
A Learning Tool for Synthesis, Visualization, and
Editing of Programming for Simple Programmable

Logic Devices
Marko Čupić, Karla Brkić, Željka Mihajlović

University of Zagreb, Faculty of Electrical Engineering and Computing
Unska 3, 10 000 Zagreb, Croatia

{marko.cupic, karla.brkic, zeljka.mihajlovic}@fer.hr

Abstract—Our experiences in teaching digital circuit design
at university level indicate that students find it difficult to
understand programmable logic devices (PLDs) such as PALs,
PLAs, GALs and FPGAs. This is mainly due to the complexity
of the topic and the lack of tools that visualize the inner workings
of PLDs and enable students to modify and inspect individual
components. The majority of publicly available SPLD-related
tools are proprietary, platform-specific and do not expose all
elements of the PLD structure to the user. In this work, we
propose a learning tool that enables synthesis, visualization and
editing the programming of a GAL16v8 SPLD. GAL16v8 has
been chosen as it is simple enough that its physical implemen-
tation can be observed to the smallest detail, while enabling
simultaneous realization of multiple Boolean functions. The tool
is platform-independent and specifically tailored towards use in
an educational setting, facilitating much better understanding of
SPLDs through a hands-on experience.

I. INTRODUCTION

The historical development of programmable logic devices
(PLDs) can be traced from the most simple ones, such as one-
time programmable read-only memories, through a bit more
complicated simple programmable logic devices (SPLDs) such
as PALs, PLAs and GALs, to complex programmable logic
devices (CPLDs) and field programmable gate arrays (FPGAs)
[1], [2]. The basic principles involving internal workings and
architectures of such devices are often taught in university-
level digital circuit design courses, including the Digital Logic
course at our Faculty. It is our experience that students often
find the topic hard to understand [3], considering the fact that
the presentation of the topic typically covers both low-level
details including electronical components such as FGMOS
transistors and high level concepts including logical design
and PLD programming.

Our previous work [4], [5], [3] indicated that the students
at out Faculty readily accept e-learning tools and that such
tools have a positive impact on their academic performance.
In order to foster student experience with PLD technolo-
gies and improve their understanding, we have developed a
multipurpose learning tool for GAL16v8. The tool can be
used for direct programming, where the student can input
each programmable switch programming. It can also be used
for visualization of programming and generating the JEDEC
file needed to program the physical GAL chip in hardware
programmer. Additionally, the tool allows the students to

provide a higher level description of the desired design using
logical expressions, which the synthesis module then converts
into GAL programming. The generated GAL programming
can be visualized in a graphical environment and modified if
needed.

One of the main advantages of the tool is that it is written
in Java so it can be run on many different operating systems; a
fact that is not true for many commercial tools. The GAL16v8
has been chosen because it is relatively simple, so the students
can understand the function of each of 2194 programmable
switches and can set their programming directly. In order to
better integrate the rest of the Digital Logic course topics
taught at our Faculty which are based on VHDL usage, we
have equipped the tool with a module that allows students
to provide a logical description of the desired circuits. Using
the description, the module determines the GAL programming
that the student can then inspect.

II. RELATED WORK

Learning basic concepts of digital electronics represents
one of the cornerstones of modern computer and electrical
engineering education. These concepts are essential for under-
standing hardware design [6], [7], computer architectures [8],
[9], systems-on-a-chip [10], etc. Without deep understanding
of these concepts, the students will not be able to understand
how the computer actually works, how a microprocessor
is designed and implemented, how computer programs are
executed and what to consider when thinking about efficient
computer code. Given the importance and the ubiquity of
digital electronics, there is an interest in developing better
learning methods for various digital electronics concepts in the
academic education community. These methods involve devel-
oping specialized learning tools that include purely software-
based solutions [11], [12], [13], as well as remote hybrid
software-hardware learning systems [14], [15], [16]. Improve-
ments of the teaching process itself are also considered,
e.g. through reframing the teaching to be more centered
around using a hardware description language [17], or devising
instructive problems that can be solved by small teams of
students in a competition-based semi-professional environment
[18].

MIPRO 2017/MEET 15

One example of a specialized software learning tool for
digital circuit design is Boole-Deusto, proposed by Garcia-
Zubia et al. [11]. Boole-Deusto is intended for teaching the
design and analysis of bit-level combinatorial and sequential
circuits. Combinatorial circuits can be defined using truth
tables, minterms or maxterms or Boolean logic expressions.
Boole-Deusto supports Veitch-Karnaugh diagrams, finite state
machines, and code generation from the designed circuits
(OrCAD-PLD, VHDL, and JEDEC are supported). Similarly,
Hacker and Sitte [12] propose WinLogiLab, an interactive
teaching suite for combinatorial and sequential circuits. The
suite is comprised of a set of increasingly complex tutorials,
covering a range of topics including Boolean algebra, truth
tables, Karnaugh maps, finite state machines, etc. Donzellini
and Ponta [13] propose an e-learning simulation environment
for digital electronics called Deeds. The environment is tai-
lored towards teaching embedded systems, and it supports
combinational and sequential circuits, finite state machines,
and microcomputer interfacing and programming. Baneres
et al. [19] introduce an online platform for the design and
verification of digital circuits through a series of exercises,
consisting of a desktop application that communicates with
the course server and a web-based management system for
instructors.

In hybrid software-hardware learning systems, the goal is
to enable the student to interact with a real physical SPLD.
For instance, El Medany [14] proposes a remote laboratory
that enables the students to interactively control a physical
FPGA board over the internet. Garcia-Zubia et al. [15] and
Rodriguez-Gil et al. [16] propose a system that combines
their previously described Boole-Deusto learning tool with a
physical remote FPGA board that controls a virtual simulated
water tank. Boole-Deusto is used to generate VHDL code that
is synthesized and programmed into the FPGA, and the student
can see the remote FPGA controlling the simulated water tank
according to the developed digital circuit.

One shortcoming of Boole-Deusto, WinLogiLab and Deeds
is that they run exclusively on Microsoft Windows, making
them unavailable to students that use other operating sys-
tems. Furthermore, Boole-Deusto and WinLogiLab seem to
be restricted to basic digital electronics concepts, offering
no support for teaching SPLDs such as PALs, PLAs, GALs.
Motivated by the importance of teaching basic SPLD concepts
and our experience that students find it difficult to understand
the inner workings of an FPGA following a classical black
box vendor-specific synthesis approach [20], we have previ-
ously proposed a platform independent tool for programming,
visualization and simulation of simplified FPGAs [3]. In this
work, we move a step further by developing a tool that exposes
the inner workings of GAL16V8 in a fully interactive manner.

III. THE LEARNING TOOL REQUIREMENTS

In the Digital Logic course at our Faculty, we cover
programmable logic circuits in depth: from implementation
details up to the logical model and high-level programming.
The course covers implementation of permanent read-only

Fig. 1. Logical view of GAL16v8 in registered mode.

memories (using semiconductor diodes and then metal-oxide-
semiconductor field-effect transistors, MOSFETs), principles
of implementation of erasable ROMs (EPROMs) and elec-
trically erasable ROMs (EEPROMs) which are based on
floating-gate MOSFET (FGMOS), various SPLDs (such as
programmable logic array - PLA, and programmable array
logic - PAL) and finally complex programmable logic devices
(CPLDs) and field programmable gate arrays (FPGAs).

In order to clarify the design, programming and application
of SPLDs on an instructive example, we decided that our
learning tool should model some existing chip which fulfils

16 MIPRO 2017/MEET

the following requirements:
1) it can still be purchased,
2) it is not too expensive,
3) it offers adequate logic programmability so that several

Boolean functions can be realized simultaneously,
4) it is simple enough that its physical implementation can

be observed to the smallest detail (i.e. which of the
FGMOS transistors should have excess charge on its
floating-gate and which not in order to realize the desired
Boolean function - see Figure 2),

5) support for generating both combinatorial and sequential
circuits is desired.

The fourth requirement stems from the fact that within
the Digital Logic course (as taught at our Faculty) we teach
students the basics of digital circuits implementation (i.e. how
can various logic gates, such as NOT, AND, OR, NAND, and
NOR, be implemented using bipolar transistors, using MOS-
FETs and using CMOS) as well as how programmable digital
circuits are implemented (i.e. programming by burning fuses,
programming by blocking channel creation in MOSFETs, etc).
Therefore, we required a chip which is simple enough that
such level of detail can be presented.

We also wanted the selected chip to be suitable for teaching
how high level SPLD programming can be done. There are two
possible ways of doing SPLD programming:

1) the state for each of the programmable elements (FG-
MOSFET) can be set manually, or

2) the desired functionality can be described by some lan-
guage for formal specification and then the state of each
of programmable element can be set by some automatic
procedure.

We have chosen the GAL16v8 chip, as it fulfils all of
the aforementioned requirements. It is rather cheap, it can
realize eight Boolean functions and it works with a wide range
of supply voltages. Additionally, it has a relatively regular
structure so that each of 2194 programmable switches can be
observed and its function readily understood. This chip can
be configured to operate in three different architectural modes
defined using two bits of information: simple mode, complex
mode and registered mode. This is in itself very instructive,
as it offers a great example of multiplexer usage, where

Control gate

Floating gate

Isolator

Isolator

n – Channel

Source Drain

Fig. 2. Structure of FGMOSFET.

different architectures are realized by multiplexers choosing
which signal is routed where.

For actual chip programming, an additional device is needed
(so-called programmer) which is connected to the user’s com-
puter and in which the programmable chip is placed. On the
computer, the appropriate software must be started and data
based on which the programming will be performed must be
provided. Today, such data is typically provided as JEDEC-
formatted file, so we wanted to be able, while teaching the
topic, also to explain how this file is formatted and how it is
generated for selected chip.

Having selected the chip, our goal was to develop a learning
tool that would satisfy the following requirements:

1) it should be portable (so that the students can use it on
various operating systems),

2) it should offer graphical user interface which should show
all programmable elements and allow the student to edit
each FGMOS transistor state,

3) it should be able to automatically generate a JEDEC file
for shown programming,

4) it should be able to read programming from a JEDEC file
and adjust current programming,

5) it should support some way of formally describing
Boolean functions and automatic programming based on
a given formal description,

6) it should offer a command line tool for converting a direct
formal circuit description into JEDEC,

7) and lastly, it must be simple enough to be adequate for
education purposes (which most commercial professional
tools are not).

IV. THE DEVELOPED TOOL

The learning tool that accommodates the requirements elab-
orated in Section III has been developed using the Java pro-
gramming language. This way, we have ensured that the tool
is portable across all often used desktop operating systems.
When started in interactive mode, the student is presented with
a graphical editor showing the logical structure of GAL16v8
(see Figure 1 for a coarse overview).

On the top of the editor window there is a combo box which
allows the user to set values for two architectural bits, thus
choosing the active GAL configuration. The values of these
two architectural bits are connected to several multiplexers in
the physical chip implementation. The developed editor, for
the sake of clarity, does not show all of these details. Instead,
once the user selects values of architectural bits, the editor
shows the effective chip architecture.

In simple mode (see more detailed Figure 3), each macrocell
can realize a Boolean function in the form of a sum of 8
products. The output of each macrocell can be configured
to be permanently enabled or permanently in high-impedance
state. Signals from pins 1-9, 11-14 and 17-19 are connected
to the input array in the which user can program products.
Each programmable element (which determines if the given
signal is used in given product) is technologically realized
using FGMOSFET.

MIPRO 2017/MEET 17

Fig. 3. A detail of the logical view of GAL16v8 in simple mode.

Programming of all the programmable elements can be
performed by mouse. The state of FGMOSFET can be toggled
by double-clicking on the signal-product connection, which
will be visually indicated. Macrocell configuration bits can be
defined by double clicking on the macrocell. In simple mode,
the user can configure the logical value for lower input of
XOR-gate and additionally define whether the output buffer is
enabled or disabled. If a low number of Boolean functions is to
be realized but of many variables, disabling some macrocells
can open output pins to be used as additional inputs. A relevant
part of GAL configured to calculate f(A,B) = A ⊕ B is
shown in Figure 4. Here, A and B were connected to pins 2
and 3 while macrocell OLMC 1 (the top-most one) was used
for calculation. Its output buffer was enabled and the bit for
output XOR-gate was set to 1 since the output buffer actually
also inverts the calculated value.

In complex mode (see smaller Figure 5) each macrocell can
realize a Boolean function in the form of a sum of 7 products,
while one product controls the output buffer (enabled or in
high-impedance).

Finally, in registered mode (see smaller Figure 6), each
macrocell can realize a Boolean function in the form of a
sum of 8 products. The realized function, depending on the
macrocell configuration bit, can be routed to macrocell output
or it can be used as input for D-flipflop whose state is then
used as macrocell output. In this mode, the output buffer is
enabled/disabled for all macrocells by a common signal. In
Figure 6, the top-most macrocell is configured to use a D-
flipflop and the second macrocell is configured to calculate

Fig. 4. A GAL configured to generate f = A⊕B.

Fig. 5. A detail of the logical view of GAL16v8 in complex mode.

18 MIPRO 2017/MEET

Fig. 6. A detail of the logical view of GAL16v8 in registered mode.

Fig. 7. Generation of JEDEC file from GUI.

combinatorial function.
The developed tool allows students to easily generate the

JEDEC file from a popup menu. JEDEC file generation for
XOR example from Figure 4 is shown in Figure 7.

The tool also allows user to load configuration from JEDEC
file which was generated for this GAL chip.

To support automatic programming based on a formal
circuit specification, we decided to reuse a syntax used in
older commercial tools, but in a simplified form. An example
of such a description is shown below.

DEVICE GAL16V8
MODE SIMPLE
PIN 2 A
PIN ? B
PIN ? C
PIN ? f OUTPUT
PIN ? g OUTPUT

EQUATIONS

f = A*/B + C
g = A:+:B + C

This formal description defines two Boolean functions to be
realized: f = A · B̄+C and g = A⊕B+C. The specification

also defines some constraints for the synthesiser: the input A
must be attached on pin 2 while other variable-pin assignment
can be arbitrary.

Descriptions such as this one can be synthesized through
the GUI or the synthesis can be requested directly from the
command line. In the latter case, the synthesizer will generate
the a appropriate JEDEC file. If the previous description is
saved in file f2.eqn, the synthesis from the command line
can be started by command:

java -jar SimpleGAL-1.0.1.jar
pahdl-to-jedec -in f2.eqn
-out f2.jedec

which will produce the JEDEC file f2.jedec as well as
additional info (including actual pin assignment). Example of
such a file report is given below.

DEVICE: GAL16V8
MODE: SIMPLE
F SOP: A*/B+C
G SOP: /A*B+A*/B+C
INFO: Inputs: [A, B, C].
INFO: Outputs: [F, G].
INFO: Pin mapping process succeeded.
INFO: Pin 01: name=NC
INFO: Pin 02: name=A
INFO: Pin 03: name=B
INFO: Pin 04: name=C
INFO: Pin 05: name=NC
INFO: Pin 06: name=NC
INFO: Pin 07: name=NC
INFO: Pin 08: name=NC
INFO: Pin 09: name=NC
INFO: Pin 10: name=GND
INFO: Pin 11: name=NC
INFO: Pin 12: name=NC
INFO: Pin 13: name=NC
INFO: Pin 14: name=NC
INFO: Pin 15: name=NC
INFO: Pin 16: name=NC
INFO: Pin 17: name=NC
INFO: Pin 18: name=G
INFO: Pin 19: name=F
INFO: Pin 20: name=VCC
INFO: Here is the pin assignment:

GAL16V8
+---- ----+
| __/ |

NC | 1 20 | Vcc
A | 2 19 | F
B | 3 18 | G
C | 4 17 | NC

NC | 5 16 | NC
NC | 6 15 | NC
NC | 7 14 | NC
NC | 8 13 | NC
NC | 9 12 | NC

GND | 10 11 | NC
+------------+

INFO: Synthesis to GAL16V8 completed.

V. EXAMPLE USE CASES

Example use cases for our tool within the Digital Logic
course we teach include illustrations of the topic ”Pro-
grammable logical devices”, where we offer interested students
to complete two experiments.

Experiment 1. Elements: 2 DIP switches, 5 resistors,
GAL16V8, 3 LEDs. Use 2 DIP switches and two resistors

MIPRO 2017/MEET 19

Fig. 8. A digital circuit with GAL16V8.

to create logical values for A and B. Connect values A and
B to GAL16V8 inputs, and 3 LEDs to its outputs. Using
our tool, program the GAL16V8 by manually clicking the
programmable switches, to ensure that the first LED lights
only if both A and B are high, that the second LED lights
if any of A or B is high, and that the third LED lights only
when one of A or B is high. Create the JEDEC file. Program
the GAL and test complete circuit on the protoboard.

Experiment 2. Elements: 4 DIP switches, 11 resistors,
GAL16V8, BCD to 7-segment converter, 7-segment display.
Using 4 DIP switches and 4 resistors create logical val-
ues a3a2a1a0. Let us treat a3a2a1a0 as binary-encoded
number. Derive by hand logical expressions for function
f(a3a2a1a0) = a3a2a1a0 + 1 (i.e. the next number). Write
a formal circuit specification and using our synthesizer create
the JEDEC file. Program the GAL and test complete circuit
on the protoboard (see Figure 8).

VI. CONCLUSION

We have presented an interactive learning tool for syn-
thesis, visualization and programming GAL16v8 SPLD. The
developed tool can be used in education for courses that
cover programmable logic devices. The tool is very useful
in bringing insights into the complete design process: starting
with a formal description of a circuit, the tool enables learning
which steps are needed to complete the programming. This is
quite handy because the selected GAL16v8 is simple enough
so that the programming can be traced back to each single
FGMOSFET transistor.

Using this tool, students can also observe what is the end
process of the synthesis - which decisions did the synthesizer
make and how the programming was completed. In our
experience, if the topic is clearly covered and illustrated in
this way, students can more easily proceed to FPGAs, which
are much more complex to grasp.

As a future work, we plan to add support for another formal
language for hardware specification: a simplified version of
VHDL, since the VHDL is used for FPGAs as well. We believe
that consistently using a single language from the start can
make the transition from simple programmable logic devices
to more advanced ones easier and more natural for students.

REFERENCES

[1] B. J. LaMeres, Programmable Logic. Cham: Springer International
Publishing, 2017, pp. 371–384.

[2] V. Taraate, Introduction to PLD. Singapore: Springer Singapore, 2017,
pp. 169–209.

[3] M. Čupić, K. Brkić, and Ž. Mihajlović, “A platform independent tool
for programming, visualization and simulation of simplified FPGAs,” in
2016 39th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), May 2016, pp.
986–991.

[4] M. Čupić and Ž. Mihajlović, “Computer-based knowledge, self-
assessment and training,” International Journal of Engineering Educa-
tion, vol. 26, no. 1, pp. 111–125, 2010.

[5] Ž. Mihajlović and M. Čupić, “Software environment for learning and
knowledge assessment based on graphical gadgets,” International Jour-
nal of Engineering Education, vol. 28, no. 5, pp. 1127–1140, 2012.

[6] J. Staunstrup, A Formal Approach to Hardware Design, ser. Kluwer in-
ternational series in engineering and computer science: VLSI, computer
architecture, and digital signal processing. Springer US, 1994.

[7] I. Grout, Digital Systems Design with {FPGAs} and {CPLDs}.
Newnes, Burlington, 2008.

[8] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth
Edition: A Quantitative Approach, 5th ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2011.

[9] D. Patterson and J. Hennessy, Computer Organization and Design MIPS
Edition: The Hardware/Software Interface, ser. The Morgan Kaufmann
Series in Computer Architecture and Design. Elsevier Science, 2013.

[10] L. H. Crockett, R. A. Elliot, M. A. Enderwitz, and R. W. Stewart, The
Zynq Book: Embedded Processing with the Arm Cortex-A9 on the Xilinx
Zynq-7000 All Programmable SoC. UK: Strathclyde Academic Media,
2014.

[11] B. S. B. Javier Garcia Zubia, Jesus Sanz Martinez, “A new approach
to educational software for logic analysis and design,” in IADAT e2004,
International Conference on Education, 2004.

[12] C. Hacker and R. Sitte, “Interactive teaching of elementary digital logic
design with winlogilab,” IEEE Transactions on Education, vol. 47, no. 2,
pp. 196–203, May 2004.

[13] G. Donzellini and D. Ponta, “A simulation environment for e-learning
in digital design,” IEEE Transactions on Industrial Electronics, vol. 54,
no. 6, pp. 3078–3085, Dec 2007.

[14] W. El Medany, “FPGA remote laboratory for hardware e-learning
courses,” in Computational Technologies in Electrical and Electronics
Engineering, 2008. SIBIRCON 2008. IEEE Region 8 International
Conference on, July 2008, pp. 106–109.

[15] J. Garcia-Zubia, I. Angulo, L. Rodriguez-Gil, P. Orduna, O. Dziabenko,
and M. Guenaga, “Boole-WebLab-FPGA: Creating an integrated dig-
ital electronics learning workflow through a hybrid laboratory and an
educational electronics design tool,” International Journal of Online
Engineering (iJOE), vol. 9, 2013.

[16] L. Rodriguez-Gil, P. Orduna, J. Garcia-Zubia, I. Angulo, and D. Lopez-
de Ipina, “Graphic technologies for virtual, remote and hybrid laborato-
ries: WebLab-FPGA hybrid lab,” in Remote Engineering and Virtual
Instrumentation (REV), 2014 11th International Conference on, Feb
2014, pp. 163–166.

[17] E. G. Breijo, L. G. Sanchez, and J. I. Civera, “Using hardware descrip-
tion languages in a basic subject of digital electronic: Adaptation to
high academic performance group,” in 2014 XI Tecnologias Aplicadas
a la Ensenanza de la Electronica (Technologies Applied to Electronics
Teaching) (TAEE), June 2014, pp. 1–6.

[18] R. Rengel, M. J. Martin, and B. G. Vasallo, “Supervised coursework as
a way of improving motivation in the learning of digital electronics,”
IEEE Transactions on Education, vol. 55, no. 4, pp. 525–528, Nov 2012.

[19] D. Baneres, R. Clariso, J. Jorba, and M. Serra, “Experiences in digital
circuit design courses: A self-study platform for learning support,” IEEE
Transactions on Learning Technologies, vol. 7, no. 4, pp. 360–374, Oct
2014.

[20] A. Sangiovanni-Vincentelli, A. El Gamal, and J. Rose, “Synthesis
method for field programmable gate arrays,” Proceedings of the IEEE,
vol. 81, no. 7, pp. 1057–1083, Jul 1993.

20 MIPRO 2017/MEET

