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ABSTRACT

This paper presents a volume rendering procedure
with embedded least square spline reconstruction. The
first part of this paper describes a technique for the
continuous representation of discrete signals by us-
ing B-splines. Volume element space is an example
of the discrete signal which can be continuously rep-
resented in terms of the B-spline. Volume rendering
is very time-consuming procedure and therefore we
down-sample the initial size of the volume. Before the
down-sampling some low-pass prefiltering is required.
Our design of the prefilter is based on considering the
combined operation of the prefiltering and the recon-
struction postfiltering.

The second part of this paper deals with embed-
ding of the least square spline filter into the volume
rendering procedure. The position of the reconstruc-
tion point is arbitrary in the volume element space.
Reconstruction of the normal vector required for shad-
ing could be easily derived from the continuous recon-
struction function.

1. INTRODUCTION

Visualization techniques are a very powerful tool for
investigation and understanding of various types of
objects. They are often used for non-invasive inspec-
tion of object’s interior. Scanning methods such as
CT, MR and ultrasound produce large number of slices
through the object. One of the techniques that is
often used to visualize that kind of data, is volume
rendering [1, 2].

In the volume rendering, conversions between con-
tinuous and discrete representation are required at the
several steps of the procedure. From the viewpoint,
rays are cast through the projection plane in the vol-
ume element space. In the volume element space an
object surface is implicitly defined by the given set
of scanned samples. To find the point of intersection
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of a ray and the surface of an object, the reconstruc-
tion of the sampled function is required along the ray.
Along the ray the reconstruction is performed only at
discrete points. Final image is produced according to
the rays that are cast in the volume element space. In
all of these steps, alias artifacts are accumulated.

Reconstruction that is applied in the volume ren-
dering procedure plays an important role on the qual-
ity of the object rendering. Simple reconstructions,
in three-dimensional space, are frequently used be-
cause they involve a small number of samples. Near-
est neighbor reconstruction involves only one sample,
the one nearest to the ray. Alias artifacts due to the
nearest neighbor reconstruction are very strong. Tri-
linear interpolation involves eight samples. Aliasing
artifacts still significantly influence the smoothness of
the reconstructed surface. Therefore, a better inter-
polation with a wider reconstruction kernel is required
to improve the quality of reconstruction.

Cubic filters make trade-off between computational
cost and the suppression of alias artifacts. T. Moller
et al. [3] found the Catmull-Rom spline filter and
its derivative the most accurate reconstruction and
derivative filters, respectively, among the class of BC-
splines. On the other hand, the interpolation B-spline,
if it is correctly used, could produce even better re-
sults. We expand the basic concepts of the interpola-
tion B-spline to make a test-bed for any other filter,
such as Catmull-Rom. We also incorporate the re-
construction kernel directly in the volume rendering
procedure. The interpolation B-spline requires high-
pass prefiltering to improve overall impulse response
of the prefilter and reconstruction kernel. Prefiltering
could be done in frequency domain or as a combi-
nation of two small causal and anticausal filters in
spatial domain.

B-splines have been used for a long time in com-
puter graphics for approximation and interpolation
of curves and surfaces. Unser et al. in their excel-
lent work [4, 5] propose mechanisms for efficient de-
sign and use of B-spline filters in terms of indirect
and direct B-spline transforms. Trough the B-spline
transform, all the important and interesting features



of B-splines become available for various applications.
The original definition of B-spline is unsuitable for
implementation of the multi-dimensional approxima-
tion and especially for interpolation of discrete sample
fields. Indirect and direct B-spline transforms enable
the calculation of the B-spline transform coeflicients
and the reconstruction of the interpolation function
through the given set of samples. R. Panda and N. B.
Chatterji [6] use a family of generalized B-spline filters
in image processing and show that generalized least
square cubic B-spline filters could be used to improve
the performance of image compression techniques.

2. B-SPLINE INTERPOLATION

An often mistake in the implementation of B-spline
reconstruction filter is its implementation as the ap-
proximation B-spline instead of the interpolation B-
spline. Hence, we have to point out the difference.
Interpolation spline passes through the given set of
points while the approximation spline is only close to
the given set of points. The B-spline transforms [4]
correctly implement the interpolation B-spline. The
transforms of B-spline are given with the following
procedure. In the formula:
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the given set of points is f(k). By the definition of
interpolation, the values of the reconstructed function
®,(x) at the knot points z = k must be equal to
the values of the given points f(k). The sequence
¢n (1) denotes B-spline coefficients, which have to be
calculated. B,(z) is the n-th order B-spline weight
function.

2.1. Indirect B-spline Transform

Calculation of coefficients ¢y, (1) in equation (1) deter-
mines the indirect B-spline transform. §,(z) is n-th
order B-spline weight function determined by:
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where H(z) is the Heaviside step-function. At this
point, it must be stressed that this is only a spe-
cial case of B-spline, with uniformly distributed knots.
For the boundary conditions, periodic extension is as-
sumed. Under these circumstances, B-spline weight
functions are periodic and they are significantly eas-
ier to calculate than in general case. Moreover, if we
define By (z) as:
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Fig. 1. B-spline weight functions of order 2 to 5.

then B-spline weight functions of any order can be
defined by recursive relation:

Brn(z) = (Bn—1* Po)(z), (4)

where operator * denotes convolution. This is a very
useful property of B-spline weight functions. The
Fourier transform of fy(z) can be found easily:
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where the usual definition of sinc function is used:

sinc(z) = sin(rz) .
T
The frequency response of B-spline function of any
order n can be derived from its definition (4), us-
ing the convolution theorem for Fourier transform.
Hence, B, (w) is given by

Bn(w) = Bl (w) = sincn+1(2i) . (6)
w
Several B-spline weight functions are shown in Fig. 1.
This enables further analysis of B-splines by using
Fourier transform. Transformation of equation(1) gives:

F(w) = Cp(w)Ba(w), (7)

where F(w), Cp(w) and Bjp(w) are Fourier domain
representations of ®(z), ¢p(z) and B, (z) respectively.
Fourier transform of ¢, (z) can be derived easily from
(7) in the form:

F(w). (8)

This equation is valid only if B, (w) has no zeroes on
the frequency axis w. This condition is satisfied for
all B-splines.

2.2. Direct B-spline Transform

After the determination of the coefficients ¢, (1), di-
rect B-spline transform is simple. The condition in
the starting formula (1) on the coefficients ¢, (l) was
that the given set of points f(k) must be equal to



the values of reconstructed function ®,,(z) at the po-
sitions k of the input points. Now, the coefficients
¢n (1) are known and continuous interpolation B-spline
function &, (z) function is given by convolution:
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This is the direct B-spline transform. In computer
graphics the indirect B-spline transform is performed
by LU decomposition or Gauss elimination of the cor-
responding matrix equation. If the B-spline is peri-
odic, Toeplitz matrix appears and convolution could
be used.

2.3. Least Squares Splines

In order to reduce the memory requirements of the
reconstruction procedure, down-sampling of the signal
is needed. To suppress aliasing, low-pass prefiltering
is required. The choice of low-pass prefilter is often
not argued, but the Gaussian prefilter is used instead.
The idea here is to design a prefilter by considering
the whole procedure. The procedure consists of the
following steps: low-pass prefiltering, down-sampling,
B-spline indirect transform (high-pass prefilter) and
reconstruction with direct B-spline transform.

In the equation (1) down-sampling of the input
sequence [f (k)] 1 is required, by factor M. This is
analogous to up-sampling of the coefficient sequence
by the same factor [c,(I)], ;, Where the sequence [c,(1)]
is M times shorter than [f(k)]. To derive a prefilter
we will consider the sum of squared differences be-
tween the original and the reconstructed sequence €?:

& =" (f(k) — le(k)]tnt *b(K))”
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Generally, € is a function of ¢(p), for all possible val-
ues of p. At the point of minimum, all its partial
derivatives with respect to ¢(p) must vanish. Defin-
ing the reversed (mirrored) reconstruction function as
b-(i) = b(—1i), after some manipulation, the above ex-
pression may be written as:

f(Mp) * by (Mp) = [¢(Mp)]1m * b(Mp) * b,(Mp).

Here, equation holds only at points (Mp). So, we
down-sample the previous condition by factor M and
obtain:

[f () * br(P)]ym = c(p) * [b(p) * by (P)] M-

One of the conditions on b(k) is that [b(p) * br(p)]ym
has the inverse, so finally we have:

e(p) = ([b(p) * br ()ss1) ™ *[£(2) * br(p)]um.  (10)

This is an expression that holds generally. We use
the same formula (10) to derive the prefilters for the

Catmull-Rom spline and B-spline. These results sug-
gest a procedure for determination of the least squares
prefilters, as follows. First, the input sequence f(p)
is prefiltered with the chosen reversed reconstruction
kernel b,(p). Then, the result is down-sampled. The
second step is to prefilter the obtained result with

the prefilter ([b (p) * b, (p)] LM)_ After that step,

the sequence is ready for reconstruction, resampling
or calculation of its derivative. We expand this pre-
filtering procedure to the three-dimensional volumet-
ric and embed the reconstruction kernel into the vol-
ume rendering procedure.

3. VOLUME RENDERING

The memory requirements for large volume element
spaces is a great problem. Simple down-sampling
could cause the irrecoverable loss of information. Pre-
filtering and down-sampling according to the equation
(10) ensures the quality of reconstruction.

In the volume rendering, the reconstruction is can
be done in two ways. The first approach is to enlarge
the whole data-set in all three dimensions by using
a reconstruction kernel. In that case reconstruction
in the rendering procedure is still required. The sec-
ond approach is to embed the reconstruction kernel
directly in the rendering procedure.

In our implementation we embed reconstruction
kernels of Catmull-Rom spline and cubic B-spline di-
rectly in the rendering procedure. The volume ren-
dering also requires derivative for shading procedure.
It is important that the same prefiltering procedure
is valid and only derivative kernel is applied.

Figure 2 shows the results of four different recon-
structions applied in the rendering procedure. The
first one is simple trilinear interpolation. The data
size is 64°. Aliasing artifacts are very strong for sim-
ple interpolation such as trilinear (Fig. 2.a). The
second reconstruction is based on approximation B-
spline. The reconstruction kernel is same as for the
least square B-spline, but prefiltering is not previously
applied. Approximation B-spline cause strong blur-
ring and the waves in the resulting surfaces are very
shallow (Fig. 2.b).

For the Catmull-Rom reconstruction, equation (10)
was used with Catmull-Rom reconstruction kernel b(k).
The original size 1282 of the data was down-sampled
two times in each direction and the appropriate high-
pass prefiltering was applied. The alias artifacts ap-
pear on the crest of the waves (Fig. 2.c). For the least
squares B-spline reconstruction, we used the same
data and procedure as for the Catmull-Rom spline.
The prefilters were generated with cubic B-spline re-
construction kernel. The results obtained by the least
squares B-splines show the smallest alias artifacts (Fig.
2.d).



) Trilinear interpolation.

) LS Catmull-Rom spline.

) Cubic B-spline approximation.

) LS Cubic B-spline interpolation.

Fig. 2. Four reconstruction schemes. Least square calculation was performed for the images (¢) and (d).

4. CONCLUSIONS

In this paper, we have presented a volume rendering
procedure with least square splines used for recon-
struction. We have shown that the reconstruction in
the volume rendering is a very important and deli-
cate step. We consider the whole procedure of pre-
filtering, down-sampling and reconstruction to gener-
ate prefilters and we embed the reconstruction and
derivative kernels in the volume rendering. We tested
our procedure on the Catmull-Rom and cubic B-spline
reconstruction kernels, but the other reconstruction
kernels could also be used.
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