
A Simulator for Training Human Operators of a
Remote Controlled Anti-Terrorism Ground Vehicle

Juraj Fulir, Željka Mihajlović, Marija Seder
University of Zagreb Faculty of Electrical Engineering and Computing

Zagreb, Republika Hrvatska
{juraj.fulir, zeljka.mihajlovic, marija.seder}@fer.hr

Abstract—Remote controlled robotic vehicles are expensive
and require high maintenance. In an effort to reduce costs of
training human operators for an anti-terrorism ground vehicle
we introduce a simulator implemented in Unreal Engine 4 as an
affordable solution. We describe several features that need to be
considered when simulating a remotely controlled vehicle guided
solely by its integrated cameras. Additional steps are shown
for achieving realism and user immersion while maintaining
an interactive rendering speed. The cost of rendering multiple
cameras is analysed and steps for remedying it are shown.

Index Terms—simulator training; remote controlled ground
vehicle; anti-terrorism

I. INTRODUCTION

Remote controlled vehicles are used in dangerous situa-
tions and often assist humans through close interaction. This
requires fast and precise actions from a safe distance by a well
trained operator using a very limited field of view. To acquire
such skills, a candidate must practice controlling the vehicle
in safe environments. This is costly since the candidate must
be brought to the training course, additional resources must
be spent to run the vehicle and there is a risk of damaging the
vehicle or endangering the training environment (pedestrians,
animals, training course objects, etc.). Training in a simulator
costs virtually nothing and can be especially useful in the
early stages of training, offering an approximate experience
of operating the vehicle. Additionally, simulators can offer
approximate experience of situations that would otherwise be
too dangerous or costly to perform in real-life training, e.g.
around explosion and radiation hazards [1]–[3]. Experiences
gained in a highly realistic simulator could be transferred to
real-life skills adding great value its usage.

Simulators have several components that make them real-
istic in different aspects. The physical simulation of vehicle’s
movement and its interaction with the world is a crucial
component. It makes the experiences gained in the simulator
transferable to real-life skills. A replica of the user interface
and the ability to connect to an official controller allow the
candidate to adjust to the controls and learn efficient usage of
limited information available. Scenarios for gaining targeted
experiences are deigned by experts and prepare the candidate
for real life situations. Finally, increasing the rendering quality
helps immersing the candidate into the virtual environment

and treating the scenarios presented as real. To maintain this
illusion the rendering speed must be high at all times which
poses constraints on the amount of detail and dynamics of
all of the above mentioned components [4], [5]. Realistic
simulators are additionally useful for training machine learning
models used in computer vision and robotics [6]–[8].

Game engines are generally designed to offer various
libraries, tools and optimised features. These allow fast de-
velopment and adjustments for leveraging between visual
quality and performance according to need [9]. Generally,
they support multiple standards for assets and offer their
own which enables fast prototyping with high quality results,
making them very handy for building simulators. In this work
we describe features, encountered problems and proposed
solutions for a simulator built using Unreal Engine 4 (UE4)
[10] for operating a remote controlled anti-terrorism ground
vehicle. The simulated vehicle is a prototype based on the
DOK-ING MV-3 model [11].

In section II we review several popular simulators similar
to ours built as standalone tools or projects within game
engines with usages in training human or AI operators. In
section III we discuss implementation details of various phys-
ical properties of the simulator and in section IV how the
vehicle interacts with its environment. In section V we discuss
performance issues that arise from simultaneous rendering of
multiple camera views and in section VI methods for achieving
a realistic and immersive environment at small rendering cost.
In section VII we review results of proposed solutions and
finally propose several directions for further research.

II. RELATED WORK

As remarked in [9], game engines contain many readily
available elements necessary for building a simulator. While
some simulators are built as a standalone tool, most modern
simulators just offer a layer of abstraction over the physics
engine. Usually they offer a set of implemented components
[12] or use specialised physics engines with an API as a plugin
for game engines [13], [14]. This way the development of
the graphical and physical end of the simulator is separated
allowing development teams to specialise in their respective
areas. With the ever growing interest in game development,

MIPRO 2020, September 28 - October 02, 2020, Opatija, Croatia

948

Authorized licensed use limited to: University of Zagreb: Faculty of Electrical Engineering and Computing. Downloaded on November 23,2021 at 09:53:45 UTC from IEEE Xplore. Restrictions apply.

the game engines continually increase both the usability and
performance allowing the development of realistic simulators.

Gazebo [12] is a standalone simulator popular in robotics.
It offers various implementations of joints, actuators and
sensors by fostering the power of an external physics engine.
Programs developed for a simulated model are transferable to
the real model. The simulator however offers modest set of
tools for realistic graphics which limits its usage for training
human operators. Several solutions were developed for using
a game engine to improve visual quality while supporting the
development of transferable programs [6], [15].

Simulators can implement various levels of physical com-
plexity. Some were developed to achieve high precision sim-
ulation of vehicles and their surroundings. These include
modelling the deformation of ground under construction ve-
hicles [16] and precise mechanical response for various ve-
hicle performance assessments [13], [14]. These simulators
require high-end or even specialised hardware for the complex
physical simulation which raises the cost of usage. Other
simulators focus on the concept of serious gaming, focusing on
immersion and rapid decision making while achieving a decent
amount physical reality. These simulators are often used by
the military for strategy training of teams. Due to their lower
simulation costs, these simulators often offer state of the art
real-time graphics quality and can be run on consumer class
hardware. Simulators that require both high fidelity graphics
and precise physics are often used for training and validating
machine learning algorithms [8], however they require spe-
cialised hardware clusters. Lower complexity solutions also
exist for the domain of machine learning [6], [7].

Multi-view rendering is common in multiplayer games
where multiple users remotely interact with the same virtual
scene. These are usually centralised systems with a server
entity which processes some or all of the physics or rendering
related tasks of multiple clients. The server can be one or
more specialized machines with various connection strategies.
[17] These approaches differ from ours as we focus on single
user interaction and require the entire simulator to run on a
single consumer class machine. This gives us the possibility
of connecting an external remote controller and controlling
the simulated vehicle for training purposes. In virtual reality
applications two cameras close together are used to create a
stereo image of the scene which is a special case of multi-view
rendering. Due to proximity of cameras scene elements visible
from one camera are similarly visible from the other, so some
resources or even pixels can be reused when rendering the
other camera. In our case vehicle mounted cameras are distant
from each other and their fields of view are mostly exclusive
which reduces the effectiveness of reusing information.

III. PHYSICAL FIDELITY AND MOVEMENT

The PhysX Vehicles plugin for UE4 comes packaged with
the engine and is a highly configurable plugin, containing

implementations of several powertrain models for cars. It uses
the PhysX vehicle template for simulating vehicle movement.
However, it currently supports up to 4 wheels and doesn’t
support the application of torque to the left and right wheels
independently, referred to as differential steering. This makes
the plugin unusable for simulating tracked vehicle movement.
The PhysX Vehicle SDK also contains an implementation of
tank movement which supports differential steering, however
we find it unusable for our application. The wheel collision
with the ground is approximated using a ray-cast in the − #—z
direction of local space. Based on the length of the ray
a suspension spring is simulated and used to suspend the
vehicle body. This approximation works well on relatively
flat terrain and when vehicles aren’t expected to climb on
steep surfaces. However, we expect the vehicle will have
no suspension and at low speeds on rough terrain ray-casts
without suspension perform unnatural hard oscillations. Since
we expect the intended environments will contain rubble and
sharp fragments we replace the single ray-cast collision with
full body collision.

The tracks are approximated with a finite number of
wheels and a cuboid shape to fill the gaps between wheels,
as shown in Fig. 1. The wheels are represented by spherical
collision bodies and are positioned at locations of the wheels
supporting the track in the real vehicle, shifted lower so
the track’s outer perimeter touches the perimeters of wheels.
This way the weight distribution necessary for drive force
calculation is well approximated. Wheels are connected to the
body using a movement restricted bone, allowed only to freely
rotate in the direction of movement, around the vehicle Y axis,
where the X and Z axes are respectively the forward and up
direction. Between the wheels there are gaps present, which
can cause the vehicle to get stuck in sufficiently thin and tall
obstacles. The real vehicle has hard track guides which prevent
this effect. To approximate this we use an additional collision
body in the shape of a cuboid. The cuboid is placed slightly
above the track’s outer perimeter to allow the wheels to contact
the ground, but block sharp obstacles from getting between the

Fig. 1. A view of the vehicle with highlighted collision bodies and bones.
The purple objects represent collision bodies, connected to the red root bone
by individual white bones. The cuboid fills the space between the wheels and
prevents obstacles from jamming them, as expected in the real vehicle. Note
that the collision between the overlapping bodies is turned off.

949

Authorized licensed use limited to: University of Zagreb: Faculty of Electrical Engineering and Computing. Downloaded on November 23,2021 at 09:53:45 UTC from IEEE Xplore. Restrictions apply.

wheels and jamming them. To reduce the energy loss resulting
from using only the wheels as force applicators, we remove
all friction of the cuboid.

The vehicle can be controlled via discrete and continuous
input signals. Discrete signals are used for discrete actions
such as changing a gear or setting the handbrake. Continuous
signals are used for throttle and steering. However, in absence
of an analog input device, discrete input devices such as a
keyboard can be used by gradually incrementing the input
value through time to simulate analog inputs. This allows us to
use both input types in case the controller input specification
changes. To simulate throttle we set the constant to positive if
throttle is non-zero and to negative when throttle is near zero.
This produces a linear change which can be easily adjusted to
vehicle specification. The vehicle engine supports two gears:
one for normal movement and one used for gaining momentum
when punching through objects. The sound of the engine is
used to give additional information about the engine to the
user so we modulate it based on the throttle value, which
corresponds to the change in engine RPM.

IV. INTERACTION WITH THE WORLD

The terrorists can hide behind a solid object or in a
building to achieve a strategic advantage. To overcome this
the vehicle has a front mountable spike designed to penetrate
through certain vertical barriers, such as glass or thin wooden
walls. Destructible objects can be simulated and created almost
effortlessly using the PhysX APEX plugin which converts
solid meshes into broken meshes when hit with sufficient
force. Tuning various parameters allows emulating resistance
of different materials. Adding sound cues and smoke particle
effects to the broken items gives a more believable look to
the action of punching through a wall. To keep the rendering
speed in a scene overflowed with fragments, each fragment can
be given a random lifetime after which it is removed from
the scene. The vehicle can be mounted with a shield used
to protect the people and items it carries from enemy fire.
Over some terrain types dust can be generated. Dust particles
are generated randomly with probability proportional to the
vehicle velocity. The landscape information is obtained by
shooting a length limited ray-cast in the − #—z direction of the
local space.

Due to its high power the vehicle can be used for towing
objects in the scene with a chain or a rope. To tow an object
the vehicle must first get close enough to the object. To test
whether the object is in range for towing an invisible collision
volume is placed around the vehicle. The collision volume is
set only to query the collision with the world and can be set to
filter unwanted collision. If the object is in range and is tagged
using a specified string tag, it can be connected by pressing
an action button. The object gets connected to the vehicle via
a physical constraint in a form of maximum distance of its
anchors. To cue the user that a connection was established

we add a simulated rope between the two anchors, defined on
both objects as sockets.

On the top of the vehicle various items can be carried. The
main expected usage is driving wounded people away from the
danger zone and bringing heavy equipment where it is needed.
To carry an object we define a virtual socket on the vehicle.
We reuse the same collision body used for towing to check if
an object is in range for carrying. On the press of an action
button the object gets attached to the specified socket and can
be carried. Prior to attachment we must disable collision of the
body and the simulation of physics, otherwise the attachment
constraint becomes unstable and breaks. When detaching the
item, the collision and physics properties are restored and the
object is placed to the right of the vehicle.

V. USER INTERFACE AND DISPLAY

The vehicle will have multiple cameras mounted on
various locations to allow the user a view of the vehicles’
surroundings. The video feed must be sent to a distant operator
via a low bandwidth communications channel which restricts
the view to a single camera at a time. Future work includes
optimisations that will enable simultaneous feed from multiple
cameras so we focus on that scenario. Additionally, we render
an operator’s view of the scene which simulates the expected
usage. Fig. 2 shows the user interface and the humanoid used
for the operator’s view. The third-person view towards the
vehicle is in the bottom left corner.

To display images from multiple cameras first we render
them to textures and then draw them on the head-up display.
Each rendered camera requires a separate render query which
increases the rendering cost. Since camera views are will be
small in the user interface, we reduce the resolution of target
textures. The image quality reduction isn’t noticeable, but the
rendering cost is decreased.

To allow the user to focus on a single camera with
more detail, action keys are added to cycle through different

Fig. 2. The user interface displays all camera sources in reduced resolution
to preserve interactive rendering speeds. The active camera is indicated by a
transparent rectangle, in this case the third person view. The vehicle cameras
shown on top are in order: rear left, front left, front, front right and rear right.

950

Authorized licensed use limited to: University of Zagreb: Faculty of Electrical Engineering and Computing. Downloaded on November 23,2021 at 09:53:45 UTC from IEEE Xplore. Restrictions apply.

cameras. When a camera is selected it is displayed across the
screen in its full resolution and its window is marked with
a semi-transparent window. The small window of the current
camera is not shown because it requires an additional render
query which unnecessarily degrades performance, as discussed
in section VII-B.

VI. VISUAL FIDELITY AND PERFORMANCE

Higher visual fidelity allows the user immerse into the
environment and approach the simulator training more seri-
ously. High quality models, realistic textures and adding as
many varieties as possible are essential parts. Colour varieties
provide good variation and can be simulated efficiently using
Perlin noise mapping based on the world xy coordinates.
Geometry can be shared between instances to save memory at
the expense of similarity between them. A different approach
would be to build trees procedurally with unique and ran-
domised shapes using algorithms described in [18]. However,
the cost of building and rendering lots of trees in this way
would be overwhelming considering the number of trees and
the amount of work needed for other tasks such as physics sim-
ulation and world interaction. On the other hand, simulating a
natural environment requires more than just realistic visuals.
If a natural scene is static it looks very artificial. Adding
just a small amount of branch movement simulates wind and
increases fidelity of the natural environment. The wind can
be simulated within UE4 using the ’SpeedTree’ plugin and
compatible tree models.

It makes sense to put certain vegetation on landscape types
that in nature support it. This is achieved by limiting on which
landscape layer foliage can be put. Instead of putting instances
one by one, they can be massively placed using brushes or
generated procedurally. Procedurally generated instances can
be placed using procedural volumes or using the landscape
material. Procedural volumes can be placed in the scene and
define the bounds within which vegetation can be spawned.
Landscape material can be used to procedurally spawn multi-
ple different instances on specific landscape layers. This is
a very simple method that is very configurable and yields
great results. However, it still doesn’t support collision on
spawned meshes which makes it useful only for certain types
of vegetation. Brushes are used to paint on the terrain texture
where instances can be spawned and the instances are statically
placed. This method allows for a finer control of instance
distribution and supports meshes with collision, which makes
it useful for placing trees, rocks and other objects.

In practice, cameras of remote controlled vehicles can
be occluded by clouds of dust from vehicle movement. To
simulate dust generation we cast a ray from each track. Based
on the type of hit material, we generate an adequately tinted
dust sprite depending on probability proportional to track
speed. Dust generation should not be too frequent to avoid
generating non-transparent clouds and randomisation gives a
more natural look to the simulated effect.

VII. RESULTS

All experiments were executed on a single Lenovo Legion
Y520 laptop with an Intel i7-7700HQ chip, 8 GB of RAM and
a NVIDIA GTX 1050 graphics card with 4 GB of VRAM.
These specifications are representative of the expected systems
to run the simulator in practice. The Unreal Engine version is
4.22.1 with the OpenGL version 4.6.0 backend and PhysX 3.4
as the physics engine.

A. Track collision using the wheel collision body

Fig. 3 depicts traces of the two approaches in implement-
ing track collision without suspension. The ray cast collision
shows a sharp spike when it encounters the edge of an obstacle
causing the entire vehicle to jump unnaturally. Using the full
collision body for wheel collision the trace is much smoother
and provides a more natural transition. In high speed vehicles
with suspension the effect of sharp collision is softened using
the simulated suspension springs and the jumping effect is
unnoticeable. As we expect this tracked vehicle to operate at
low velocities without suspension, the full wheel collision is
a better approach to implementation.

Fig. 3 also points out a problem with the approach of
approximating a track using multiple wheels. In the upper
image obstacle clearly penetrates the track and occasionally
causes the vehicle to get caught in it. The naive imple-
mentation using only wheel colliders suffers from the same
problem. The addition of a cuboid to the track collision keeps
the vehicle suspended over the obstacles and greatly reduces

Fig. 3. The trace represents the movement of a front wheel through multiple
consecutive frames. The top image shows a sharp wheel jump when the ray-
cast collision detects the difference in surface elevation. The bottom image
shows a smoother trace using the full collision body of the wheel. The traces in
the figure are only indicative and do not match the exact horizontal coordinate
of the obstacle due to perspective projection of the camera.

951

Authorized licensed use limited to: University of Zagreb: Faculty of Electrical Engineering and Computing. Downloaded on November 23,2021 at 09:53:45 UTC from IEEE Xplore. Restrictions apply.

the chance of jamming the wheels. The vehicle still changes
elevation as it traverses over individual obstacles due to the
height difference between wheels and the added cuboid, but
in practice the effect is barely noticeable. When traversing a
regular pattern of obstacles, the vehicle still might get stuck
if none of the wheels have contact with the ground. However,
this scenario is very improbable due to multitude of conditions
needed for it to happen that are not common in the expected
environments. These include: pattern of obstacles must match
the pattern of passive space between the wheels, vehicle must
be perpendicular to the obstacle and vehicle must be stationary
due to no friction constraint on the cuboid.

B. Measuring the cost of multiple cameras

The user interface requires simultaneous display of the
feed from multiple vehicle mounted cameras. Rendering mul-
tiple cameras causes additional queries for scene rendering
which adds a significant penalty to the total time cost per
frame. The cost of displaying a high resolution interface
is proportional to the expected cost of streaming a video
from a remote vehicle through limited bandwidth wireless
communication. We test the effect of interface resolution,
number of simulated cameras and the resolution of camera
views on the drop of the overall frame rate.

We use two resolutions expected to be found in the device
for remote control: 1920×1080 and 1280×720. For each device
resolution we test several scenarios, depending on the number
of cameras: a single camera (front), 3 cameras (front), 5
cameras (3 front and 2 back) and the same 5 cameras with an
additional third-person view. Vehicle mounted cameras were
rotated from the front facing one by ±45◦ for front ones and
±135◦ for rear ones. The front facing camera was always used
as the active camera displayed in the background. For each
of these setups we test several resolutions of camera views.
Since our interface divides the horizontal screen space into 5
parts, we ensure both tests include the camera resolution that is
exactly one fifth of the screen resolution, which will maintain
the original pixel density. The camera view resolutions sorted
by the number of pixels are: 128×72, 256×144, 384×216,
512×288. Larger resolutions were not tested as they show no
visible improvements in image quality in direct display and
are not to be expected in practice. For each experiment we
record 1000 frames after a first 5 second delay. The delay
allows the resources to load and the frame rate to stabilise for
an accurate reading. The physics engine in conjunction with
the game engine produces stochastic vehicle trajectory for the
same starting conditions. To reduce the possibility of unfair
estimation while maintaining tractability, each of the above
experiments was repeated 5 times. Finally, the temporal cost
of each frame over all repetitions were averaged to produce
the final results displayed in Fig. 4.

The vehicle was placed into a relatively open part of the
map and forced to drive forward with occasional turning right
according to a simple delay based flip-flop automata. The

Fig. 4. Graphs represents the average time to render a frame over a number
of pixels for each of the camera view resolutions. Each line represents a setup
depending on the number of cameras. Each graph presents measurements at a
given resolution of the main viewport. The dotted lines represent the rendering
costs at 30, 60 and 90 FPS. The values in the X-axis represent the number
of pixels in a given camera view resolution.

turning was stronger then usual to allow for the vehicle to
turn quickly enough so that all cameras catch a part of the
dust particles before they disappear. The dust particles cause
significant drops in frame rate due to being semi-transparent
and numerous. By allowing all cameras to capture it, we
guarantee that some setups aren’t falsely better. Dust particles
are important for our testing since we expect dense generation
during the training procedures to increase candidate robust-
ness. The surroundings include large and small objects, both of
static and dynamic nature. In the beginning of simulation three
destructible objects were dropped from the sky and broken to
increase the number of dynamic objects and scene complexity.

Fig. 4 shows results of the experiments. The larger res-
olution of the main viewport shows generally larger costs
of rendering a frame. We can see that even the lightest
configuration on high resolution viewport doesn’t achieve the
60 FPS threshold. This suggests a possibility of using various
methods of upsampling to utilise the speed of rendering a
low resolution screen by sacrificing some visual details. By
adding additional cameras to the user interface the costs rise
significantly. Each camera approximately adds additional 2.5
ms, rapidly escaping the 60 FPS threshold for the lower
resolution viewport. This indicates a large advantage of hiding
as much of camera sources as possible in the user interface.

952

Authorized licensed use limited to: University of Zagreb: Faculty of Electrical Engineering and Computing. Downloaded on November 23,2021 at 09:53:45 UTC from IEEE Xplore. Restrictions apply.

This is the reason we hide the current view as described in
section V. Note that this makes the cost for the one camera
configuration same for any camera view resolution since it is
hidden from the user interface. The cost of adding additional
cameras is more or less the same for all scenarios.

Increasing the camera resolution, within reasonable
bounds, has little effect across different number of cameras
compared to the cost of drawing the main viewport and re-
quiring several rendering queries. Therefore it is not necessary
to reduce the resolution of views at the cost of aliasing effects
and detail loss in an already small image. In our case, fifth of
the screen resolution maintains pixel density of the views and
is enough to display the scenes. However, we observe slightly
better image quality on a resolution larger then the optimal
one.

VIII. FUTURE WORK

The current implementation is sufficient to give initial
experience in manoeuvring the vehicle over rough terrain and
in tight places, using the limited information available through
the vehicle mounted cameras. A designed user study of can-
didates would reveal the true effectiveness of the simulator in
training. Due to time and space constraints we believe that
the effectiveness study is outside of the intended scope of this
paper and is left as future work.

Dynamic scenarios and specific goals should be specified
to immerse the candidate into the simulated environment. Both
need to be challenging but representative of real life situations
the candidate might encounter. Future work might include
scenarios designed in collaboration with experienced pilots to
increase the value of experiences gained through the simulator.

When constructed, the original vehicle controller will
communicate with the simulator. Although rendering cameras
directly to the framebuffer could lower the render time, our
goal is to use render targets which will later allow us to
simulate the image streaming from a vehicle to the original
controller. To compensate the cost of image transfer from the
vehicle to the controller, smarter approaches to information
presentation and transfer will be investigated.

IX. CONCLUSION

A simulator of a remote controlled anti-terrorism ground
vehicle for usage in human operator training is presented.
Several features required by the vehicle and their implementa-
tion are described. The implementation of tracks is compared
to the existing solution for vehicles in UE4. The costs of
displaying multiple cameras for remote control are compared
and analysed to point out main problems. The largest cost
comes from displaying multiple cameras in the user interface
so their count should be specified wisely. Their resolution in
the user interface has little cost when within reasonable bounds
and can be safely increased to match the needs of the interface.

ACKNOWLEDGEMENT

This work has been supported by the European Regional
Development Fund under the grant KK.01.2.1.01.0138 - De-
velopment of a multi-functional anti-terrorism system (MAS).
We gratefully acknowledge the NVIDIA Corporation for their
donation of the Titan V GPU used in this research.

REFERENCES

[1] M. Ðakulović and I. Petrović, “Motion planning of mobile robots
for humanitarian demining,” in 10th International IARP Workshop
HUDEM’2012, 2012.

[2] A. Šelek, D. Jurić, A. Čirjak, F. Marić, M. Seder, I. Marković, and
I. Petrović, “Control architecture of a remotely controlled vehicle in
extreme CBRNE conditions,” in 2019 International Conference on
Electrical Drives Power Electronics (EDPE), pp. 273–278, Sep. 2019.

[3] J. Peterson, W. Li, B. Cesar-Tondreau, J. Bird, K. Kochersberger,
W. Czaja, and M. McLean, “Experiments in unmanned aerial ve-
hicle/unmanned ground vehicle radiation search,” Journal of Field
Robotics, vol. 36, no. 4, pp. 818–845, 2019.

[4] M. Meehan, S. Razzaque, M. C. Whitton, and F. P. Brooks, “Effect of
latency on presence in stressful virtual environments,” in IEEE Virtual
Reality, 2003. Proceedings., pp. 141–148, March 2003.

[5] S. P. Sudarsan, C. J. Cohen, L. Q. Du, P. N. Cobb, E. S. Yager, and
C. J. Jacobus, “Influence of video characteristics of simulator images on
remote driving performance,” in 1997 IEEE International Conference
on Systems, Man, and Cybernetics. Computational Cybernetics and
Simulation, vol. 2, pp. 1062–1066 vol.2, Oct 1997.

[6] Microsoft, “AirSim.” https://microsoft.github.io/AirSim. Accessed:
2020-02-06.

[7] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the 1st
Annual Conference on Robot Learning, pp. 1–16, 2017.

[8] Nvidia, “Nvidia Drive.” https://developer.nvidia.com/drive. Accessed:
2020-02-06.

[9] J. Craighead, R. Murphy, J. Burke, and B. Goldiez, “A survey of
commercial open source unmanned vehicle simulators,” in Proceedings
2007 IEEE International Conference on Robotics and Automation,
pp. 852–857, April 2007.

[10] Epic Games, “Unreal Engine.” https://www.unrealengine.com. Ac-
cessed: 2019-12-18.

[11] “DOK-ING.” https://www.dok-ing.hr. Accessed: 2020-02-06.
[12] N. Koenig and A. Howard, “Design and use paradigms for gazebo,

an open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), vol. 3, pp. 2149–2154 vol.3, Sep. 2004.

[13] CM Labs, “Vortex Studio.” https://www.cm-labs.com/vortex-studio. Ac-
cessed: 2020-01-20.

[14] Mechanical Simulation, “CarSim.” https://www.carsim.com. Accessed:
2020-01-20.

[15] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, “Usarsim:
a robot simulator for research and education,” in Proceedings 2007 IEEE
International Conference on Robotics and Automation, pp. 1400–1405,
April 2007.

[16] D. Holz, A. Azimi, and M. Teichmann, “Advances in physically-based
modeling of deformable soil for real-time operator training simulators,”
in 2015 International Conference on Virtual Reality and Visualization
(ICVRV), pp. 166–172, Oct 2015.

[17] W. Cai, R. Shea, C. Huang, K. Chen, J. Liu, V. C. M. Leung, and C. Hsu,
“A survey on cloud gaming: Future of computer games,” IEEE Access,
vol. 4, pp. 7605–7620, 2016.

[18] H. Nuić and Ž. Mihajlović, “Algorithms for procedural generation and
display of trees,” in 2019 42nd International Convention on Informa-
tion and Communication Technology, Electronics and Microelectronics
(MIPRO), pp. 230–235, May 2019.

953

Authorized licensed use limited to: University of Zagreb: Faculty of Electrical Engineering and Computing. Downloaded on November 23,2021 at 09:53:45 UTC from IEEE Xplore. Restrictions apply.

