
Fluid Flow Animation

Jakov Fustin, Zeljka Mihajlovic
University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb

Department of Electronics, Microelectronics, Computer and Intelligent Systems,
E-mail: jakov.fustin@zg.t-com.hr, zeljka.mihajlovic@fer.hr

phone: (+385) 1 6129 521; fax: (+385) 1 6129 653

Abstract – In this paper we briefly outline theoretical
fundamentals of fluid dynamics as well as present a model
for computer based simulation. Of special interest are target
driven smoke simulations which don't require expert
knowledge in order to achieve desired results. One of such
methods was presented and implemented in two dimensions
using programming language C++. The results obtained are
presented alongside parameters that affect the progress of
simulation.

Keywords: fluid dynamics, target-driven animation

I. INTRODUCTION

We are all witnessing the appearance of more and more
special effects in movies and video games. They add to
overall impression and make us talk about them for days.
Sometimes, they are put up just to compensate for the lack
of story and/or good acting, but that’s not the subject here.
What matters to us is what happens behind the scene and
how these effects are created.

Of all special effects, the most challenging are natural
phenomena, such as fluids in motion (e.g. smoke and
water). A lot of work has been done to create realistic
animations of fluids. The first models were operating with
particles [1] and suffered from not being physically
accurate. Navier-Stokes equations, which present a
physical model for fluid flow, came into use later when
Chen et al. [2] implemented them in two dimensions to
animate water surface. Foster and Metaxas [3] went
further to use the full Navier-Stokes equations in three
dimensions and obtained many effects that were hard to
key frame automatically. Their solver is explicit and
becomes unstable for large time steps. Stam [4] introduced
an unconditionally stable algorithm based on an implicit
solver which lets users add smoke into the system and
apply forces without fear of simulation blowing up. More
recently, methods for controlling fluid flow have been
developed. Treuille et al. [5] introduced a technique that
causes a smoke simulation to optimally approximate a set
of user specified key frames. While it produces good
results, it is also computationally demanding and thus
slow. Fattal and Lischinski [6] presented a method that
does not guarantee the key frames to be optimally
approximated but also demands less processor power.

The rest of this paper gives a brief introduction to fluid
dynamics (Section 2) and presents Stam’s model (Section
3) and later Fattal and Lischinski’s method (Section 4) for
simulation of fluid flow on computer. In Section 5 we
describe our implementation of target-driven smoke solver
and finally, in Section 6, we present results obtained by it.

II. FLUID DYNAMICS

Fluid mechanics is the branch of physics that studies
fluids. It can be subdivided into fluid statics and fluid
dynamics. The former concerns itself with fluids at rest
and the latter studies fluids in motion. Since this paper
talks about animating fluid flow, fluid dynamics will be of
primary interest.

2.1 Euler and Navier-Stokes equations

The state of any moving fluid in 3-D space is
completely determined with five physical quantities: three
components of velocity and two thermodynamic quantities
such as density and pressure. All these quantities are
functions of coordinates and time.

(,) (,) (,)

(,)
(,)

x y zu t u t u t
p p t

tρ ρ

= + +

=
=

u x i x j x k
x
x

To find out the state of a fluid at some time t, we must
compute all of the five quantities using physical laws
known as conservation of mass, conservation of
momentum and conservation of energy. After combining
these three laws, we get Euler equations for
incompressible inviscid fluid flow

() 1 p
t ρ

∂
= − ⋅ ∇ − ∇ +

∂
u u u a (1)

()
t
ρ

ρ
∂

= − ⋅∇
∂

u

0.∇ ⋅ =u (2)

Right hand side terms in (1) account for advection,
hydrostatic pressure and external forces respectively,
while (2) conserves the mass. To account for viscosity,
additional considerations have to be made, the result of
which are Navier-Stokes equations for incompressible
homogeneous (∂ρ/∂t = 0) viscous fluid flow

() 21 p
t

µ
ρ ρ

∂
= − ⋅∇ − ∇ + ∇ +

∂
u u u u a (3)

0.∇ ⋅ =u

The new term on the right hand side of (3) is 2µ
ρ

∇ u ,

where µ represents dynamic viscosity.

III. COMPUTATIONAL MODEL

Simulation of fluid flow on computer comes down to
numerical integration of Euler (or, as in this paper,
Navier-Stokes) equations. First, we must write them in a
form that is suitable for computer implementation and
then make discretizations along time and space axes.

3.1 Helmholtz-Hodge decomposition

Using Helmholtz-Hodge decomposition on (2) and (3),
we obtain a single equation for the velocity

() 2 ,
t

µ
ρ

 ∂
= − ⋅∇ + ∇ + ∂

u P u u u a (4)

where P represents an operator that projects a vector field
onto its divergence free part (therefore, condition

0∇ ⋅ =u is implicit). This form will be used in computer
implementation.

3.2 Space and time discretization

The space is divided into equally sized parallelepipeds
that are called cells. State variables can be positioned
inside these cells in two ways, each of which has its
advantages.

Fig. 1. All quantities defined at cell centers.

Fig. 2. A staggered grid.

The first way is to define all quantities at the center of
each cell (easier to implement, but susceptible to
checkerboard instability). The other way is to define
velocity variables at the centers of cell faces and leave
only pressure and density at the center of each cell (avoids
checkerboard instability). Since the space is no longer
continuous, operator ∇ changes from ∇ = (∂/∂x, ∂/∂y,
∂/∂z) to ∇ = (Δ/Δx, Δ/Δy, Δ/Δz).

Finally, (4) is written in the following form to account
for time discretization

() 2* ,
t

µ
ρ

 −
= − ⋅∇ + ∇ + ∆

u u P u u u a (5)

where u represents velocity at some time t, and u*
represents velocity at t+Δt.

3.3 Moving substances

Non-reactive substances moving through the fluid (e.g.
a drop of ink in the water) are advected by it and satisfy
the following equation

() 2 ,S
t ρ ρ ρ
ρ ρ κ ρ α ρ∂ = − ⋅ ∇ + ∇ − +

∂
u (6)

where κρ is diffusion constant, αρ is dissipation rate and Sρ
represents external sources. Like (4), this equation too has
to be discretized over time and space.

3.4 Solving Navier-Stokes equations

Since the similarity of (4) and (6) is obvious, same
methods can be used to find their solution. Stam describes
this in detail in [4] so we'll skip it here.

IV. TARGET-DRIVEN SIMULATIONS

While the model described above provides the means
for a user to affect the progress of a simulation (by
modifying term a in (4) and term Sρ in (6)), it is very hard
to achieve desired results. This is due to nonlinearity of
(4) and numerical dissipation. It would be nice if user only
had to specify the desired state and the simulation evolved
to it spontaneously. Such methods are crucial for
animators because they let them create convincing special
effects not seen before.

4.1 Modified Navier-Stokes equations

This paper focuses on the method developed by Fattal
and Lischinski [6]. They make a few modifications to (5):

() ()()* , * ,f dv v
t

ρ ρ− = − ⋅ ∇ + −
∆

u u P u u F u (7)

where (),tρ ρ= x is density of the substance moving
through the fluid and ()* *ρ ρ= x is the desired density.
Term a is replaced by (), *fv ρ ρF which is a driving
force, i.e. it drives the substance to the desired state ρ*
and:

'*(, *) ' .
'*

ρρ ρ ρ
ρ

∇
=F (8)

The term dv− u attenuates momentum. Equation (6) is
modified as follows:

() (), * ,gv
t
ρ

ρ ρ ρ
∂

= − ⋅∇ +
∂

u G (9)

where (), *gv ρ ρG is a smoke gathering term and

() (), * '* * .ρ ρ ρρ ρ ρ= ∇⋅ ∇ − G (10)

More information about ρ', ρ'*, (), *ρ ρF and (), *ρ ρG
can be found in [6]. All of the three new terms are
controlled by nonnegative parameters vf, vd and vg.

4.2 Solving modified Navier-Stokes equations

Method of solution is similar to the one described in [4]
and can be found in [6]. The main difference is in the
approach to solve the advection term ()− ⋅ ∇u u . Stam
uses the unconditionally stable semi-Lagrangian scheme,
while Fattal and Lischinski use the second order
hyperbolic solver based on Lax-Wendroff formula which
is subject to a time step restriction.

V. IMPLEMENTATION

We implemented the method described in previous
chapter in C++ programming language. Some fragments
from Stam's code were used, but for the most part, the
program was written from the scratch.

5.1 Data structures and algorithms

The base of the program is TDSmokeSolver class that
solves (7) and discretized form of (9). An excerpt from the
header file follows:

class TDSmokeSolver
{
 protected:
 // state variables
 std::vector <double> u, v, r, p;
 // ro star, ro tick, ro tick star, ro gather
 std::vector <double> rs, rt, rts, rg;
 // simulation parameters
 double vf, vd, vg, sigma;

 // six small steps that make one big step
 void applyDrivingForce ();
 void attenuateMomentum ();
 void advectMomentum ();
 void project ();
 void advectSmoke ();
 void gatherSmoke ();

public:
 // a big step
 void MakeStep ();
};

Since this is a 2-D solver, there are only four (instead of
five) state variables: u, v, r and p. Simulation parameters
are denoted by vf, vd, vg and sigma variables. The key

method here is MakeStep that computes state variables at
a time t+Δt. A step consists of six smaller steps as shown
below:

void TDSmokeSolver::MakeStep ()
{
 void applyDrivingForce ();
 void attenuateMomentum ();
 void advectMomentum ();
 void project ();
 void advectSmoke ();
 void gatherSmoke ();
}

Before we describe every element of MakeStep method, a
few things have to be said. We used a staggered grid, with
variables positioned as shown in fig. 2. On this grid,
discrete derivative and average operators are defined as
follows:

() ()

() ()
()

() ()

1/ 2, 1/ 2,

,

3 / 2, 1/ 2, 1/ 2,
21/ 2,

, 1 ,

, 1/ 2

2

.
2

i j i j
x i j

i j i j i j
xx i j

i j i j
y i j

u u
D u

x
u u u

D u
x

A
ρ ρ

ρ

+ −

+ + −

+

+

+

−
=

∆
− +

=
∆

+
=

Now we’ll show the pseudocode for the first step, which
applies the driving force using (8). It is pretty much
straightforward, so no explanations other than that already
present in [6] are necessary.

void TDSmokeSolver::applyDrivingForce ()
{
 // Fu -> horizontal component of the force
 // D_rts -> derivative of ro tick star
 // A_rt -> average of ro tick
 // A_rts -> average of ro tick star

 // horizontal component - u
 for (every_cell u[i,j])
 {
 double Fu, D_rts, A_rt, A_rts;

 D_rts = (rts[i,j] - rts[i-1,j]) / delta_x;
 A_rt = (rt [i,j] + rt [i-1,j]) / 2.;
 A_rts = (rts[i,j] + rts[i-1,j]) / 2.;
 Fu = A_rt * D_rts / A_rts;

 u[i,j] += dt * vf * Fu;
 }

 // the same goes here for vertical component
}

The second step attenuates the momentum through dv− u
term and is the easiest to implement.

void TDSmokeSolver::attenuateMomentum ()
{
 // horizontal component - u
 for (every_cell u[i,j])
 u[i,j] -= dt * vd * u[i,j];

 // vertical component - v
 for (every_cell v[i,j])
 v[i,j] -= dt * vd * v[i,j];
}

The advection term ()− ⋅∇u u is solved using second
order hyperbolic solver. Details for implementing such
solver can be found in Appendix A of [6]. Protected
methods hyperbolicSolveU and hyberbolicSolveV contain
our implementation of the solver for x and y axis
respectively.

void TDSmokeSolver::advectMomentum ()
{
 // horizontal component - u
 for (every_cell u[i,j])
 u[i,j] -= dt * hyperbolicSolveU(…) / delta_x;

 // vertical component - v
 for (every_cell v[i,j])
 v[i,j] -= dt * hyperbolicSolveV(…) / delta_y;
}

The projection is done differently for inner and boundary
cells because it depends on cell’s neighbors. While all
inner cells have four neighbors, boundary cells have three
or even only two neighbors.

void TDSmokeSolver::project ()
{
 // this term appears in all three cases below
 for (every_cell div[i,j])
 div[i,j] = (u[i+1,j] - u[i,j] +
 v[i,j+1] – v[i,j]) * delta;

 // compute pressure
 for (int k=0; k<20; ++k)
 for (every_cell p[i,j])
 {
 // cells with two neighbors
 if (bottom_left_cell)
 p[i,j] = (p[i+1,j] + p[i,j+1]
 - div[i,j]) / 2.;
 else if (upper_left_cell)
 ...

 // cells with three neighbors
 else if (left_boundary)
 p[i,j] = (p[i+1,j] + p[i,j+1] +
 p[i,j-1] - div[i,j]) / 3.;
 else if (right_boundary)
 ...

 // cells with four neighbors
 else p[i,j] = (p[i+1,j] + p[i-1,j] +
 p[i,j+1] + p[i,j-1] - div[i,j]) / 4.;
 }

 // subtract gradient of pressure from velocity
 for (every_cell u[i,j])
 u[i,j] -= (p[i,j] – p[i-1,j]) / delta_x;

 for (every_cell v[i,j])
 v[i,j] -= (p[i,j] – p[i,j-1]) / delta_y;
}

The term () ρ− ⋅∇u is solved using second order
hyperbolic solver. This step is similar to advection of
momentum.

void TDSmokeSolver::advectSmoke ()
{
 for (every_cell r[i,j])
 r[i,j] -= dt * hyperbolicSolveU(…) / delta_x
 + dt * hyperbolicSolveV(…) / delta_y;
}

Smoke gathering is done in five steps. The first four steps
pertain to (10) and solve it starting from inside. The last
step pertains to (9).

void TDSmokeSolver::gatherSmoke ()
{
 // step one
 for (every_cell rg[i,j])
 rg[i,j] = r[i,j] - rs[i,j];

 // step two
 for (every_cell rg[i,j])
 rg[i,j] += dt * hyperbolicSolveU(…) / delta_x
 + dt * hyperbolicSolveV(…) / delta_y;

 // step three
 for (every_cell rg[i,j])
 rg[i,j] *= r[i,j] * rts[i,j];

 // step four
 for (every_cell rg[i,j])
 rg[i,j] += dt * hyperbolicSolveU(…) / delta_x
 + dt * hyperbolicSolveV(…) / delta_y;

 // step five
 for (every_cell r[i,j])
 r[i,j] += vg * rg[i,j];
}

5.2 Graphical user interface

Graphical user interface was created with MFC
(Microsoft Foundation Classes). It is pretty simple and
easy to use.

Fig. 3. The main window.

The main window is divided into four logical sections:

Configurations, Images, Parameters and Actions. The
Configurations section provides user with the options to
save current and/or load previously saved configuration.
Both actions are done through a Windows Common File
Dialog. In the Images section, user can enter paths to
source and destination images, both of which must be raw
with one byte per pixel. Parameters can be easily adjusted
using controls in Parameters section and, finally, buttons
GO and STOP start and stop the simulation respectively.

Fig. 4. A window showing the substance in the fluid.

Once the simulation is started, every control except

STOP button is grayed out until STOP is pressed. Another
window pops up, in which the substance moving through
the fluid is shown.

VI. RESULTS

Let us now present the results obtained by our

implementation of the fluid solver.

6.1 A few examples

The first simulation we ran is the one also used in [3] in
which Greek letter psi tries to transform into omega.
Simulation parameters are 1.5fv = , 3dv = , 0gv = ,

2.5σ = . Size of the grid is 64 x 64 and time step equals
0.005dt = .

Fig. 5. Substance at the beginning of simulation (psi)
and the desired state (omega).

Fig. 6. Substance evolving to the desired state.

It is obvious that the target is not optimally matched,
which is ok since this method doesn’t guarantee that will
happen anyway. Next we moved on to larger grids (128 x
128) and tried to transform a cross into a tick. Simulation
parameters are 1.25fv = , 2.5dv = , 0gv = , 1σ = and
time step equals 0.005dt = .

Fig. 7. A cross and a tick.

Fig. 8. A cross evolving into a tick.

Compared to fig. 6, the substance in fig. 8 looks finer.
This is due to the four times larger grid. The larger the
grid, the finer the result and, unfortunately, the less stable
the simulation. The last example features letters FER
evolving into FER logo on a 128 x 128 grid. Simulation
parameters are 20fv = , 6.5dv = , 55 10gv −= ⋅ , 1σ = and
time step equals 0.0002dt = .

Fig. 9. FER and FER logo.

Fig. 10. FER evolving into FER logo (σ = 1).

One can also play with parameters and see what happens.
If we change parameter σ to 7 and invert colors, we get
the following result:

Fig. 11. FER evolving into FER logo (σ = 7).

6.2 Performance

Testing was done on three different configurations,
each of which had the same amount of RAM (512 MB).
Both 64 x 64 and 128 x 128 grids were used. We counted
how many times MakeStep method got called within five
seconds. If we divide that number by the time that passed,
we get frames per second.

TABLE I
COMPARISON OF THREE CONFIGURATIONS

FPS
Configurations

64×64 128×128

Athlon 64 3000+ (1800 MHz) 95.14 23.06

Pentium IV 2400 MHz 65.6 15.5

Pentium IV 1800 MHz 44.81 11.91

VII. CONCLUSION

The implemented method produced more or less
satisfying results. The only problem was setting
parameters, because Fattal and Lischinski do not mention
their referent values so we had to guess them. The key
factor to achieving the best results using this method is
experience.

Graphical user interface made the process of repeating
simulations with different values easy. This is important
for animators who want their tools to be powerful yet
intuitive and simple to use.

REFERENCES

 [1] K. Sims, “Particle Animation and Rendering Using Data
Parallel Computation”, ACM Computer Graphics
(SIGGRAPH ’90), p. 405, 1990.

 [2] J. X. Chen, N. da Vittoria Lobo, C. E. Hughes and J. M.
Moshell, “Real-Time Fluid Simulation in a Dynamic
Virtual Environment”, IEEE Computer Graphics and
Applications, p. 52, 1997.

 [3] N. Foster and D. Metaxas, “Modelling the Motion of a
Hot, Turbulent Gas”, Computer Graphics Proceedings,
Annual Conference Series, p. 181, 1997.

 [4] J. Stam, “Stable Fluids”, SIGGRAPH 99 Conference
Proceedings, Annual Conference Series, p. 121, 1999.

 [5] A. Treuille, A. McNamara, Z. Popovic and J. Stam,
“Keyframe Control of Smoke Simulations”, ACM
Transactions on Graphics (Proceedings of ACM
SIGGRAPH 2003), p. 716, 2003.

 [6] R. Fattal and D. Lischinski, “Target-Driven Smoke
Animation”, SIGGRAPH 2004 Conference Proceedings,
Annual Conference Series, p. 441, 2004.

