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Recap: rectified stereo
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Rectified stereo
Motivation:

» Constrain the stereo matching algorithm search space: searching along
rectified epipolar lines is computationally more efficient.

» Off-the-shelf stereo algorithms assume rectified stereo image pairs.
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https://www.cs.cmu.edu/~16385/s17/Slides/13.1_Stereo_Rectification.pdf

Rectified stereo
Motivation:

» Constrain the stereo matching algorithm search space: searching along
rectified epipolar lines is computationally more efficient.

» Off-the-shelf stereo algorithms assume rectified stereo image pairs.

Stereo rectification goal is to:

» make epipolar lines parallel to the x-axis in both images (project
epipoles to infinity), and

» have corresponding points project to the same y-axis value.

https://www.cs.cmu.edu/~16385/s17/Slides/13.1_Stereo_Rectification.pdf
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Rectified stereo

We aim to obtain R=Tand t” = [T,0,0]
The essential matrix for this system equates to

0
0 —-T
T
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Rectified stereo: motivation

Let's construct the rotation matrix R

Where:

t
rhn=—-e = —
T e
ro = [I‘l]>< [0, 0, 1

rs =TI1 XI2

]T

=
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Rectified stereo: motivation

Let's construct the rotation matrix R

— |7
R=|r,

Where: _ o
e; projects to infinity.
t
r —e; = — T
il rie

]T Re; = ré’—el =

= 0,0,1
Iro [I'l]x [ rZTel

rs =TI1 XI2

o O =
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Rectified stereo

The new camera projection is Qrect = KR.
K can besetto a K = % if the cameras are similar.

We are interested in finding a rectifying homography H for each camera:

Xrect = QrectQ;lxo = KR(KORO)_l Xo
N——’
H
We have H; = KRK; ' and Hy = KR(K,R) ™!
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Rectified stereo: example on KITTI
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Constructing a cost volume

» Rectification constrains the correspondence search along the x image
axis.

» For dense stereo, we can explicitly compute all possible
correspondence values.

» Such structure is called cost volume.
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Constructing a cost volume

Cost volume Vg is a three-dimensional array. Element at position (d, i, j)
corresponds to:

Vaij = e sgi-a)

lgj and rg; are f-dimensional descriptors suitable for computing a matching
cost.
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Constructing a cost volume

Cost volume Vg is a three-dimensional array. Element at position (d, i, j)
corresponds to:

Vaij = —laTa—a)

lgj and rg; are f-dimensional descriptors suitable for computing a matching
cost. There are multiple methods that enable matching cost computation

(Census, learning-based).
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Constructing a cost volume

Cost volume Vg is a three-dimensional array. Element at position (d, i, j)
corresponds to:

Vaij = —laTa—a)

lgj and rg; are f-dimensional descriptors suitable for computing a matching
cost. There are multiple methods that enable matching cost computation

(Census, learning-based).

Cost volumes are used in most dense stereo algorithms tscharsteino2ijevi.
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Constructing a cost volume

By taking arg minVy;;, we can obtain a disparity rough estimate:
d
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Lab assignment

https://gitlab.com/FER-D307/Nastava/3d-racvid/3drv-1lab2
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Deep learning for stereo

> We mentioned that classical stereo reconstruction algorithms rely on

heuristics for i) expressing the matching cost and ii) cost volume
refinement.

» Both heuristics can be replaced by neuralizing parts of the stereo
reconstruction algorithm.
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MC-CNN (Matching cost convolutional neural TRk

Objective: Leverage CNNs to learn a matching cost between image
patches.
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MC-CNN (Matching cost convolutional neural TRk

Objective: Leverage CNNs to learn a matching cost between image
patches.

L(r, pr, qf) = max(0, reps — rege+ m)
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MC-CNN (fast architecture)

Similarity score

| Dot product ‘

Normalize | ‘ Normalize
‘ Convolution | ‘ Convolution
[ Convolution, ReLU | [ Convolution, ReL.U
[ Convolution, ReLU | ‘ Convolution, ReLU
[
Left input patch Right input patch

Figure 2: The fast architecture is a siamese network. The two sub-networks consist of
a number of convolutional layers followed by rectified linear units (abbreviated
“ReLU"). The similarity score is obtained by extracting a vector from each of
the two input patches and computing the cosine similarity between them. In
this diagram, as well as in our implementation, the cosine similarity computation
is split in two steps: normalization and dot produect. This reduces the running
time because the normalization needs to be performed only once per position (see

Section 3.3).
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MC-CNN (accurate architecture)

Similarity score

[ Fully-connected, Sigmoid |

[ Fully-counected, ReLU |

| Fully-connected, ReLU |
Fully-connected, ReLU

Concatenate
‘ Convolution, ReLU | ‘ Convolution, ReLU |
‘ Convolution, ReL.U | ‘ Convolution, ReLU |
{ Convolution, ReLU I ‘ Convolution, ReLU |
Left input patch Righ input patch

Figure 3: The accurate architecture begins with two convolutional feature extractors. The
extracted feature vectors are concatenated and compared by a number of fully-
connected layers. The inputs are two image patches and the output is a single real
number between 0 and 1, which we interpret as a measure of similarity between
the input images.
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MC-CNN

Let rr and pr be embeddings from corresponding image patches.

F | |
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MC-CNN
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MC-CNN

Unfortunately, processing image patches alone does not solve everything.

|
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GC-Net =

Possible solution: describe the entire stereo pipeline using a deep model.
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Figure 1: Our end-to-end deep stereo regression architecture, GC-Net (Geometry and Context Network).

[kendall17cvpr]
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GC-Net

CNN processes the input image pair
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Figure 1: Our end-to-end deep stereo regression architecture, GC-Net (Geometry and Context Network).

[kendall17cvpr]
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GC-Net
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Figure 1: Our end-to-end deep stereo regression architecture, GC-Net (Geometry and Context Network).
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GC-Net
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Figure 1: Our end-to-end deep stereo regression architecture, GC-Net (Geometry and Context Network).
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GC-Net compared to MC-CNN =
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GC-Net

Pros:
» End-to-end trainable method Cons:
» Geometrical priors in the » Heavy processing requirements
network » Memory allocation of the 4-D
» Flexible wrt. max disparity and cost volume tensor
image size

[orsic17ms]
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RAFT-Stereo
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Figure 1. Correlation features (blue) are extracted from each of the images and are used to construct the correlation pyramid. “Context™
image features (white) and an initial hidden state are also extracted from the context encoder. The disparity field is initialized to zero. Every
iteration, the GRU(s) (green) use the current disparity estimate to sample from the correlation pyramid. The resulting correlation features,
initial image features and current hidden state(s) are used by the GRU(s) to produce a new hidden state and an update to the disparity.

[1ipson21ic3dv]
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Correlation pyramid

0 - mHXWxW
Ch =D fin - gikn, C° € RN
f
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Correlation pyramid

0 - mHXWxW
Ch =D fin - gikn, C° € RN
F

A correlation pyramid consists of C? pooled in the last dimension
(Ck+1 e RHxWx W/Qk)_
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Correlation pyramid

0 Hx Wx W
Uk—zfuh gikh, C" € R

A correlation pyramid consists of C? pooled in the last dimension
(Ck1 e RHXWX W/Qk). Correlation pyramid is indexed with current

disparity estimate using bilinear interpolation.
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Figure 2. Lookup from the correlation pyramid. We use the current
estimate of disparity to retrieve values from the each level of the
correlation pyramid. We index from each level in the pyramid by
linear interpolating at the current disparity estimate and at integer
offsets, whose size depends on the correlation pyramid level.

[1lipson21ic3dv]
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RAFT-Stereo - convolutional GRU

T T 1/8 z
;‘W 2t = o (convaa(lhe_. xd. Wa))
(s ] re = o(convsss([he_1, xe], W,)

Figure 3. Multilevel GRU. We use a 3-level convolutional GRU ~

which acts on feature maps at 1/32, 1/16, and 1/8 the input im- 1t = tanh(conV3><3 ( [rt ® htfl, Xt] ), Wh)
age resolution. Information is passed between GRUs at adjacent ~

resolutions using upsampling and downsampling operations. The ht — (1 — Zt) @ htfl + Zt @ ht

GRU at the highest resolution (red) performs lookups from the

correlation pyramid and updates the disparity estimate.

[1ipson21ic3dv]
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RAFT-Stereo - loss

N
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Figure 4. Results on the ETH3D stereo dataset. RAFT-Stereo is robust to di ies like surfaces and

[1ipson21ic3dv]
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Conclusions

> Stereo pair rectification greatly simplifies the matching algorithm.
» Deep learning improves parts of the stereo reconstruction pipeline.

» RAFT-Stereo is a great choice for near real-time reconstruction.
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Rectified stereo

We, consider the calibrated stereo case, i.e. P, and P are known:
Pa =K [Rit1] = [Qi|q1]

Projection of the optical centre can be expressed as:

¢ =-Q;'q = -Q;'Kit
=— (K1Ry) 'Kt = R KKty
=-Ri't

P and co are analogously expressed for the second camera.
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Rectified stereo: motivation

Let's construct the rotation matrix R
R=|r]

Where:

r; = (c1 — c2)/[|er — c2]
ro = k x r

rs =I1 XTI9

k is arbitrary and can be set to a reasonable value, e.g. last row in Ry.
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Rectified stereo: uncalibrated case

Let:

m =Hm, m' = Hm/
from the epipolar constraint, we have:
w'"H "FHm = 0
F

There are multiple solutions for H and H': we aim to minimize image
distortion.
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Rectified stereo: uncalibrated case

00 O
Consider the following fundamental matrix: F = [0 0 —1
01 0

The following holds:
» All epipolar lines are parallel to the x-axis,

P corresponding points have identical y-coordinates.
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