Reconstruction workshop
About
Deep learning is most easily applied to recognition tasks. Hence, reconstruction approaches are somewhat less considered these days. This is unfortunate since deep learning can contribute significant improvement to stereo, structure and motion, sparse matching and other reconstruction tasks. This workshop attempts to correct this by encouraging sharing of knowledge and exchange of ideas in this fascinating field.
When and Where
The workshop will be held on Friday, December 17 2021 at 13h in D305. Remote participation is possible over the following teleconference link.
Program
13:10 |
Ivan Bilić UniZg-FER |
Rethinking ego-motion for self-supervised monocular depth estimation
Primjena geometrije više pogleda u dubokim modelima za rekonstrukciju pomaka kamere |
13:30 |
Marin Oršić Microblink |
Leveraging attention for sparse matching
Rijetko uparivanje primjenom slojeva pažnje |
13:50 |
Iva Sović UniZg-FER |
Self-supervised learning of stereroscopic reconstruction
Samonadzirano ucenje stereoskopske rekonstrukcije |
14:10 | Pauza | |
14:20 |
Filip Oreč Rimac automobili |
Calibration of relative pose between RGB camera and LIDAR
Kalibracija međusobnog položaja kamere i LIDAR-a |
14:40 |
Antonio Jurić Gideon Brothers |
Deep Learning in Visual SLAM
Duboko učenje za vizualnu navigaciju i kartiranje |
15:00 |
Kristijan Bartol UniZg-FER |
Generalizable Human Pose Triangulation
Trijangulacija položaja osobe |