Fig.5(c). Additionally, experiments shown that the segments with greatest weights regularly

correspond to vertical edges of the scene. Consequently, in some positions of the corridor, the

preprocessing stage did not detect any useful line segments in the acquired image and the method

produced no results. As designed, the preprocessing stage never reported a false positive result i.e. a

14



line segment not corresponding to a significant straight discontinuity of pixel intensity in the image.

However, in few cases of extremely bad illumination, reflexes and shadows were more distinct than

discontinuities caused by longitudinal edges and the method produced wrong results.

The results obtained for non-zero tilt angles of the camera were significantly better than the

results for horizontal viewing directions since longitudinal edges appear as larger line segments if

the viewing direction is somewhat inclined (see Fig.6). The best choice for the tilt angle would

be near the half of the vertical field of view of the camera since it ensures near-maximal visible

lengths of longitudinal corridor edges, for all combinations of corridor widths and widths of the field

of view of the camera. The method performed better for viewing directions inclined upward (i.e.

for positive tilt angles) than for downward inclined ones, since the former regularly include more

longitudinal edges due to doors and windows, while the latter always contain effects of the highly

reflective marble floor which increase the possibility of recognition errors. Unfortunately, the inclined

viewing direction implies that upper and lower longitudinal corridor edges are often not both detected

by the preprocessing procedure, which increases the uncertainty of the results obtained for images

containing only one corridor wall. In such images, all longitudinal edges are relatively close and

therefore nearly parallel, as shown in Fig.7. Consequently, the calculated positions of hypothetical

vanishing points are much more sensitive to directional errors of extracted line segments than for

views containing distant longitudinal edges, which is reflected by a larger dispersion of points of the

dominant cluster. For the same reasons as before, the described effect has larger influence in images

obtained for viewing directions inclined downward (see Fig.7). The influence of the effect can be

modeled by an additional adjustment of the weight of hypothetical vanishing points, depending on

the intersection angle of the corresponding segments.
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3.3.3 The results of comprehensive experimentation

The results for a total of 132 experiments performed at 6 different corridor locations, for 22 different

viewing directions (2 tilt and 11 pan angles of the camera) are summarized in Table 1. Rows

of the table correspond to individual experiments performed for different pan angles relative to

the longitudinal corridor axis (column γp), at different corridor locations (column #). For each

experiment, the three columns labeled count of line segments contain the total count of extracted

line segments, the count of elected segments and the count of segments supporting the dominant

cluster. The last two columns contain the weight of the dominant cluster and the deviation δ of

the determined longitudinal corridor direction from the ground truth. Mutual dependencies of the

data from Table 1 are illustrated in Fig.8, in which the average relative weight and the average

deviation δ obtained in locations from A to F are plotted against the pan angle of the camera, for

both tilt angles γt. The average weights obtained for γt = 15◦ were significantly stronger than for

γt = −15◦, which confirms observations from the paragraph 3.3.2. The obtained results indicate that

the proposed method can be used for reliable determining of the longitudinal corridor direction for

viewing directions differing from the longitudinal for less than 30◦, which is mainly determined by the

horizontal field of view of the used camera (47◦). The results also show that the method rarely gives

false positive answers and that the accuracy of the obtained results (deviation δ) is strongly coupled

with the weight of the dominant cluster. Finally, the results illustrate the importance of choosing

the “right” viewing direction in analyzing corridor scenes since, for many viewing directions, the

acquired images do not contain useful information for navigational purposes (pan angles of 45◦, 60◦

and 90◦). An active vision approach for determining useful viewing directions is therefore proposed

in the following section.

16



3.3.4 Results for pseudo-random line segments

Finally, we tested the possibility of detecting the low consistency of the results by analyzing the ratio

between the count of segments supporting the dominant cluster and the count of elected segments.

Experiments were performed in three series, for different counts of generated pseudo-random line

segments and the obtained results are summarized in rows of Table 2. For each series, the count of

performed experiments is listed in column 2, while columns 3 through 5 contain the total count of

generated line segments, and average counts of the elected segments and of the segments supporting

the dominant cluster. Finally, columns 6 and 7 contain the average ratio between the count of

supporting line segments and the count of elected segments, and the corresponding standard deviation

for all performed experiment in a series. Experiments shown that the mentioned ratio is significantly

and consistently lower for sets of pseudo-random segments than in real images (see Table 1). That

ratio can therefore be used as an empirical evidence that the obtained results are not accidental, i.e.

that they actually reflect the structure of the environment.

4 The localization procedure

This section describes an application of the method for the detection of vanishing points of the

horizontal corridor edges in a localization procedure. The objective of the designed procedure is to

determine the orientation of the observer in an unknown corridor. The procedure is conceived as

a basic navigational routine which is applied in situations in which no applicable knowledge about

the environment is available. Such exceptional situations include a “wake up” procedure [Krotkov89]

after periodic maintenance of the mobile robot [Sim98], entering the unknown environment (e.g. after

leaving the elevator) and the occurrence of contradictory conclusions in control procedures at hier-

archically higher levels [Dulimarta97]. In that context, the robustness of the localization procedure

is considered more important than the execution speed.
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4.1 The proposed approach

The basic assumption for success of any method for detecting vanishing points is that the analyzed

image contains many parallel edges. However, in images of the considered environment, that assump-

tion holds only if the viewing direction is close to the longitudinal corridor axis, depending on the

horizontal field of view of the utilized camera. Consequently, the results of a localization procedure

based on detecting vanishing points in a single image of the environment, could be relied upon only

if the approximate orientation of the robot is already known. But that would be contrary to the

objectives set at the beginning of the section — the desired procedure should be applied exactly

in those exceptional situations when all other sources of knowledge are unavailable or uncertain. It

seems that the only possible way of solving the problem would be to apply principles of active per-

ception and to bring decisions based on analyzing the whole sequence of images, acquired for several

viewing directions. The results obtained by the method described in the previous section (Tables 1

and 2), suggest analyzing a sequence of images, obtained for different pan angles of the camera.

4.2 Implementation details

The proposed implementation is subdivided in two processing stages. The first stage is applied

to each image of the sequence acquired from the given location for the set of regularly arranged

viewing directions. The stage consists of detecting hypothetical vanishing points corresponding to

horizontal directions of the scene and transforming them to the coordinate system of the robot. The

collected points are clustered in the second stage, and centroids of the obtained clusters are used for

determining the directions of longitudinal corridor axes in the coordinate system of the robot.

The analyzed images are acquired for pan angles of the camera γp = k ·∆γp, k = 0, 1, . . . , nviews−1,

where ∆γp = 2π/nviews. The value of nviews thus determines ∆γp and is chosen on the basis of the

results listed in Table 1. ∆γp must be small enough in order to ensure the acquisition of several
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images containing enough information for a correct determination of the longitudinal vanishing point.

However, it should not be too large in order to ensure maximal execution speed for a given level of

robustness. We therefore chose to set the ∆γp near the 1/3 of the horizontal field of view of the

camera. In the performed experiments the horizontal field of view was 47◦, so that nviews turned

out to be 26 which determined ∆γp to be 13.85◦. Following the discussion in the subsection 3.3, the

tilt angle for the procedure was set to 15◦, near the half of the vertical field of view of the utilized

camera. Additionally, the results from Table 1 indicate that the relative uncertainty of the obtained

hypothetical vanishing points is considerably larger for points differing from the viewing directions

for more than a half of the horizontal field of view. These points are consequently discarded and are

not considered in the clustering stage, in order to improve the robustness of the procedure.

Following the above considerations, the k-th iteration of the first stage consists of the following

operations:

1. Image acquisition

Pan and tilt angles of the camera are set to the following values: γp = k ·∆γp and γt = 15◦.

An image is acquired with dimensions of 320× 240 pixels.

2. Preprocessing

The acquired image is represented by the set of weighted straight line segments.

3. Detection of hypothetical vanishing points

The extracted set of weighted straight line segments is searched for hypothetical vanishing

points, as described in subsection 3.2. The points which are close to the viewing direction

are consequently transformed (Fig.9) to the coordinate system of the robot (ϕ, θ) and finally

preserved for further processing in the second stage.

The robot centered coordinate system (ϕ, θ) is situated at the surface of the right cone whose slope and

the main axis match the tilt angle of the camera and the vertical direction in the scene, respectively.
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The origin of the coordinate system is defined by the intersection of the surface of the cone with the

optical axis of the camera for pan and tilt angles of 0◦. The relations between the two coordinate

systems are shown in Fig.9.

In the second stage, clusters of hypothetical vanishing points are formed using the “maximin”

algorithm which was mentioned in subsection 3.2. Clusters with weights less than 0.01% relative to

the weight of the dominant cluster are rejected as uncertain and probably related to illumination

effects. Feasible directions of advancement are in the end determined on the basis of centroids of the

resulting clusters.

4.3 Experimental results

The experiments were performed at 18 locations of the corridor at our department, as illustrated

in Fig.10. The computer on which the processing was performed was mounted on a moving cart,

and the camera shown in Fig.1(b) was placed at its most exposed position. The obtained results are

summarized in Table 3. Rows of the table correspond to corridor locations a through r (Fig.10),

together with matching orientations of the robot coordinate system ϕ0. The table lists the following

data about the detected clusters of hypothetical vanishing points: the coordinate ϕ of the cluster

in the robot centered coordinate system (positive ϕ corresponds to the clockwise turn), the relative

weight of the cluster (wt) with respect to the strongest cluster, and the error calculated by comparing

the centroid of the cluster to the ground truth (δ). The results illustrate that the procedure can be

used for an accurate determination of longitudinal corridor directions. The experiments performed at

locations a, g, l and m, which are close to a corridor end, show the main limitation of the procedure

— that the corridor is detected only if it extends at least 4 meters away from the observer.

The performance of the utilized computer was about 2 SPECint95, so that the processing of

single images last 4 s, and the total computation time was 104 s. The time spent in procedures for

controlling the camera was 48 s so that the total execution time of the procedure (response time) was
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about 2 minutes and a half. However, the computers with more than 40 SPECint95 are commonly

found today so that the computation time on a recent computer would probably be around 5 s and

is probably going to become neglectable in the near future. Such a dramatic improvement in the

construction of the step motors is unlikely so that we expect that the industrial performance of the

procedure would be bound by the mechanical capabilities of the camera drive.

Graphical representation of the results for the three characteristic locations in Fig.10 is shown

in Fig.11. For the sake of the representation simplicity, points of the coordinate system of the

robot (ϕ, θ) are transformed to the polar coordinate system (r, ϕ). Upright direction in the polar

coordinate system, corresponds to the angle of 0◦ on the surface of the cone. The radius r in the polar

coordinate system is proportional to the coordinate θ on the surface of the cone, and is calculated as

r = rH + θ−γt
k

, where variables rH and k are empirically determined constants. Points of the robot

coordinate system which are situated on the horizon θ = 0◦, map to points of the polar plane with

radius r = rH . For each of the three experiments, two images of the resulting polar plane (r, ϕ)

after the transformation are shown. As in the previous section, crosses and squares correspond to

detected hypothetical vanishing points and cluster centroids, respectively. Left images don’t make

the right impression about the processing results since the weight of hypothetical vanishing points

which are far from cluster centroids is usually considerably lower than the average. For that reason,

right images are formed in the following four steps, as an alternative illustration of the processing

results:

i) the values of all image pixels are initialized to 0;

ii) the weight of each hypothetical vanishing point is added to the value of the corresponding pixel;

iii) image is smoothed by a 2D Gaussian kernel with a large value of the parameter σ, and a circle

corresponding to the horizon is drawn;

iv) arrows indicating the heading of the robot and the orientation of the world coordinate system
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are designated, together with the sketch of the corridor at the corresponding location.

Thus, the right image in Fig.11(a) indicates that there are three possible directions of advancement

corresponding to the three corridors extending from the location f in Fig.10. Similarly, Fig.11(b)

reflects that the robot is situated near the dead end of the corridor (location l), while Fig.11(c)

indicates that the robot is in the middle of a simple corridor, far from corridor ends (location n).

5 Summary and conclusion

In this paper, we described a method for detecting vanishing points corresponding to horizontal edges,

which exploits the knowledge of the vertical direction in the scene. We have also shown the applica-

tion of that method in a localization procedure based on an active vision approach. The proposed

procedure determines the orientation of a mobile robot in a system of corridors. A straightforward

approach to localization would be to apply the known object recognition methods and to match the

perceived objects (landmarks) with the map of the environment. However, the experiences from the

previous research and the results of our preliminary experimentation have shown that these methods

perform well only for images obtained in controlled conditions (illumination, camera position and

orientation). Such performance is not surprising since experiments have shown that the mentioned

conditions strongly influence the quantity of useful information in acquired images. We therefore

suggest an incremental approach to the understanding of the scene, in which each new processing

step is triggered by the possibility of robust acquisition of further knowledge about the world, which

can be useful in solving the high level navigation task. In accordance with the principles of active

vision, it is favorable to equally specify both procedures for acquiring and for the processing of im-

ages. The processing steps in such a system must be simple and robust in order to support stable

and secure navigation. The entire proceeding of such navigation can be seen as a great localization

procedure since the robot continuously updates the knowledge about the world. Nevertheless, the
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term “localization” usually refers to the basic procedure which can be applied in uncertain situations

in which prior experiences with the environment either do not exist or can not be trusted. The

analysis of longitudinal corridor axes is adequate in such situations, since it is the most distinguished

property of the considered environment.

The described approach to localization is similar to actions performed by people, while looking

for a certain office in an unknown corridor. When a human enters the corridor (e.g. from an elevator),

before performing any other actions, he or she must look around and find out the directions in which

the corridor extends. Likewise, the proposed localization procedure, controls pan and tilt angles of

the camera in order to acquire a sequence of images for a set of evenly arranged viewing directions.

The final decision of the localization procedure is brought after detecting hypothetical vanishing

points in each image of the sequence, by explicit clustering in the coordinate system of the robot.

The obtained experimental results confirmed that the approach can provide reliable information

in regular conditions, i.e. without the need for introducing additional illumination sources into the

environment.

The presented work is a part of the research project aimed at improving the capability of visually

impaired persons to move through indoor environments of public buildings. The project involves

a synergy of several branches of computer science with the following wearable computer devices: a

palm-top computer capable for voice synthesis and image acquisition, an ear-mounted headphone

and the miniaturized camera attached to a lapel or mounted on a cap of the impaired person,

supplemented with a tilt sensor. The future work will be directed towards techniques which will

use and extend the obtained knowledge and, in cases of ambiguous or uncertain results, fall back

to the basic procedure. Potential objectives in that context include the determination of physical

dimensions of the corridor (i.e. width, height), distance between the robot and lateral walls and

recognizing doors and door plates.
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Table 1: The results of applying the method for the detection of vanishing points at six corridor
locations (A, B, C, D, E, F) for different pan angles (γp); tilt (γt) angles of the camera were set to
15◦ (left) and −15◦ (right).

γt=15◦ count of line segments
γp # total elected support

weight δ

A 26 9 8 197166 0.1◦

B 35 12 8 140814 0.0◦

0◦ C 27 15 13 478203 0.3◦

D 24 12 10 705075 1.2◦

E 31 11 11 66937 0.4◦

F 31 6 5 66681 0.4◦

A 27 12 8 232618 0.5◦

B 37 13 9 114607 0.3◦

2.5◦ C 21 11 9 152993 0.1◦

D 27 13 13 1038349 0.2◦

E 36 11 11 85647 0.4◦

F 30 6 6 56367 0.0◦

A 28 9 8 276781 0.4◦

B 37 12 9 143783 0.4◦

5◦ C 19 9 7 100972 0.0◦

D 31 12 12 843077 0.2◦

E 34 11 11 81498 0.4◦

F 31 8 7 54430 0.6◦

A 34 12 10 265051 0.3◦

B 41 14 11 151401 0.7◦

7.5◦ C 19 10 8 74105 0.9◦

D 31 15 14 700675 0.3◦

E 32 11 11 114075 0.3◦

F 34 11 10 44715 0.8◦

A 31 13 11 137147 0.3◦

B 32 11 7 139990 0.3◦

10◦ C 19 11 10 116313 0.0◦

D 31 15 14 617247 0.4◦

E 32 11 10 141178 0.1◦

F 31 8 8 26060 0.7◦

A 28 8 7 67169 0.1◦

B 32 9 5 9313 1.0◦

15◦ C 20 11 10 25156 0.4◦

D 35 14 13 315271 0.0◦

E 37 12 11 130775 1.2◦

F 26 9 7 11352 0.2◦

A 28 11 7 20426 0.8◦

B 27 8 7 33851 0.6◦

20◦ C 11 7 4 18594 1.5◦

D 35 14 13 315271 0.0◦

E 39 12 9 60480 1.2◦

F 22 5 4 6382 3.7◦

A 26 8 5 10448 2.3◦

B 18 6 4 22877 3.8◦

30◦ C 21 13 3 15 1.8◦

D 28 13 13 169710 0.6◦

E 37 18 12 122139 2.3◦

F 21 5 3 4071 4.7◦

A 15 6 4 376 2.0◦

B 13 0 - - -
45◦ C 0 - - - -

D 10 6 5 14421 6.4◦

E 26 13 7 17535 6.4◦

F 18 4 3 521 15◦

A 1 0 - - -
B 13 1 1 0 15◦

60◦ C 0 - - - -
D 0 - - - -
E 4 0 - - -
F 11 1 1 0 16◦

A 1 1 0 0 70◦

B 22 1 1 0 65◦

90◦ C 0 - - - -
D 21 0 - - -
E 1 1 1 0 45◦

F 0 - - - -

γt=−15◦ count of line segments
γp # total elected support

weight δ

A 24 4 4 4205 0.3◦

B 22 5 5 33789 0.8◦

0◦ C 25 10 9 64671 0.4◦

D 31 17 15 284802 0.3◦

E 36 16 5 5665 0.9◦

F 36 8 8 3390 0.9◦

A 20 2 2 3146 0.5◦

B 25 5 4 33295 0.5◦

2.5◦ C 23 10 10 242975 0.5◦

D 31 15 13 173212 0.0◦

E 40 17 6 6428 0.8◦

F 33 5 5 3763 1.5◦

A 27 4 4 3078 0.1◦

B 22 6 5 41160 0.9◦

5◦ C 23 10 10 242975 0.5◦

D 29 13 10 55253 0.6◦

E 32 16 7 5946 1.2◦

F 28 5 5 3818 1.3◦

A 27 3 3 4659 0.3◦

B 30 10 7 57488 0.8◦

7.5◦ C 24 9 9 204531 0.8◦

D 26 14 11 36593 0.1◦

E 37 21 9 10024 1.0◦

F 38 11 9 5982 1.0◦

A 29 5 4 2666 1.2◦

B 35 9 6 52800 0.5◦

10◦ C 25 11 11 325675 0.6◦

D 17 9 7 16694 1.5◦

E 35 14 5 4920 1.7◦

F 33 4 3 2010 5.3◦

A 25 3 2 3 1◦

B 33 9 6 14178 1.8◦

15◦ C 30 14 10 180777 1.6◦

D 25 12 8 8056 1.6◦

E 38 15 6 4076 0.3◦

F 30 8 4 3 0.7◦

A 20 4 3 896 0.6◦

B 26 6 4 14953 1.4◦

20◦ C 26 12 10 210083 1.9◦

D 21 12 4 2913 0.3◦

E 35 15 7 2180 0.0◦

F 32 8 5 278 3.4◦

A 25 4 4 997 0.5◦

B 14 3 3 2 3.9◦

30◦ C 30 18 16 344173 0.4◦

D 14 9 8 1398 2.8◦

E 32 9 4 662 3.3◦

F 24 2 1 1 0.9◦

A 13 4 4 199 7.9◦

B 13 3 2 1 2.2◦

45◦ C 23 16 12 88651 6.2◦

D 1 1 1 0 3.1◦

E 35 11 4 4090 8.6◦

F 28 6 5 2 6.9◦

A 0 - - - -
B 1 1 1 0 9◦

60◦ C 17 12 6 7918 19◦

D 0 - - - -
E 21 3 3 4 28◦

F 14 0 - - -

A 19 4 3 2 63◦

B 1 1 1 0 7◦

90◦ C 26 0 - - -
D 0 - - - -
E 11 1 1 0 66◦

F 6 0 - - -



Table 2: The results of applying the method for the detection of vanishing points to sets of pseudo-
random line segments.

average count of segments ratio support
electedseries count

total elected support µ σ
A 20 20 7.4 3.1 0.38 0.18
B 20 40 13.7 6.1 0.45 0.09
C 20 60 19.9 8.5 0.42 0.10



Table 3: The results of applying the localization procedure at locations designated in Fig.10.

clusters
location ϕ0 [◦]

ϕ [◦] wt [%] δ [◦]

-30.0 100 0.0
a 120

150.1 4 0.1

121.4 100 1.4
b 330

-59.5 17 0.5

47.8 100 2.8
c 45

-133.9 21 1.1

30.2 100 0.2
d 240

-150.0 75 0.0

29.6 100 0.4
e 60

-149.8 27 0.2

-30.2 100 0.2
f 120 149.3 88 0.7

-118.9 87 1.1

-120.3 100 0.3
g 210

60.9 5 0.9

-133.3 100 1.7
h 225

44.6 17 0.4

120.2 100 0.2
i 330

-60.2 80 0.2

-149.2 100 0.8
j 60

30.4 38 0.4

-135.3 100 0.3
k 45

45.1 70 0.1

l 210 60.6 100 0.6

-30.7 100 0.7
m 30

150.4 0.01 0.4

-45.2 100 0.2
n 225

135.5 90 0.5

119.7 100 0.3
o 60

-59.9 63 0.1

120.9 100 0.9
p 240

-59.8 7 0.2

-60.0 100 0.0
q 60

119.1 26 0.9

30.7 100 0.7
r 150

-150.5 57 0.5


