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Abstract – In this paper we briefly outline theoretical 
fundamentals of fluid dynamics as well as present a model 
for computer based simulation. Of special interest are target 
driven smoke simulations which don't require expert 
knowledge in order to achieve desired results. One of such 
methods was presented and implemented in two dimensions 
using programming language C++. The results obtained are 
presented alongside parameters that affect the progress of 
simulation. 
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I. INTRODUCTION 
 

We are all witnessing the appearance of more and more 
special effects in movies and video games. They add to 
overall impression and make us talk about them for days. 
Sometimes, they are put up just to compensate for the lack 
of story and/or good acting, but that’s not the subject here. 
What matters to us is what happens behind the scene and 
how these effects are created. 

Of all special effects, the most challenging are natural 
phenomena, such as fluids in motion (e.g. smoke and 
water). A lot of work has been done to create realistic 
animations of fluids. The first models were operating with 
particles [1] and suffered from not being physically 
accurate. Navier-Stokes equations, which present a 
physical model for fluid flow, came into use later when 
Chen et al. [2] implemented them in two dimensions to 
animate water surface. Foster and Metaxas [3] went 
further to use the full Navier-Stokes equations in three 
dimensions and obtained many effects that were hard to 
key frame automatically. Their solver is explicit and 
becomes unstable for large time steps. Stam [4] introduced 
an unconditionally stable algorithm based on an implicit 
solver which lets users add smoke into the system and 
apply forces without fear of simulation blowing up. More 
recently, methods for controlling fluid flow have been 
developed. Treuille et al. [5] introduced a technique that 
causes a smoke simulation to optimally approximate a set 
of user specified key frames. While it produces good 
results, it is also computationally demanding and thus 
slow. Fattal and Lischinski [6] presented a method that 
does not guarantee the key frames to be optimally 
approximated but also demands less processor power. 

The rest of this paper gives a brief introduction to fluid 
dynamics (Section 2) and presents Stam’s model (Section 
3) and later Fattal and Lischinski’s method (Section 4) for 
simulation of fluid flow on computer. In Section 5 we 
describe our implementation of target-driven smoke solver 
and finally, in Section 6, we present results obtained by it. 

 

II. FLUID DYNAMICS 
 

Fluid mechanics is the branch of physics that studies 
fluids. It can be subdivided into fluid statics and fluid 
dynamics. The former concerns itself with fluids at rest 
and the latter studies fluids in motion. Since this paper 
talks about animating fluid flow, fluid dynamics will be of 
primary interest. 

2.1 Euler and Navier-Stokes equations 

The state of any moving fluid in 3-D space is 
completely determined with five physical quantities: three 
components of velocity and two thermodynamic quantities 
such as density and pressure. All these quantities are 
functions of coordinates and time. 
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To find out the state of a fluid at some time t, we must 
compute all of the five quantities using physical laws 
known as conservation of mass, conservation of 
momentum and conservation of energy. After combining 
these three laws, we get Euler equations for 
incompressible inviscid fluid flow 
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Right hand side terms in (1) account for advection, 
hydrostatic pressure and external forces respectively, 
while (2) conserves the mass. To account for viscosity, 
additional considerations have to be made, the result of 
which are Navier-Stokes equations for incompressible 
homogeneous (∂ρ/∂t = 0) viscous fluid flow 
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The new term on the right hand side of (3) is 2µ
ρ

∇ u , 

where µ represents dynamic viscosity. 
 
 

III. COMPUTATIONAL MODEL 
 

Simulation of fluid flow on computer comes down to 
numerical integration of Euler (or, as in this paper, 
Navier-Stokes) equations. First, we must write them in a 
form that is suitable for computer implementation and 
then make discretizations along time and space axes. 

3.1 Helmholtz-Hodge decomposition 

Using Helmholtz-Hodge decomposition on (2) and (3), 
we obtain a single equation for the velocity 
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where P represents an operator that projects a vector field 
onto its divergence free part (therefore, condition 

0∇ ⋅ =u  is implicit). This form will be used in computer 
implementation. 

3.2 Space and time discretization 

The space is divided into equally sized parallelepipeds 
that are called cells. State variables can be positioned 
inside these cells in two ways, each of which has its 
advantages. 

 

  
 

Fig. 1. All quantities defined at cell centers. 
 
 

 
 

Fig. 2. A staggered grid. 
 
 

The first way is to define all quantities at the center of 
each cell (easier to implement, but susceptible to 
checkerboard instability). The other way is to define 
velocity variables at the centers of cell faces and leave 
only pressure and density at the center of each cell (avoids 
checkerboard instability). Since the space is no longer 
continuous, operator ∇ changes from ∇ = (∂/∂x, ∂/∂y, 
∂/∂z) to ∇ = (Δ/Δx, Δ/Δy, Δ/Δz). 

Finally, (4) is written in the following form to account 
for time discretization 
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where u represents velocity at some time t, and u* 
represents velocity at t+Δt. 

3.3 Moving substances 

Non-reactive substances moving through the fluid (e.g. 
a drop of ink in the water) are advected by it and satisfy 
the following equation 
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where κρ is diffusion constant, αρ is dissipation rate and Sρ 
represents external sources. Like (4), this equation too has 
to be discretized over time and space. 

3.4 Solving Navier-Stokes equations 

Since the similarity of (4) and (6) is obvious, same 
methods can be used to find their solution. Stam describes 
this in detail in [4] so we'll skip it here. 

 
 

IV. TARGET-DRIVEN SIMULATIONS 
 

While the model described above provides the means 
for a user to affect the progress of a simulation (by 
modifying term a in (4) and term Sρ in (6)), it is very hard 
to achieve desired results. This is due to nonlinearity of 
(4) and numerical dissipation. It would be nice if user only 
had to specify the desired state and the simulation evolved 
to it spontaneously. Such methods are crucial for 
animators because they let them create convincing special 
effects not seen before. 

4.1 Modified Navier-Stokes equations 

This paper focuses on the method developed by Fattal 
and Lischinski [6]. They make a few modifications to (5): 
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where ( ),tρ ρ= x  is density of the substance moving 
through the fluid and ( )* *ρ ρ= x  is the desired density. 
Term a is replaced by ( ), *fv ρ ρF  which is a driving 
force, i.e. it drives the substance to the desired state ρ* 
and: 
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The term dv− u  attenuates momentum. Equation (6) is 
modified as follows: 
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where ( ), *gv ρ ρG  is a smoke gathering term and 
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More information about ρ', ρ'*, ( ), *ρ ρF  and ( ), *ρ ρG  
can be found in [6]. All of the three new terms are 
controlled by nonnegative parameters vf, vd and vg. 

4.2 Solving modified Navier-Stokes equations 

Method of solution is similar to the one described in [4] 
and can be found in [6]. The main difference is in the 
approach to solve the advection term ( )− ⋅ ∇u u . Stam 
uses the unconditionally stable semi-Lagrangian scheme, 
while Fattal and Lischinski use the second order 
hyperbolic solver based on Lax-Wendroff formula which 
is subject to a time step restriction. 

 
 

V. IMPLEMENTATION 
 

We implemented the method described in previous 
chapter in C++ programming language. Some fragments 
from Stam's code were used, but for the most part, the 
program was written from the scratch. 

5.1 Data structures and algorithms 

The base of the program is TDSmokeSolver class that 
solves (7) and discretized form of (9). An excerpt from the 
header file follows: 

 
class TDSmokeSolver 
{ 
  protected: 
    // state variables 
    std::vector <double> u, v, r, p; 
    // ro star, ro tick, ro tick star, ro gather 
    std::vector <double> rs, rt, rts, rg; 
    // simulation parameters 
    double vf, vd, vg, sigma; 
 
    // six small steps that make one big step 
    void applyDrivingForce ( ); 
    void attenuateMomentum ( ); 
    void advectMomentum ( ); 
    void project ( ); 
    void advectSmoke ( ); 
    void gatherSmoke ( ); 
 
public: 
    // a big step 
    void MakeStep ( ); 
}; 

 
Since this is a 2-D solver, there are only four (instead of 
five) state variables: u, v, r and p. Simulation parameters 
are denoted by vf, vd, vg and sigma variables. The key 

method here is MakeStep that computes state variables at 
a time t+Δt. A step consists of six smaller steps as shown 
below: 
 
void TDSmokeSolver::MakeStep ( ) 
{ 
  void applyDrivingForce ( ); 
  void attenuateMomentum ( ); 
  void advectMomentum ( ); 
  void project ( ); 
  void advectSmoke ( ); 
  void gatherSmoke ( ); 
} 

 
Before we describe every element of MakeStep method, a 
few things have to be said. We used a staggered grid, with 
variables positioned as shown in fig. 2. On this grid, 
discrete derivative and average operators are defined as 
follows: 
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Now we’ll show the pseudocode for the first step, which 
applies the driving force using (8). It is pretty much 
straightforward, so no explanations other than that already 
present in [6] are necessary. 
 
void TDSmokeSolver::applyDrivingForce ( ) 
{ 
  // Fu    -> horizontal component of the force 
  // D_rts -> derivative of ro tick star 
  // A_rt  -> average of ro tick 
  // A_rts -> average of ro tick star 
 
  // horizontal component - u 
  for ( every_cell u[i,j] ) 
  { 
    double Fu, D_rts, A_rt, A_rts; 
 
    D_rts = ( rts[i,j] - rts[i-1,j] ) / delta_x; 
    A_rt  = ( rt [i,j] + rt [i-1,j] ) / 2.; 
    A_rts = ( rts[i,j] + rts[i-1,j] ) / 2.; 
    Fu = A_rt * D_rts / A_rts; 
 
    u[i,j] += dt * vf * Fu; 
  } 
 
  // the same goes here for vertical component 
} 
 

The second step attenuates the momentum through dv− u  
term and is the easiest to implement. 
 
void TDSmokeSolver::attenuateMomentum ( ) 
{ 
  // horizontal component - u 
  for ( every_cell u[i,j] ) 
    u[i,j] -= dt * vd * u[i,j]; 
 
  // vertical component - v 
  for ( every_cell v[i,j] ) 
    v[i,j] -= dt * vd * v[i,j]; 
} 

 



The advection term ( )− ⋅∇u u  is solved using second 
order hyperbolic solver. Details for implementing such 
solver can be found in Appendix A of [6]. Protected 
methods hyperbolicSolveU and hyberbolicSolveV contain 
our implementation of the solver for x and y axis 
respectively. 
 
void TDSmokeSolver::advectMomentum ( ) 
{ 
  // horizontal component - u 
  for ( every_cell u[i,j] ) 
    u[i,j] -= dt * hyperbolicSolveU(…) / delta_x; 
 
  // vertical component - v 
  for ( every_cell v[i,j] ) 
    v[i,j] -= dt * hyperbolicSolveV(…) / delta_y; 
} 

 
The projection is done differently for inner and boundary 
cells because it depends on cell’s neighbors. While all 
inner cells have four neighbors, boundary cells have three 
or even only two neighbors. 
 
void TDSmokeSolver::project ( ) 
{ 
  // this term appears in all three cases below 
  for ( every_cell div[i,j] ) 
    div[i,j] = ( u[i+1,j] - u[i,j] + 
                   v[i,j+1] – v[i,j] ) * delta; 
 
  // compute pressure 
  for ( int k=0; k<20; ++k ) 
    for ( every_cell p[i,j] ) 
    { 
      // cells with two neighbors 
      if ( bottom_left_cell ) 
        p[i,j] = ( p[i+1,j] + p[i,j+1] 
                               - div[i,j] ) / 2.; 
      else if ( upper_left_cell ) 
      ... 
 
      // cells with three neighbors 
      else if ( left_boundary ) 
        p[i,j] = ( p[i+1,j] + p[i,j+1] + 
                      p[i,j-1] - div[i,j] ) / 3.; 
      else if ( right_boundary ) 
      ... 
 
      // cells with four neighbors 
      else p[i,j] = ( p[i+1,j] + p[i-1,j] + 
           p[i,j+1] + p[i,j-1] - div[i,j] ) / 4.; 
    } 
 
  // subtract gradient of pressure from velocity 
  for ( every_cell u[i,j] ) 
    u[i,j] -= ( p[i,j] – p[i-1,j] ) / delta_x; 
 
  for ( every_cell v[i,j] ) 
    v[i,j] -= ( p[i,j] – p[i,j-1] ) / delta_y; 
} 

 
The term ( ) ρ− ⋅∇u  is solved using second order 
hyperbolic solver. This step is similar to advection of 
momentum. 
 
void TDSmokeSolver::advectSmoke ( ) 
{ 
  for ( every_cell r[i,j] ) 
    r[i,j] -= dt * hyperbolicSolveU(…) / delta_x  
            + dt * hyperbolicSolveV(…) / delta_y; 
} 

 
Smoke gathering is done in five steps. The first four steps 
pertain to (10) and solve it starting from inside. The last 
step pertains to (9). 

void TDSmokeSolver::gatherSmoke ( ) 
{ 
  // step one 
  for ( every_cell rg[i,j] ) 
    rg[i,j] = r[i,j] - rs[i,j]; 
 
  // step two 
  for ( every_cell rg[i,j] ) 
    rg[i,j] += dt * hyperbolicSolveU(…) / delta_x 
            + dt * hyperbolicSolveV(…) / delta_y; 
 
  // step three 
  for ( every_cell rg[i,j] ) 
    rg[i,j] *= r[i,j] * rts[i,j]; 
 
  // step four 
  for ( every_cell rg[i,j] ) 
    rg[i,j] += dt * hyperbolicSolveU(…) / delta_x 
            + dt * hyperbolicSolveV(…) / delta_y; 
 
  // step five 
  for ( every_cell r[i,j] ) 
    r[i,j] += vg * rg[i,j]; 
} 
 

5.2 Graphical user interface 

Graphical user interface was created with MFC 
(Microsoft Foundation Classes). It is pretty simple and 
easy to use. 

 

 
 

Fig. 3. The main window. 
 
 
The main window is divided into four logical sections: 

Configurations, Images, Parameters and Actions. The 
Configurations section provides user with the options to 
save current and/or load previously saved configuration. 
Both actions are done through a Windows Common File 
Dialog. In the Images section, user can enter paths to 
source and destination images, both of which must be raw 
with one byte per pixel. Parameters can be easily adjusted 
using controls in Parameters section and, finally, buttons 
GO and STOP start and stop the simulation respectively. 
 



 
 

Fig. 4. A window showing the substance in the fluid. 
 
 
Once the simulation is started, every control except 

STOP button is grayed out until STOP is pressed. Another 
window pops up, in which the substance moving through 
the fluid is shown. 
 

 
VI. RESULTS 

 
Let us now present the results obtained by our 

implementation of the fluid solver. 

6.1 A few examples 

The first simulation we ran is the one also used in [3] in 
which Greek letter psi tries to transform into omega. 
Simulation parameters are 1.5fv = , 3dv = , 0gv = , 

2.5σ = . Size of the grid is 64 x 64 and time step equals 
0.005dt = . 

 

 
 

Fig. 5. Substance at the beginning of simulation (psi) 
and the desired state (omega). 

 
 

 
 

Fig. 6. Substance evolving to the desired state. 

It is obvious that the target is not optimally matched, 
which is ok since this method doesn’t guarantee that will 
happen anyway. Next we moved on to larger grids (128 x 
128) and tried to transform a cross into a tick. Simulation 
parameters are 1.25fv = , 2.5dv = , 0gv = , 1σ =  and 
time step equals 0.005dt = . 

 

 
 

Fig. 7. A cross and a tick. 
 
 

 
 

Fig. 8. A cross evolving into a tick. 
 
 

Compared to fig. 6, the substance in fig. 8 looks finer. 
This is due to the four times larger grid. The larger the 
grid, the finer the result and, unfortunately, the less stable 
the simulation. The last example features letters FER 
evolving into FER logo on a 128 x 128 grid. Simulation 
parameters are 20fv = , 6.5dv = , 55 10gv −= ⋅ , 1σ =  and 
time step equals 0.0002dt = . 

 

 
 

Fig. 9. FER and FER logo. 
 
 



 
 

Fig. 10. FER evolving into FER logo (σ = 1). 
 
 

One can also play with parameters and see what happens. 
If we change parameter σ to 7 and invert colors, we get 
the following result: 

 

 
 

Fig. 11. FER evolving into FER logo (σ = 7). 
 
 

6.2 Performance 

Testing was done on three different configurations, 
each of which had the same amount of RAM (512 MB). 
Both 64 x 64 and 128 x 128 grids were used. We counted 
how many times MakeStep method got called within five 
seconds. If we divide that number by the time that passed, 
we get frames per second. 

TABLE I 
COMPARISON OF THREE CONFIGURATIONS 

 

FPS 
Configurations 

64×64 128×128 

Athlon 64 3000+ (1800 MHz) 95.14 23.06 

Pentium IV 2400 MHz 65.6 15.5 

Pentium IV 1800 MHz 44.81 11.91 

 
 

VII. CONCLUSION 
 

The implemented method produced more or less 
satisfying results. The only problem was setting 
parameters, because Fattal and Lischinski do not mention 
their referent values so we had to guess them. The key 
factor to achieving the best results using this method is 
experience. 

Graphical user interface made the process of repeating 
simulations with different values easy. This is important 
for animators who want their tools to be powerful yet 
intuitive and simple to use. 
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