
Procedural Generation of Mediterranean

Environments

N. Mikuličić* and Ž. Mihajlović*
* University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia

niko.mikulicic@gmail.com, zeljka.mihajlovic@fer.hr

Abstract - This paper describes an overall process of

procedural generation of natural environments through

terrain generation, texturing and scattering of terrain cover.

Although described process can be used to create various

types of environments, focus of this paper has been put on

Mediterranean which is somewhat specific and has not yet

received any attention in scientific papers. We present a

novel technique for procedural texturing and scattering of

terrain cover based on cascading input parameters. Input

parameters can be used to scatter vegetation simply by slope

and height of the terrain, but they can also be easily

extended and combined to use more advanced parameters

such as wind maps, moisture maps, per plant distribution

maps etc. Additionally, we present a method for using a

satellite image as an input parameter. Comparing results

with real-life images shows that our approach can create

plausible, visually appealing landscapes.

Keywords: procedural modeling, landscape generation,

virtual environments, natural environments

I. INTRODUCTION

Reproducing realistic environments has always been a
challenge in computer graphics mainly due to a large
number of data needed to be simultaneously processed
and displayed on screen. With many optimization methods
and ever advancing graphics hardware, realistic
landscapes have become achievable in real time and are
widely used in computer games, military simulators and
film industry. Recent trends show that virtual landscapes
have also found their usage in touristic promotions and
since environmental research has become an important
topic in the last years, it can be expected for virtual
environments to have a major role in simulating how
changes in different environmental parameters influence
the surrounding environment.

Manually creating a whole environment would be a
long lasting, tedious task, therefore many procedural
techniques have been developed to aid the process.
Although procedural, these methods usually have many
parameters and finding the right values is often a
time-consuming trial and error process. In recent years,
various methods for inverse procedural modeling have
been introduced [7][22]. Rather than setting parameter
values manually, these methods provide ways to learn
them. Nevertheless, procedural modeling remains the
most common approach to generation of environments.

Authors discussing generation of natural virtual
environments usually reproduce mountain meadows and
dense forests. Although visually appealing, tall and dense
trees efficiently hide everything behind them so many
objects can be safely culled and popping effects can be
easily hidden. In this paper we focus on natural
Mediterranean environments which have not yet been
discussed. Mediterranean environments often lack tall
trees and instead have very dense shrubbery. Since shrubs
often cannot hide the landscape behind, various
optimization techniques have to be implemented with
extra care for popping effect to be properly hidden and for
the environment to be efficiently rendered in real time.

Our generation process is being done in four steps:
preparation, terrain mesh generation, texture mapping and
scattering of terrain cover. In preparatory step, a user
defines a set of textures and models to be used and assigns
them input parameter values. The second step is used to
create a terrain triangle mesh from heightmap which is
followed by procedural generation of splat map and
texturing of the terrain in the third step. The last step
places the terrain cover using scattering algorithms to
achieve natural randomness. Although divided into four
steps, the user often returns to preparatory step to adjust
parameter values and then repeats the process until he is
satisfied with results. The whole process needs to be
repeated only when user changes the terrain geometry.
Otherwise, user can focus on just one step.

Although the focus of this paper is on Mediterranean,
the described process can also be used to reproduce any
other natural environment simply by using different
textures and models.

After presenting related work in chapter two, chapter
three continues by explaining techniques used to represent
terrain, textures and terrain cover as well as the
optimizations required for real time performance. Fourth
chapter focuses on algorithms used for procedural
texturing and scattering of terrain cover. We present our
results in chapter five and give conclusion and some
guidelines for future work in chapter six .

II. RELATED WORK

This work belongs to procedural modeling of natural
environments, and as such, it connects various fields of
computer graphics.

MIPRO 2016/DC VIS 277

Figure 1. Heightmap of Mediterranean island Ist, Croatia (left) and

procedurally generated heightmap (right)

Procedural modeling automates the process of
content creation by using set of rules and algorithms rather
than creating content manually. It is often applied where
manual creation of content would be too cumbersome a
task. Procedural modeling has been successfully used to
create various types of content some of which include
textures [6], plants [10], buildings [12], cities [18], and
terrains [8].

Terrain generation is often being done in two steps:
generation of heightmap and creation of 3D mesh.
Heightmaps are usually generated using fractal algorithms
[1][11], noises [1][6] and erosions [1][13][17]. After
creating a heightmap, terrain mesh is generated and
optimized using level of detail algorithms. Static LOD
algorithms reduce computational at the cost of memory
demands and often need nontrivial and rigid preprocessing
stage [23]. Continuous LODs are generated dynamically
and are therefore more flexible and scalable but also
computationally more demanding [15][21].

Forest representation includes representations of
individual trees as well as the process of achieving their
natural distribution in ecosystem. Trees have been
represented with level of detail [3], billboards [20],
parallel billboards [9], volumetric textures [16] and
billboard clouds [5]. To create an ecosystem, trees are
scattered using global-to-local approaches [4][14] that
define some global rule by which the scattering occurs.
Another approach is local-to-global [2][4][14] that models
interaction between individual plants from which the
global distribution arises.

III. RENDERING

Natural environment consists of several somewhat
independent layers: terrain, textures and terrain cover. In
order to achieve efficient rendering, optimization should
be done in each layer.

Terrain is usually represented with a heightmap
which can be generated procedurally or downloaded from
Internet in case real-world data is needed. Fig. 1 shows
heightmap of Croatian island Ist (left) and heightmap
generated using Perlin noise and Fractional Brownian
motion (right). To generate terrain triangle mesh from
heightmap we use Lindstrom-Koller simplification [15] on
a single terrain region. Creating multiple regions with
levels of detail is left for future work.

Textures are applied to terrain by simple planar
texture mapping. Splat mapping technique is used to
provide more surface details close to observer while
simple color mapping is applied to more distant areas
where details are not visible anyway.

Terrain cover is split into two subcategories: details
and high cover.

Details are small objects, like grass, visible only from
short distances. Due to their size, many objects are needed
to cover any portion of a terrain so they tend to use up
most of the available computational resources. In order to
achieve real-time rendering of large fields covered with
grass, various optimization methods have to be
implemented. Modeling each blade of grass independently
would quickly reach a maximum of vertices and polygons

a graphics card can process in real time and for that
reason, more efficient approaches have been developed.
We represent multiple blades of grass with one axial
billboard. Many billboards are needed to cover an area
with grass and sending each billboard to GPU
independently would mean too many draw calls and
therefore, slower rendering. Instead, multiple billboards
are grouped together and sent to GPU as point clouds in
which every vertex represents the position of a single
billboard. Billboard geometries are then created at runtime
in geometry shader at positions defined by vertices in the
given point cloud. Additionally, since details are visible
only from short distance, all billboards with distance to
observer greater than some user defined value are culled.
Terrain split to regions would fasten the culling process,
allowing large groups of billboards to be discarded with a
single distance check. To avoid sudden popping effects, a
transitional area is used in which a billboard goes from
completely invisible to fully visible using alpha cutout
technique.

High cover includes all objects that can be viewed
from greater distances like trees or larger rocks. To
optimize the number of polygons in a scene, levels of
detail have been used. Objects close to the observer are
rendered using high quality models, while lower quality
models are used on objects that are further away. To avoid
popping effects while transitioning between different
models of the same object, a cross-fade technique is used.
Both models are rendered for some small amount of time,
while one is slowly fading in and the other is fading out.
For the lowest quality model of a tree we use a simple
axial billboard.

IV. PROCEDURAL GENERATION

In this chapter we focus on procedurally transforming
input parameters into texture weights and terrain object
placement probabilities. Texture weights are used to
create splat maps and color maps for terrain texturing
while terrain object placement probabilities are used to
generate terrain cover using scattering algorithms.

A. Weights Calculation

Input parameters are defined in preparatory step. For
each input parameter, every texture and terrain object
defines minimum and maximum values and a weight
function to describe parametric area it resides in. For
example, a texture can be given a slope input parameter.
To define a parametric area it resides in, a texture has to
specify minimum and maximum slope. Weight function is
used to describe texture's weight or preference in area

278 MIPRO 2016/DC VIS

Figure 2. Weight function

between minimum and maximum. Fig. 2 represents a
common weight function although any curve can be used.
Weight functions are defined in interval and scaled
to fit specified range.

Once we have defined parametric areas for all textures
and terrain objects, their weights can be easily calculated.
For texture or terrain object with parameters and

weight functions
, the weight is defined as:

 (1)

where is the number of parameters and
 is parameter

dependent function which maps terrain position to
parameter value. It can represent calculating surface slope,
elevation, sampling value from texture etc. Put simply,
final weight is calculated by multiplying weights of
individual parameter values at given position.

B. Texturing

Texture weights are calculated to give us information
how much each texture belongs to specified area. This
information can be used to procedurally texture a terrain.
For terrain texturing we used splat mapping and color
mapping techniques.

Color mapping technique textures a whole terrain with
just one texture. One pixel of color map usually covers not
as small portion of terrain so this technique usually results
with dull and blurry terrains when observed from close. It
would require extremely large textures to create detailed
surface using this technique which would be quite
inefficient.

To add more surface detail, splat mapping technique is
used. Splat mapping uses multiple high detailed surface
textures that are mapped to a small part of terrain and then
tiled to fit the rest. One additional texture called splat map
is mapped to whole terrain and used to provide
information on how much each surface texture contributes
to the final color of surface. Final color is determined
dynamically in fragment shader by sampling all surface
textures and multiplying sampled colors with their
contributions sampled from splat map.

Splat map can be directly generated from weights
defined in previous chapter. One pixel in splat map
corresponds to terrain area at position . Texture weights
are then calculated using (1), scaled to sum of 1 and stored
in a single splat map pixel, one channel per surface
texture. This means that one splat map can store weights
for four surface textures. We can always use a second
splat map for four new surface textures, but that can
become inefficient. Usually, four surface textures are
more than enough.

Color map is generated similarly. Instead of storing
texture weights and calculating surface color dynamically
in fragment shader, colors are sampled, mixed and baked
into a color map. To avoid high frequencies in resulting
texture, colors are not sampled from original surface
textures but rather from their last mipmap.

C. Scattering of Terrain Cover

After procedurally texturing a terrain, next step is to
provide it with grass and high cover.

To achieve natural randomness and uniform
distribution of grass, we use a regular grid with random
displacement algorithm. Terrain is split into a regular grid
with one grass billboard assigned to the center of each
cell. Each billboard is then displaced in random direction
by amount small enough to remain inside the given cell.
For each billboard position , grass weights are calculated
using (1). Grass type is then chosen using roulette wheel
method where weight of grass type is proportional to
associated probability.

Potential collisions of grass on cell borders can be
ignored as they visually do not make much difference.
Collisions between trees, however, should be avoided.
Trees can have different sizes and placing them in a
regular grid would not be as easy as it was with grass.
Therefore, for scattering trees we use simple random
scattering with collision detection. We randomly choose a
position, calculate tree weights and choose a tree sort
using roulette wheel method. If chosen sort cannot fit onto
position without colliding with surroundings, we remove
the sort from consideration and try with another. The
algorithm ends when all trees have been placed or the
maximum number of iterations has been reached.

In reality, forest is not just trees being randomly
scattered. They are grown from seeds, fighting for space
and resources. Stronger trees prevail giving birth to new
ones and the process repeats. New seeds fall in the vicinity
of mother tree which results in trees than are not just
randomly scattered but rather grouped. To simulate this
process we have implemented a survival algorithm with
environmental feedback similar to algorithm described in
[2]. At the beginning of each iteration, all plants generate
seed at random positions inside seeding radius. Seed that
falls outside of terrain or on a ground that is not inside
specie's parametric area is removed. Next step is detecting
collisions between plants. Plants in collision are fighting
for survival and weaker plant, a plant with smaller
viability [2], is eliminated. At the end of iteration, all
plants increase in age and plants that have reached their
maximum age are removed from the ecosystem. The
algorithm ends after defined number of iterations.

Fig. 4 shows comparison of these three scattering
algorithms where different tree species are being
represented by circles of different colors and radii. Grid
displacement algorithm (left) gives good uniform
distribution of objects of the same size. Random scattering
with collision detection (middle) can successfully scatter
objects of different sizes, however, it does not produce
clusters of same species like survival algorithm (right)
which gives forest a more natural look.

MIPRO 2016/DC VIS 279

Figure 3. Satellite image of Ist (left) and classification of terrain cover
(right)

D. Classifying Satellite Image

For procedural texturing and scattering of terrain
cover, we can also use a satellite image as an input
parameter. To translate image into weights we use a
simple, color based classification. To calculate weight at
certain terrain position, satellite image is sampled and
given color mapped to HSV space where boundaries
between colors are more obvious.

Fig. 3 shows a satellite image with its classification.
Due to atmospheric scattering, images taken from great
distances have their colors shifted towards blue. This
makes classifying harder and more advanced terrain cover
classifier would be needed to fully indentify the coastal
line or tell difference between sea and vegetation. More
advanced methods for classifying surface cover have been
developed [19], however this approach is simple and gives
good enough results in natural, uninhabited areas.

After color sampled from satellite image is classified
to surface cover type, we can treat that information as
weight equal to if terrain object is of specified type, or
if it isn't.

V. RESULTS

To evaluate our approach we will make comparisons
in different scales between real and procedurally
generated Mediterranean landscape.

Fig. 5 shows Croatian island Ist textured using
different input parameters. Fig. 5 (left) represents terrain
textured using slope and height. This method is generic
and usually gives good results on both real and procedural
terrains. Fig. 5 (middle) represents the same landscape
textured using terrain cover classification from satellite
image. Terrain is textured more precisely using this
method, however it can only be used on real-world

landscapes. Additionally, procedurally generated terrain is
never a perfect representation of real one due to
inaccuracies in heightmap, interpolations and
simplifications of terrain geometry. For that reason,
coastal line is often misaligned as it can be seen on Fig. 5
(middle). Fig. 5 (right) tries to solve the coastal line
problem using combination of previous two approaches.
The coastal line height is defined and everything above
that level is textured using terrain cover classification
while everything below using only slope and height as
input parameters. This makes coastal line more
monotonous but consistent.

Fig. 6 shows satellite image of smaller, uninhabited
part of Ist and its procedural representation generated
using already mentioned coastal line reconstruction
approach. The technique proves to be more reliable in
uninhabited areas with image taken from closer distance.
In addition to textures, Fig. 6 (right) also contains trees
scattered according to terrain cover classification.

Following image (Fig. 7) shows the same terrain from
the ground. To represent Mediterranean grass we used
textures that are similar to following Mediterranean
plants: Lactuca serriola, Trisetum flavescens, Conyza
sumatrensis, Eupatorium cannabinum, Urtica dioica and
Melilotus sp. Also, a model of Arbutus unedo has been
used as a bush. To have more control over distribution of
each species we included additional spread parameter for
every grass and tree type.

Finally, Fig. 8 displays a comparison between real and
procedurally generated landscape. Every object on the
image is procedurally scattered except for the two bushes
in front which are placed manually for easier comparison.

Figure 4. Scattering algorithms. Scattering on regular grid with random

displacement (left), random scattering with collision detection (middle)
and survival algorithm (right)

Figure 5. Comparison of procedural texturing by slope and height (left), by classifying satellite image (middle) and using coastal line reconstruction

approach (right)

280 MIPRO 2016/DC VIS

Figure 8. Comparison between real (left) and procedurally generated landscape (right)

Figure 7. Procedurally generated Dumboka cove from ground

Figure 6. Satellite image of Dumboka cove at Ist (left), terrain cover classification (middle) and procedurally generated landscape (right)

MIPRO 2016/DC VIS 281

VI. CONCLUSION AND FUTURE WORK

We presented a method for procedural generation of
environments through terrain generation, texturing and
scattering of terrain cover using cascaded input
parameters. By calculating and multiplying weights of
individual input parameters we obtain information about
how much each texture or species wants to reside on given
terrain position. That information can be used as texture's
contribution to terrain color when texturing the terrain, or
as probability when scattering the terrain cover. Height
and slope of the terrain have proven to be reliable input
parameters for generic uses. In case of real-world terrains,
simple terrain cover classification from satellite image can
be used to provide basic information for texturing and
scattering of terrain cover. To fix coastal line issues
caused by geometry misalignments between real and
generated terrain, we introduced a coastal line
reconstruction approach. Additionally, we used a spread
parameter to have more control over distribution of each
species. Comparing real life images with those generated
procedurally, we believe that our method can create
plausible and visually appealing Mediterranean
landscapes.

Many suggestions for future work can be made.
Terrain should be split into regions for faster view frustum
culling of terrain geometry, grass and trees. Level of detail
algorithms should be used to dynamically reduce the
polygon count of faraway terrain regions. Those regions
could also use cheaper texturing technique, for example
color mapping instead of splat mapping. Closer, high
detail regions could use normal mapping or even fractal
displacement of geometry to achieve 3D look of
Mediterranean karst. Scattering terrain cover based on
satellite image would benefit from more advanced terrain
cover classifier. Although height and slope as input
parameters give good generic results, they are not primary
factors in shaping Mediterranean environment and it
would be interesting to see how would additional
parameters, like wind map and resistance to wind and salt,
affect the final look of the environment.

REFERENCES

[1] T. Archer, "Procedurally generating terrain", 44th annual midwest
instruction and computing symposium, Duluth, 2011., pp.
378393.

[2] B. Beneš, "A stable modeling of large plant ecosystems", In
Proceedings of the International Conference on Computer Vision
and Graphics, Association for Image Processing, 2002, pp. 94–
101.

[3] C. Colditz, L. Coconu, O. Deussen, C. Hege, "Real-time rendering
of complex photorealistic landscapes using hybrid level-of-detail
approaches", 6th Interational Conference for Information
Technologies in Landscape Architecture, 2005.

[4] O. Deussen, P. Hanrahan, B. Lintermann, R. Měch, M. Pharr, and
P. Prusinkiewicz, "Realistic modeling and rendering of plant
ecosystems", In Computer Graphics (Proceedings of ACM
SIGGRAPH) (1998), pp. 275–286.

[5] X. Décoret, F. Durand, F. X. Sillion, J. Dorsey, "Billboard clouds
for extreme model simplification", In ACM Transactions on
Graphics (Proceedings of ACM SIGGRAPH) (2003), pp. 689–
696.

[6] D. S. Ebert, S. Worley, F. K. Musgrave, D. Peachey, and K.
Perlin, Texturing & Modeling, a Procedural Approach, Elsevier,
3rd edition, 2003.

[7] A. Emilien, U. Vimont, M.-P. Cani, P. Poulin, and B. Beneš,
"WorldBrush: Interactive example-based synthesis of procedural
virtual worlds", ACM Transactions on Graphics (SIGGRAPH
2015), vol. 34, issue 4, pp. 11.

[8] J.-D. Génevaux, É. Galin, É. Guérin, A. Peytavie, and B. Beneš,
"Terrain generation using procedural models based on hydrology",
ACM Transactions on Graphics (SIGGRAPH 2013), vol. 32, issue
4, 143:1–13.

[9] A. Jakulin, "Interactive vegetation rendering with slicing and
blending", In Eurographics 2000 (Short Presentations), 2000.

[10] R. Měch, and P. Prusinkiewicz, "Visual models of plants
interacting with their environment", In Computer Graphics
(Proceedings of ACM SIGGRAPH) (1996), pp. 397–410.

[11] G. S. P. Miller, "The definition and rendering of terrain maps", In
Computer Graphics (Proceedings of ACM SIGGRAPH) (1986),
vol. 20, pp. 39–48.

[12] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool,
"Procedural modeling of buildings", In ACM Transactions on
Graphics (SIGGRAPH, 2006) , vol. 25, issue 3, pp. 614–623.

[13] F. K. Musgrave, C. E. Kolb, and R. S. Mace, "The synthesis and
rendering of eroded fractal terrains", In Computer Graphics
(Proceedings of ACM SIGGRAPH) (1989), pp. 41–50.

[14] B. Lane and P. Prusinkiewicz, "Generating spatial distribution for
multilevel models of plant communities", In Proceedings of
Graphics Interface ’02., vol. 1, pp. 69–80.

[15] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and
G. A. Turner, "Real-time, continuous level of detail rendering of
height fields", In Computer Graphics (Proceedings of ACM
SIGGRAPH) (1996), pp. 109–118.

[16] F. Neyret, "Modeling, animating and rendering complex scenes
using volumetric textures", IEEE Transactions on Visualization
and Computer Graphics, vol. 4, issue 1 (1998), pp. 55–70.

[17] J. Olsen, "Realtime procedural terrain generation", Technical
Report, University of Southern Denmark, 2004.

[18] Y. I. H. Parish, and P. Müller, "Procedural modeling of cities", In
Computer Graphics (Proceedings of ACM SIGGRAPH) (2001),
pp. 301–308.

[19] S. Premoze, W. B. Thompson, and P. Shirley, "Geospecific
rendering of alpine terrain", In Rendering Techniques (1999), pp.
107–118.

[20] J. Rohlf, J. Helman, "IRIS performer: A high performance
multiprocessing toolkit for real-time 3D graphics", In Computer
Graphics (Proceedings of ACM SIGGRAPH) (1994), pp. 381–
394.

[21] F. Strugar, "Continuous distance-dependent level of fetail for
rendering heightmaps (CDLOD)", In Journal of Graphics, GPU,
and Game Tools, 2009, vol. 14, issue 4, pp. 5774.

[22] O. Št’ava, S. Pirk, J. Kratt, B. Chen, R. Měch, O. Deussen, and B.
Beneš, "Inverse procedural modelling of trees", Computer
Graphics Forum, 2014, vol. 33, issue 6, pp. 118–131.

[23] T. Ulrich, "Rendering massive terrains using chunked level of
detail control", SIGGRAPH Super-Size It! Scaling Up to Massive
Virtual Worlds Course Notes, 2002.

282 MIPRO 2016/DC VIS

	dcvis_18_3842

